
1. Nonlinear Equations Given scalar equation, f(x) = 0,

(a) Describe I) Newtons Method, II) Secant Method for approximating the solution.

(b) State sufficient conditions for Newton and Secant to converge. If satisfied, at what rate
will each converge?

(c) Sketch the proof of convergence for Newton’s Method.

(d) Write Newton’s Method as a fixed point iteration. State sufficient conditions for a general
fixed point iteration to converge.

(e) Apply the criterion for fixed point iteration to Newton’s Method and develop an alternate
proof for Newton’s Method.

Solution

(a) Newton’s method: Given x0, let

xn+1 = xn − f(xn)

f ′(xn)
, n ≥ 0.

Secant Method: Given x0, x1, let

xn+1 = xn − f(xn)
(xn − xn−1)

f(xn) − f(xn−1)
n ≥ 1.

(b) Newton’s Method: Let f(α) = 0. Assume that there exists an interval E = [α−η, α+η]
such that f(x), f ′(x) and f ′′(x) are continuous on E, and

maxx∈E |f ′′(x)|
2 minx∈E |f ′(x)|

≤ M,

and ηM < 1.0. Then, for any x0 ∈ E, Newton’s method will converge with rate 2.0.

Secant Method: Under the same assumptions, if x0 and x1 are in E, the the Secant
Method will converge with rate 1+

√
5

2
� 1.62.

(c) See Atkinson, pages 59-60.

(d) Define

g(x) = x − f(x)

f ′(x)
.



Newton’s method can be cast as: Given x0, let

xn+1 = g(xn), n ≥ 1.

Fixed point convergence: Let D ⊂ � be a closed, bounded interval such that, for x ∈ D,

(I) g(D) ⊂ D.

(II) λ = maxx∈D |g′(x)| < 1.0.

(e) We want to find an interval, D = [α − η, α + η] for which

(I) g(D) ⊂ D.

(II) g′(x) = 1 − f ′(x)2−f(x)f ′′(x)
f ′(x)2

= f(x)f ′′(x)
f ′(x)2

∈ (−1, 1).

Toward that end, assume f(x), f ′(x) and f ′′(x) are continuous in a neighborhood of α
and f ′(α) �= 0. Then, there exists an interval, E, containing α in which

maxx∈E |f(x)f ′′(x)|
minx∈E |f ′(x)2|

≤ λ < 1.0,

Chose D ⊆ E. Then, for some ξ ∈ [α, x],

|g(x) − α| = |g(α) − α + g′(ξ)(x − α)| ≤ λ|x − α|,

which establishes g(D) ⊂ D.



Numerical quadrature:

2. Assume that a quadrature rule, when discretizing with n nodes, possesses an error expansion of
the form

I − In = c1
n + c2

n2 + c3

n3 +¢

Assume also that we, for a certain value of n,  have numerically evaluated In , I2n  and I3n.   

a. Derive the best approximation that you can for the true value I of the integral.

b. The error in this approximation will be of the form  for a certain value of p. WhatO(n−p)
is this value for p?

Solution:

a. With three numerically evaluated values, we can solve for three variables. For these we
want to choose I, c1 and c2, at which point we only care about the obtained value for I.
Abbreviating   and , we thus obtain the relations

c1
n = d1

c2

n2 = d2

,










I − In = d1 + d2

I − I2n = 1
2 d1 + 1

4 d2

I − I3n = 1
3 d1 + 1

9 d2

or, written in the usual linear system form (separating 'knowns' from 'unknowns')

1 −1 −1
1 − 1

2 − 1
4

1 − 1
3 − 1

9

I
d1

d2

=
In

I2n

I3n

from which follows

I = 1
2 (In − 8I2n + 9I3n).

b. With the first two terms in the error expansion eliminated, it will continue from the third
term and onwards (with modified coefficients), i.e. the error in the approximation above
will be of the form  O(n−3).



Interpolation / Approximation:

3. The General Hermite interpolation problem amounts to finding a polynomial p(x) of degree 
 that satisfies-1 + -2 +¢ + -n − 1

p(i)(x1) = y1
(i) , i = 0, 1, ... , -1 − 1

: :
p(i)(xn) = yn

(i) , i = 0, 1, ... , ,-n − 1

where the superscripts denotes derivatives, that is, we specify the first  derivatives at the- j − 1
point , for . Show that this problem has a unique solution whenever the xi arex j j = 1, 2,¢, n
distinct.

Hint: Set up the linear system for a small problem, recognize the pattern, and prove the general
result.

Solution:

In all, there are    conditions. Let the interpolation polynomial of degree -1 + -2 +¢ + -n = N
  be  Each of the given conditions form one line in a linearN − 1 p(x) = .0 + .1x +¢ + .N−1xN−1.

system for the coefficients:

1 x1 £ £ x1
N−1

0 1 £ £ (N − 1)x1
N−2

• £ £
1 x2 £ £ x2

N−1

§ § § § §

.0

.1

§
§
.N−1

=

y1
(0)

y1
(1)

§
§
§

The task is to show that this  coefficient matrix is nonsingular, as this will imply bothN % N
existence and uniqueness. One way to do this is to let the right hand side (RHS) be zero, and
show that the problem then has only the zero solution.

