
1. Solution: Nonlinear Equations

1. Denote

G(x, y) =

[

∂g1

∂x

∂g1

∂y
∂g2

∂x

∂g2

∂y

]

.

We seek a closed, bounded, and convex region, D ∈ ℜ2, for which

(x, y) ∈ D ⇒ (g1(x, y), g2(x, y)) ∈ D

λ := max
(x,y)∈D

‖G‖∞ < 1.0.

See Atkinson, Theorem 2.9, page 105. (Note: any consistent matrix norm will suffice.)

2. Since 1√
2

> 2
3
, then ∀(x, y) ∈ ℜ2 we have

g1(x, y) > 0.0

g2(x, y) > 0.0

Now,

G(x, y) =





(x+y)
√

2
√

1+(x+y)2

(x+y)
√

2
√

1+(x+y)2

(x−y)
√

2
√

1+(x−y)2

−(x−y)
√

2
√

1+(x−y)2



 .

and

‖G‖∞ = max{
√

2|x + y|
√

1 + (x + y)2
,

√
2|x − y|

√

1 + (x − y)2
} < 1.0

implies

|x + y| < 1.0

|x − y| < 1.0.

All requirements are satisfied if we define

D = {(x, y) : x > 0.0, y > 0.0, and x + y < 1.0}

3. Write the system as

F (x, y) =

(

x − g1(x, y)
y − g2(x, y)

)

=

(

0
0

)

.

The Jacobian is given by
J(x, y) = I − G(x, y),

where G(x, y) is defined as above. The iteration would be
(

xn+1

yn+1

)

=

(

xn

yn

)

− J(xn, yn)
−1F (xn, yn)

For every (x0, y0) ∈ D, we have ‖G(x0, y0)‖∞ < 1.0, which implies J(x0, y0) is nonsin-
gular. However, we cannot guarantee that (x1, y1) ∈ D, without further restrictions.
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2. Numerical quadrature

a. Trapezoidal rule:

¶
a

b
f(x)dx = h 1

2 f(x0) + f(x1) + f(x2) + f(x3) + f(x4) + f(x5) +¢ + f(xn−1) + 1
2 f(xn) + O(h2)

Simpson's rule:

¶
a

b
f(x)dx = h

3
[1f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + 4f(x5) +¢ + 4f(xn−1) + 1f(xn)] + O(h4)

Richardson extrapolation of  the trapezoidal rule gives

4Th − T2h

3 =

          = h [ 2
3 f(x0) + 4

3 f(x1) + 4
3 f(x2) + 4

3 f(x3) + 4
3 f(x4) + 4

3 f(x5) +¢ + 4
3 f(xn−1) + 2

3 f(xn) −
  − 2

3
1
2 f(x0) − 2

3 f(x2) − 2
3 f(x4) ¢ − 2

3
1
2 f(xn)] =

,= h
3

[1f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + 4f(x5) +¢ + 4f(xn−1) + 1f(xn)]

which agrees with Simpson's rule.

b. If one remembers Euler-MacLaurin's formula, the task is easy. With  meaning that the first and�
∏∏

the last term is to be halved, it holds that

¶
a

b
f(x)dx = h �

i=0

n
∏∏ f(x i) − 1

12h2(f ∏(b) − f ∏(a)) − 1
168h4(f ∏∏∏(b) − f ∏∏∏(a)) −¢

The trapezoidal rule (with its  error) is obtained by ignoring all the correction terms followingO(h2)
the sum in the right hand side. In order to get a formula that is accurate to  , we just need toO(h4)
approximate  to fourth order, i.e. the derivatives to second order accuracy.− 1

12h2(f ∏(b) − f ∏(a))
One-sided approximations, extending over three nodes

 
f ∏(a) = f ∏(x0) = (− 3

2 f(x0) + 2f(x1) − 1
2 f(x2))/h + O(h2)

f ∏(b) = f ∏(xn) = (− 1
2 f(xn−2) + 2f(xn−1) − 3

2 f(xn))/h + O(h2)

lead immediately to the desired result. The process can be extended to any order by just including
additional terms from the Euler-MacLaurin expansion.

