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Solutions:

1. Root Finding.
We want to �nd a function such that the Newton iterations xn+1 = xn − f(xn)/f ′(xn) `hop

about' forever within a �nite interval, without ever converging. The easiest example would

seem to be if the iterates form some short cycle, the simplest of all such arising if xn+1 = −xn,
i.e. −xn = xn − f(xn)/f ′(xn). Simplifying the notation by writing x in place of xn, this will

be satis�ed if f ′(x) = 1
2x f(x). We can thus choose f(x) =

{
c
√
x if x ≥ 0

−c
√
−x if x < 0

, where c is

an arbitrary constant.

2. Numerical quadrature.

(a) Let h denote the length of a single subinterval before the extrapolation is done. Including

also the subinterval midpoint, the trapezoidal rule over this subinterval would have the

weights at its ends and midpoint: T0 = h [12 0 1
2 ] and, when using also the midpoint

T1 = h [14
1
2

1
4 ]. Weighing these two results together according to Richardson procedure

gives the extrapolation S0 = 4T1−T0
3 = h

6 [1 4 1], which we recognize as the Simpson

weights.

(b) The corresponding argument will for the extrapolated Simpson method start with S0 =
h
6 [1 0 4 0 1] and S1 = h

12 [1 4 2 4 1], producing the extrapolation C0 = 16S1−S0
15 =

h
90 [7 32 12 32 7]. Next question is whether this agrees with the corresponding Newton-

Cotes weights (which one is unlikely to recall by heart, or wish to re-derive). Hence, we

note that C0, by its Richarson construction must produce a sixth order accurate method.

Its order of accuracy thus matches that of the equally wide Newton-Cotes approxima-

tion, for which the weights are uniquely obtained by polynomial interpolation. Hence,

C0 must indeed agree with the the corresponding Newton-Cotes formula. We will not

obtain any further Newton-Cotes formulas in a similar manner, since extrapolation using

a formula with more that three nodes will add three or more nodes for a gain of only two

orders of accuracy. That is less than what the Newton-Cotes formulas achieve.
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3. Interpolation/Approximation.
We start by multiplying the numerator and denominator of pn(x) by Ψn(x), to obtain

pn(x) =

∑n
j=0wjf(xj)(x− x0) · . . . · (x− xj−1)(x− xj+1) · . . . · (x− xn)∑n

j=0wj (x− x0) · . . . · (x− xj−1)(x− xj+1) · . . . · (x− xn)
.

Note next that Ψ′(x) will become a sum of n+1 terms, all but one vanishing when substituting

x→ xj . Hence,

Ψ′(xj) = (xj − x0) · . . . · (xj − xj−1)(xj − xj+1) · . . . · (xj − xn).

Substituting wj = 1/Ψ′(xj) into the expression for pn(x) above thus gives

pn(x) =

∑n
j=0 f(xj)

(x−x0)·...·(x−xj−1)(x−xj+1)·...·(x−xn)
(xj−x0)·...·(xj−xj−1)(xj−xj+1)·...·(xj−xn)∑n

j=0 1 · (x−x0)·...·(x−xj−1)(x−xj+1)·...·(x−xn)
(xj−x0)·...·(xj−xj−1)(xj−xj+1)·...·(xj−xn)

.

The denominator is identically one (being the Lagrange interpolation polynomial to data that

is one at every node point), and it can therefore be omitted. The expression has then reduced

to the standard form of the Lagrange interpolation polynomial.

4. Linear algebra

(a) Reduction to Hessenberg form can be performed using either Housholder re�ections or

Givens rotations. The Hessenberg form of a general matrix is of the form
x x . . . x x
x x . . . x x
. . . . . . . . . . . . . . .
0 0 . . . x x
0 0 . . . x x


and is tridiagonal for self-adjoint matrices. Its purpose is to reduce the computational

burden of QR iteration.

(b) Initialize A1 = A. QR iteration proceeds as

An = QnRn

An+1 = RnQn, n = 1, 2, . . .

for n = 1, 2, . . . . Here Qn is unitary and Rn is upper triangular. These matrices are

obtained via QR factorization. The second step is the product of these matrices in the

reverse order.

(c) We have

Q∗nAn = Rn,

so that

An+1 = Q∗nAnQn.

(d) QR iteration converges if the eigenvalues |λ1| > |λ2| > . . . |λn|, i.e., absolute values of

the eigenvalues are distinct.
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5. ODEs

(a) We have

f (tn + h,yn + k1) = f (tn,yn) + h

(
∂f(tn,yn)

∂t
+
∂f(tn,yn)

∂y
f(tn,yn)

)
+O(h2),

so that

yn+1 = yn + hf(tn,yn) +
h2

2

(
∂f(tn,yn)

∂t
+
∂f(tn,yn)

∂y
f(tn,yn)

)
+O(h3).

Comparing with the Taylor expansion of the exact solution at f(tn,yn),

y′′ =
∂f(t,y)

∂t
+
∂f(t,y)

∂y
f(t,,y),

we obtain

y(tn+1) = yn + hf(tn,yn) +
1

2
h2
(
∂f(tn,yn)

∂t
+
∂f(tn,yn)

∂y
f(tn,yn)

)
+O(h3)

so that the order of the method is p = 2.

(b) Applying Heun's method to the test problem

y′ = λy

y(0) = y0,

where λ ∈ C, we have

k1 = λhyn,

k2 = λh (yn + k1) ,

yn+1 = yn +
1

2
(k1 + k2)

so that

yn+1 =

(
1 + λh+

(λh)2

2

)
yn =

(
1 + z +

z2

2

)
yn, z = λh.

Since when z = 0 the solution of this recurrence remains bounded, the method is stable.

(c) The region of absolute stability is the set of all z ∈ Z such that∣∣∣∣1 + z +
z2

2

∣∣∣∣ ≤ 1.

To sketch the shape of this region without a computer, one can �nd several points where∣∣1 + z + z2/2
∣∣ = 1, e.g., z = 0, z = −2, etc.
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6. PDEs
We look for the solution in the form

u (x, y) =
M−1∑
m=0

N−1∑
n=0

umn sin (π (m+ 1)x) sin

(
π

(
n+

1

2

)
y

)
so that

∂u

∂y
(x, y) =

M−1∑
m=0

N−1∑
n=0

umnπ

(
n+

1

2

)
sin (π (m+ 1)x) cos

(
π

(
n+

1

2

)
y

)
satis�es the Neumann boundary at y = 1. Computing

∆u (x, y) = −
M−1∑
m=0

N−1∑
n=0

umnπ
2

(
(m+ 1)2 +

(
n+

1

2

)2
)

sin (π (m+ 1)x) sin

(
π

(
n+

1

2

)
y

)
,

we seek an expansion of the right hand side,

f (x, y) =
M−1∑
m=0

N−1∑
n=0

fmn sin (π (m+ 1)x) sin

(
π

(
n+

1

2

)
y

)
so that we can set

umn = − fmn

π2
(

(m+ 1)2 +
(
n+ 1

2

)2) .
Consider xk = (k + 1) /M , k = 0, . . .M − 1 and yl = (l + 1) /N , l = 0, . . . N − 1 so that

f (xk, yl) =
M−1∑
m=0

N−1∑
n=0

fmn sin

(
π

(m+ 1) k

M

)
sin

(
π

(
n+ 1

2

)
(l + 1)

N

)
.

Since sine transforms requiresO (MN logN)+O (MN logM) operations, using these formulas

yields a fast algorithm.
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