Department of Applied Mathematics Preliminary Examination in Numerical Analysis January 2014

Submit solutions to four (and no more) of the following six problems. Justify all your answers.

1. Root Finding.

Construct a continuous function f(x), defined over $x \in (-\infty, \infty)$ such that, for any starting point x_0 that is not itself a root, the Newton iterations for solving f(x) = 0 will be uniquely defined, stay bounded, but nevertheless fail to converge.

2. Numerical quadrature.

The trapezoidal rule has error $O(h^2)$ and Simpson's rule error $O(h^4)$, in both cases with even powers only in their full error expansions. These are the first two members of the Newton-Cotes family of methods, with errors (starting from the trapezoidal case) h raised to 2, 4, 4, 6, 6, 8, 8,

- (a) Show that Simpson's rule can be obtained by a one step Richardson extrapolation of the trapezoidal rule.
- (b) Determine the quadrature weights in the scheme that is obtained by a one step Richardson extrapolation of Simpson's rule. Explain whether this is another member of the Newton-Cotes sequence. If this is the case, determine also if there will be any further instances of one-step Richardson extrapolation of a Newton-Cotes method giving another Newton-Cotes method.

3. Interpolation/Approximation.

The barycentric form of Lagrange's interpolation polynomial takes the form

$$p_n(x) = \frac{\sum_{j=0}^n w_j f(x_j) / (x - x_j)}{\sum_{j=0}^n w_j / (x - x_j)},$$

where $w_j = 1/\Psi'_n(x_j)$ with $\Psi_n(x) = \prod_{j=0}^n (x - x_j)$. Verify that the expression above indeed produces the (unique) interpolation polynomial.

4. Linear Algebra

Describe steps of QR algorithm to compute eigenvalues of a matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$.

- (a) Describe and explain the purpose of the reduction to Hessenberg form.
- (b) Describe the steps of QR iteration.
- (c) Show that a sequence of QR iterates is a sequence of matrices similar to **A** by a unitary transformation.
- (d) State a sufficient condition for the convergence of QR iteration.

5. ODEs

Consider a system of ODEs

$$\mathbf{y}' = \mathbf{f}(t, \mathbf{y}), \quad \mathbf{y}(0) = \mathbf{y}_0$$

and the so-called Heun's method (a simple Runge-Kutta scheme),

$$\begin{aligned} \mathbf{k}_1 &= h \mathbf{f} \left(t_n, \mathbf{y}_n \right), \\ \mathbf{k}_2 &= h \mathbf{f} \left(t_n + h, \mathbf{y}_n + \mathbf{k}_1 \right), \\ \mathbf{y}_{n+1} &= \mathbf{y}_n + \frac{1}{2} \left(\mathbf{k}_1 + \mathbf{k}_2 \right) \end{aligned}$$

- (a) Determine the order of this method.
- (b) How do you find if the method is stable?
- (c) Define and determine the region of absolute stability for this method method.

6. **PDEs.**

(a) Formulate a Fourier-type method to solve the Poisson equation in the unit square $[0, 1] \times [0, 1]$,

$$\Delta u = f$$

with the Dirichlet boundary conditions on three sides and the Neumann condition on the forth,

$$u (x, y)_{|x=0} = 0,$$

$$u (x, y)_{|x=1} = 0,$$

$$u (x, y)_{|y=0} = 0,$$

$$\frac{\partial u}{\partial y} (x, y)_{|y=1} = 0.$$

For simplicity assume that the function f satisfies the same boundary conditions and is smooth together with a sufficient number of its partial derivatives.

- (b) Formulate the corresponding discrete problem.
- (c) Describe a fast algorithm for solving this equation.