With the RHS zero, the conditions that are imposed require p(x)  to have a zero of degree  at -1

 i.e. a factor ; then likewise a factor of   etc. These required factors willx1, (x − x1)-1 (x − x2)-2 ,
imply that the polynomial p(x) will have a total of N zeros (counting multiplicities). This is one
above the actual degree of p(x), implying that all the coefficients of p(x) must be zero.



4. Linear Algebra

Consider the n × n, nonsingular matrix, A. The Frobenius norm of A is given by

‖A‖F = (
∑

i,j

|ai,j|2)1/2

(a) Construct the perturbation, ∂A, with smallest Frobenius norm such that A − ∂A is
singular. (Hint: use one of the primary decompositions of A.)

(b) What is the Frobenius norm of this special ∂A?

(c) Prove that it is the smallest such perturbation.

(d) Extra Credit: Is it unique?

Solution

(a) Start with the singular value decomposition of A,

A = UΣV ∗,

where U and V are unitary, and

Σ =




σ1

σ2

. . .

σn




,

where σ1 ≥ σ2 ≥ . . . σn > 0. The last inequality stems from that assumption that A is
nonsingular.

Consider the perturbation
∂A = UΓV ∗

where

Γ =




0
0

. . .

0
σn




,



Clearly,
A − ∂A = U(Σ − Γ)V ∗

is singular.

(b) Denote the columns of U = [u1, u2, . . . , un] and V = [v1, v2, . . . , vn]. The fact that U and
V are unitary implies that ‖uj‖ = ‖vj‖ = 1, for j = 1, . . . , n. We can write

∂A = σnunv
∗
n

and the Frobenius norm is

‖∂A‖2
F = σ2

n

∑

i

∑

j

|(un)i|2|(vn)j|2 = σ2
n,

or
‖∂A‖F = σn

(c) Suppose ∂A is any perturbation such that A−∂A is singular. Then, there exists a vector
of unit length, denoted by w, such that

Aw = ∂Aw.

Now,

min
z �=0

‖Az‖
‖z‖

= min
‖w‖=1

‖Aw‖ = σn

Thus, the largest singular value of ∂A must be greater than or equal to σn. Since
multiplication by a unitary matrix does not change the Frobenius norm, the Frobenius
norm of a general matrix is

‖A‖F = (
∑

i

σ2
i )

1/2.

Thus,
‖∂A‖ ≥ σn.

(d) The answer depends on A. If the smallest singular value of A is unique, then the smallest
perturbation is unique. Any other perturbation, ∂Â for which A − ∂Â is singular will,
itself, have a second nonzero singular value, and thus, a larger Frobenius norm. If there
are multiplies of the smallest singular values of A, then there are multiple choices of ∂A
with Frobenius norm equal to σn.



Numerical ODE:

5. Consider using forward Euler (same as AB1; Adams-Bashforth of first order) as a predictor, and
the trapezoidal rule (same as AM2; Adams Moulton of second order) as a corrector for solving
the ODE   y ∏ = f(t, y).

a. Write down the explicit steps that need to be taken in
order to advance the numerical solution from time tn

to time  tn+1 = tn + k.

b. Determine the order of the combined scheme. In case
you know a theorem that gives the order directly, you
may quote this in its general form, i.e. do not just
state the answer in the present special case.

c. The figure to the right illustrates the stability domain
of the scheme. Prove that  is the leftmost point(−2, 0)
in the domain, and that its vertical extremes are taken
at .(−1 ! 3 i)

Note:   If your solution utilizes that the stability domain is symmetric around the line 
 that symmetry has also to be proved.Re; = −1,

Solution:

a. Let the intermediate value at time  be denoted  . The two steps are thentn+1 yn+1
&






yn+1
& = yn + k f(tn, yn)

yn+1 = yn + k
2 (f(tn+1, yn+1

& ) + f(tn, yn))

b. There is a general theorem to the effect that, with a predictor of order p and a corrector of
order q, the order of the combined predictor-corrector scheme will be  In themin(p + 1, q).
present case,  and  resulting in second order. One (of many possible) directp = 1 q = 2,
verifications will be noted in the solution to part c below.

c. We obtain a scheme's stability domain by applying it to the special ODE  In they ∏ = 8y.
present case, eliminating the intermediate , leads then to yn+1

&

yn+1 = yn + k
2 (8(yn + k8yn) + 8yn),

which, following the standard variable change , simplifies tok8 = ;

yn+1 = (1 + ; + 1
2 ;

2) yn.

At this point, we can find the order of the scheme by inspecting how far the expansion in 
, here , agrees with the Taylor expansion for . Thus, the scheme is of; h(;) = 1 + ; + 1

2 ;
2 e;

order 2.

