
Numerical Analysis Preliminary Exam
10.00am–1.00pm, January 19, 2018

Instructions. You have three hours to complete this exam. Submit solutions to four (and no
more) of the following six problems. Please start each problem on a new page. You MUST prove
your conclusions or show a counter-example for all problems unless otherwise noted. Write your
student ID number (not your name!) on your exam.

Problem 1: Rootfinding

For the iterations (a)–(d) state (i) whether it converges to α (for initial conditions sufficiently close
to the root), (ii) if it converges give the order of convergence (e.g. linear, quadratic, etc), and (iii) if
it converges linearly give the rate of convergence, i.e. compute limk→∞ |α− xk+1|/|α− xk|. Justify
your answers.

(a) xk+1 = −1 + xk + x2k, α = 2

(b) Newton’s method for f(x) = x(1− x)2, α = 1.

(c) xk+1 = x2k + x−2k − 1, α = 1.

(d) Newton’s method for f(x) = sin(x), α = π.

(e) For what initial conditions x0 does Newton’s method for f(x) = e−1/x converge to the root
α = 0? Show that the iteration converges sublinearly; specifically, show that the error ratio xk+1/xk
behaves asymptotically like e−xk in the sense that limk→∞ ln(xk+1/xk)

1/xk = −1

Problem 2: Interpolation & Approximation

(a) Find the polynomial that interpolates f(0) = 0, f(1) = 1, f(2) = 0, f(3) = 1, f(4) = 0 using
Newton divided differences. Use the Newton table to generate the necessary divided differences.

(b) Construct the generalized Newton table for the Hermite type data
f(0) = 0, f

′
(0) = 1, f

′′
(0) = 0, f(1) = 1, f

′
(1) = 0. The two leftmost columns in this table are

(x0, x0, x0, x1, x1)
T and (f [x0], f [x0], f [x0], f [x1], f [x1])

T . To fill in the rest of the table you must
relate the divided differences to the derivative data.
Hint: Let f [x0, x0] = limx→x0 f [x0, x].

(c) Let f(x) be a smooth function and p(x) be the unique Hermite interpolation polynomial satis-
fying

dlp(x)

dxl

∣∣∣∣∣
x=xi

=
dlf(x)

dxl

∣∣∣∣∣
x=xi

, l = 0, . . . ,m, i = 0, 1.

Show that the error in the interpolation is orthogonal to the interpolant p in the (semi) inner
product

(v, w)m+1 =

∫ x1

x0

(
dm+1v

dxm+1

)(
dm+1w

dxm+1

)
dx.
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Problem 3: Quadrature

(a) Let the weights in the quadrature formula
∫ b
a f(x)dx ≈

∑n
i=0wif(xi) with distinct nodes

x0, . . . , xn be based on integrating the unique polynomial of degree ≤ n that interpolates the data.
Give a formula relating the weights wi to the Lagrange interpolating polynomials `i(x).

(b) Let the weights in the quadrature formula
∫ b
a f(x)dx ≈

∑n
i=0wif(xi) with distinct nodes

x0, . . . , xn be chosen so that the quadrature exactly integrates all polynomials up to degree ≤ n.
Show that the resulting weights are the same as in part (a).

(c) Find weights w0, w1, and w2 and nodes x0, x1, x2 ∈ [−1, 1] such that the quadrature
∫ 1
−1 f(x)dx ≈∑

iwif(xi) integrates all quintic polynomials exactly.

Problem 4: Numerical Linear Algebra

Householder matrices form one of the most important ‘building blocks’ in several numerical linear
algebra methods.

(a) Write down the general form (definition) of a Householder matrix H.

(b) Show from this form that H is both Hermitian and unitary.

(c) Given two vectors ~x and ~y, describe the condition(s) on these vectors such that one can find a
Householder matrix H satisfying H~x = ~y. Show that these condition(s) indeed is (are) required.

(d) Assuming the condition(s) in part c is (are) satisfied, describe how one actually determines this
matrix H when given ~x and ~y.

(e) Describe how these Householder matrices can be used to similarity transform a square matrix
to upper Hessenberg form.

Problem 5: ODEs

(a) Define the concept of stability domain.

(b) Determine the stability domain for the leap-frog scheme yn+1 − yn−1 = 2kf(tn, yn) for solving
the ODE y′ = f(t, y) (with k denoting the time step: k = tn+1 − tn).

(c) Determine the leap-frog scheme’s order of accuracy.

Consider next the following variation of the leap-frog scheme

yn+1 − yn−1 = k

(
7

3
f(tn, yn)− 2

3
f(tn−1, yn−1) +

1

3
f(tn−2, yn−2)

)
.

(d) It can be shown that this scheme is third order accurate, and also that it entirely lacks a stability
domain, apart from the single point at the origin. Can this scheme be used to solve y′ = y and/or
y′ = −y? Explain!
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Problem 6: PDEs

Consider the periodic initial boundary value problem

ut = ux, x ∈ [0, 2π], t > 0,

u(x, t) = u(x+ 2π, t), u(x, 0) = eiKx.

Let vnj be a grid function approximating u(xj , tn) on the equidistant space-time grid with nodes
(xj , tn) = (jh, nk), h > 0, k > 0, j = 0, 1, . . . , J, n = 0, 1, . . .

Find the coefficients c−1 and c1 in the approximation

ux(xj , tn) ≈ 1

h

(
c1v

n
j+1 + c−1v

n
j−1
)
,

(a) so that the approximation is second order accurate,
(b) so that the approximation is exact for constants and for the initial data with K = π

2h .

For the temporal derivative consider the two approximations

ut(xj , tn) ≈ 1

k
(vn+1
j − vnj ), ut(xj , tn) ≈ 1

k
(vn+1
j −Avnj ),

where A is a spatial averaging operator defined as Awj ≡ wj+1+wj−1

2 .
(c) The two spatial and two temporal approximations can be combined in four ways to approximate
the PDE. Let k = λh, with λ being a positive constant. In each case determine what values of λ
yields a stable method.
(d) Which of the combinations results in consistent approximations to the PDE? You may simply
state the result without deriving the local truncation error.
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