If one does not recall the Euler-MacLaurin expansion, here is another approach. To simplify the
notation, consider just the correction around ; will be equivalent around . Simpson's rulex = a x = b
tells that



¶
a

f(x)dx = h
3

[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + 4f(x5) +¢] + O(h4)
and

.¶
a+h

f(x)dx = h
3

[ f(x1) + 4f(x2) + 2f(x3) + 4f(x4) + 2f(x4) +¢] + O(h4)

Therefore

¶
a

f(x)dx = 1
2 ¶a

a+h
f(x)dx + 1

2 ¶a f(x)dx + 1
2 ¶a+h

f(x)dx =

    .= 1
2 ¶a

a+h
f(x)dx + h

6
[f(x0) + 5f(x1) + 6 f(x2) + f(x3) + f(x4) + f(x5) +¢ ] + O(h4)

It now only remains to approximate  to order  based on the three node values  ¶
a

a+h
f(x)dx O(h4) f(x0),

 and . Fitting a parabola through these, and integrating it will do the job. If one carries thisf(x1) f(x2)
out, the appropriate formula becomes

.¶
a

a+h
f(x)dx = h

12
[5 f(x0) + 8 f(x1) − f(x2)] + O(h4)

For integration formulas of still higher orders, one could consider starting the equivalent procedure
with higher order Newton-Cotes formulas. 

As it happens, there are closed form expressions available for all the coefficients in the quadrature
formulas of the type explored here (trapezoidal rule with end corrections). They are among the first
quadrature formulas ever described in the literature, known as Gregory's formulas after James
Gregory (1638-1675). 



3. Interpolation / Approximation

a. p2(x) = 1
(x − 0)(x − 2)

(−1 − 0)(−1 − 2) − 1
(x + 1)(x − 2)
(0 + 1)(0 − 2) + 1

(x + 1)(x − 0)
(2 + 1)(2 − 0) = x2 − x − 1.

b. Divided difference table: Interpolant:

;  

x y

−1 1
−1−1

0−(−1) = −2

0 −1
1−(−2)
2−(−1) = 1

1−(−1)
2−0 = 1

2 1

p2(x) = 1 − 2(x + 1) + 1(x − 0)(x + 1) = x2 − x − 1.

c. The overdetermined system to solve becomes . Following the normal
1 −1
1 0
1 2

a
b

=
1

−1
1

equations approach, we multiply from the left with the transpose of the coefficient matrix, which
gives

 , with solution , .
3 1
1 5

a
b

=
1
1

a = 2
7 b = 1

7

d. Let the cubic on [-1,0] be    and on [0,2]   . Wes1(x) = ax3 + bx2 + cx + d s2(x) = ex3 + fx2 + gx + h
obtain , , and , .s1

∏ (x) = 3ax2 + 2bx + c s1
∏∏(x) = 6ax + 2b s2

∏ (x) = 3ex2 + 2fx + g s2
∏∏(x) = 6ex + 2f

The conditions that need to be satisfied are:

Value at -1: −a + b − c + d = 1
Second derivative at -1: −6a + 2b = 0
Value at 0: ,d = −1 h = −1
Match first derivative at 0: c = g
Match second derivative at 0: 2b = 2f
Value at 2: 8e + 4f + 2g + h = 1
Second derivative at 2: 12e + 2f = 0

We have here 8 equations in 8 unknowns. However, the simple structure allows a quick
simplification down to a  system. One finds after not much algebra2% 2

a = 1
2 , b = 3

2 , c = −1, d = −1, e = − 1
4 , f = 3

2 , g = −1, h = −1.



4. Solution: Linear Algebra

1. The minimization problem yield the following linear least-squares problem
[

A
λI

]

x ≃
[

b
0

]

.

The solution of this system is given by the normal equations

[

At λI
]

[

A
λI

]

x =
[

At λI
]

[

b
0

]

,

which becomes
[

AtA + λ2I
]

x = Atb.

2. Note that AtA is positive semidefinite. If λ > 0, then AtA + λ2I is positive definite
and, therefore, nonsingular. This guarantees a unique solution.

3. Denote the singular value decomposition of A by

A = UΣV ∗,

where Un×n , Vn×n are unitary and Σn×n = diag{σ1, σ2, . . . , σn}, with 0 ≤ σ1 ≤ σ2 ≤
. . . ≤ σn.

The columns of U , which we denote by uj, are the left singular vectors of A, while the
columns of V , which we denote by vj are right singular vectors of A. Plugging this
decomposition into the normal equations yields

[

V Σ∗ΣV ∗ + λ2
]

x = [V Σ∗U∗] b.

Expanding b in terms of the left singular vectors,

b =

n
∑

j=1

βjuj , where βj = u∗
jb,

yields

xλ =
n

∑

j=1

βjσj

λ2 + σ2
j

vj

Denote the rank of A by r. If r < n, then we can rewrite the above expression as

xλ =
∑

σj>0

βjσj

λ2 + σ2
j

vj,

which yields

lim
λ→0

x =
∑

σj>0

βj

σj

vj .

This is know as the minimal length least-squares solution.