The outer edge of the stability domain, displayed in the figure above, is the contour line in
the complex -plane for where  Writing  this implies that ; |h(;)| = 1. h(;) = 1

2 (1 + (; + 1)2),
 should fall on the periphery of a circle with radius 2, centered at  This(; + 1)2 ; = −1.

circle extends between -3 and +1 along the real axis. After taking the square root and
subtracting one, we obtain the stability domain, which thus has as its extreme points 

 and    ! −3 − 1 ! 1 − 1.



6. Partial Differential Equations

Consider the steady-state, advection-diffusion equation in one space dimension:

−∂x(a(x)∂xu(x)) + b(x)∂xu = f, x ∈ [0, 1]

with boundary conditions u(0) = u(1) = 0 and the assumption that a(x) is continuous and
a(x) > 0 for x ∈ [0, 1]

(a) Describe the finite difference (FD) method for approximating the solution using I) Cen-
tered Differences, II) Upwind Differences on the advection term. Let h represent the mesh
spacing and assume a uniform mesh. In each case above, describe the linear systems, Ah

c

and Ah
u, that the FD method yields.

(b) Assume a > 0 and b > 0 are constant. State a relationship between a, b, and h that
assures the eigenvalues of the linear system are real for I) Centered Differences, Ah

c , and
II) Upwind Differences, Ah

u.

(c) For constant a > 0, b > 0, use Gershgorin bounds to establish bounds on the eigenvalues
of Ah

u, the upwind difference matrix.

Now consider the parabolic equation (assume a > 0 and b > 0 are constant)

∂tu = a∂xxu(x) − b∂xu, x ∈ [0, 1]

(d) Write the Forward Euler scheme for this equation using I) Centered Differences II)
Upwind Differences for the advection term.

(e) Write a simple relationship, in terms of a, b, h and δt that guarantees the stability of
Forward Euler and Upwind Differences.

Solution

(a) Start by defining a mesh of points: Let h = 1/n and define xj = jh for j = 0, . . . , n. The
Centered Difference stencil for the first term is

−a(xi − h/2)ui−1 + (a(xi − h/2) + a(xi + h/2))ui − a(xi + h/2)ui+1

h2

= −(a(xi)u
′(xi))

′ +
h2

24

(
(a(ξi)u

(3)(ξi))
′ + (a(ηi)u

′(ηi))
(3)

)
,



where ξi, ηi ∈ [xi−1, xi+1].

The Centered Difference stencil for the second term is

b(xi)
−u(xi−1) + u(xi+1)

2h
= b(xi)u

′(xi) +
h2

12
b(xi)u

(3)(ηi),

where ηi ∈ [xi−1, xi+1].

The Upwind Difference stencil for the second term is, for b(xi) > 0,

b(xi)
−u(xi−1) + u(xi)

h
= b(xi)u

′(xi) −
h

2
b(xi)u

′′(ηi),

where ηi ∈ [xi−1, xi] and, for b(xi) < 0,

b(xi)
−u(xi) + u(xi+1)

h
= b(xi)u

′(xi) +
h

2
b(xi)u

′′(ηi),

where ηi ∈ [xi, xi+1].

With centered differences, the linear system is tridiagonal, denoted by

Ah =
1

h2
tri

[
−(a(xi − h/2) +

1

2
b(xi)); (a(xi − h/2) + a(xi + h/2)); − (a(xi + h/2) − h

2
b(xi))

]

With upwind differences, the system is, for b(xi) > 0,

Ah
c =

1

h2
tri [−(a(xi − h/2) + hb(xi)); (a(xi − h/2) + a(xi + h/2) + hb(xi)); − a(xi + h/2)]

and, for b(xi) < 0,

Ah
u =

1

h2
tri [−a(xi − h/2); (a(xi − h/2) + a(xi + h/2) − hb(xi)); − (a(xi + h/2) − hb(xi))] .

(b) Let a > 0 and b > 0 be constants. If the product of the off diagonal terms is positive,
that is, if

a2 − (bh)2/4 ≥ 0, or
bh

2a
≤ 1.0,

then the centered difference matrix will be an M-matrix with real eigenvalues. The
upwind matrix has real eigenvalues for every a, b, and h.



(c) For upwind differences and constant coefficients, a > 0 , b > 0, we have the matrix

Ah
u =

1

h2
tri [−(a + bh); (2a + bh); − a] .

Gershgorin bounds imply that spectrum of Ah
u is contained in the interval [0, 4a+2bh

h2 ].

(d) The Forward Euler stencil for Centered Differences is

u�+1
i = u�

i +
δt

h2
[(a + bh/2)u�

i−1 − (2a)u�
i + (a − bh/2)u�

i+1]

and for Upwind Differences is

u�+1
i = u�

i +
δt

h2
[(a + bh)u�

i−1 − (2a + bh)u�
i + au�

i+1].

(e) The stability condition is that the eigenvalues of the operator on the right-hand side of
the equation above are inside (or on) the unit circle. Using the fact that all eigenvalues
Ah

u are real, and the Gershgorin bounds from above, this is guaranteed if

1 − δt
4a + 2bh

h2
≥ −1,

or

δt
4a + 2bh

h2
≤ 2.

Notice that for a = 1 and b = 0 this is the familiar bound δt/h2 ≤ 1/2.