5



5. Numerical ODE

a. The Taylor expansion of the ODE solution is

y(t + k) = y(t) + ky ∏(t) + k2

2 y ∏∏(t) + k3

6 y ∏∏∏(t) + O(k4)

Form the ODE  follows by applying the chain rule that  y ∏ = f(t,y(t)) y ∏∏ = f t + fyy ∏ = f t + f fy.
Substituting this into the equation above gives the scheme that was stated in the problem
formulation:

y(t + k) = y(t) + k f + k2

2 (f t + f fy) + O(k3)

In order to reach one order higher still, we need similarly to use the chain rule, the ODE, and also
the product rule, to evaluate :y ∏∏∏

,y ∏∏∏ = (ft + f fy) t = ftt + f tyf + ftfy + fyf fy + f fyt + f fyy f

and the scheme becomes

y(t + k) = y(t) + k f + k2

2 (f t + f fy) + k3

6 (f fy
2 + f 2fyy + f tfy + 2f f ty + f tt) + O(k4)

b. Taylor expansions of   and   around   gived(1) d(2) (t,y)

,d(1) = k f(t,y)

d(2) = k f(t + c k,y + a $ d(1)) = k f(t,y) + c k2 Øf(t,y)
Øt + a k2 f(t,y)

Øf(t,y)
Øy + O(k3),

and therefore

.y(t + k) = y(t) + b1d(1) + b2d(2) = y(t) + k (b1 + b2) f + k2(b2c f t + b2a f fy) + O(k3)

Equating coefficients between this last expression and the Taylor scheme that was stated in the
problem formulation (part a) gives the three compatibility conditions

b1 + b2 = 1, b2 c = 1
2 , b2 a = 1

2 .



6. Solution: Numerical Solution of PDEs

1. For equation I, we have
uℓ+1

j − uℓ
j

∆t
= b

uℓ
j+1 − uℓ

j

∆x
,

which becomes

uℓ+1
j = (1 − b ∆t

∆x
)uℓ

j +
b ∆t

∆x
uℓ

j+1.

For equation II, we have

uℓ+1
j − uℓ

j

∆t
=

uℓ
j+1 − 2uℓ

j + uℓ
j−1

∆x2
,

which becomes

uℓ+1
j = (1 − 2∆t

∆x2
)uℓ

j +
∆t

∆x2
(uℓ

j+1 + uℓ
j−1).

For equation III, we have

uℓ+1
j − uℓ

j

∆t
=

uℓ
j+1 − 2uℓ

j + uℓ
j−1

∆x2
+ b

uℓ
j+1 − uℓ

j

∆x
,

which becomes

uℓ+1
j = (1 − (

2∆t

∆x2
+

b ∆t

∆x
))uℓ

j + (
∆t

∆x2
+

b ∆t

∆x
)uℓ

j+1 +
∆t

∆x2
uℓ

j−1.

2. Equation I
Stencil : + time ◦ first-order space

(x)

(t)

Boundary Conditions

u(x, 0) = f(x) x ∈ [0, 1]

u(0, t) = g(t) t > 0.
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Equation II
Stencil: + time � second-order space

(x)

(t)

Boundary Conditions

u(x, 0) = f(x) x ∈ [0, 1],

u(0, t) = g1(t) t > 0,

u(1, t) = g2(t) t > 0.

Equation III
Stencil: + time ◦ first-order space � second-order space

(x)

(t)

Boundary conditions: Same as II.
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3. For Von Neumann analysis, set uℓ
j = aℓeiθj plug into the difference equation and

simplify.

Equation I
a − 1

∆t
= b

eiθ − 1

∆x

Solve for a to get

a = (1 − b∆t

∆x
) +

b∆t

∆x
eiθ.

In the complex plane, the right side describes a circle, centered at 1 − b∆t
∆x

, of
radius b∆t

∆x
. Thus,

|a| ≤ 1.0 ⇔ b∆t

∆x
≤ 1.0 ⇔ ∆t ≤ ∆x

b

Equation II
a − 1

∆t
=

eiθ − 2 + e−iθ

∆x2
= −4 sin2 θ/2

∆x2

Solve for a to get

a = (1 − 4∆T

∆x2
sin2 (θ/2)).

Stability is achieved if, for every θ ∈ [0, 2π), we have

|a| ≤ 1.0 ⇔ 4∆t

∆x2
≤ 2.0 ⇔ ∆t ≤ ∆x2

2

4. Applying Von Neumann analysis to Equation III yields

a − 1

∆t
=

eiθ − 2 + e−iθ

∆x2
+ b

eiθ − 1

∆x

= −4 sin2 (θ/2)

∆x2
+ b

(cos (θ) − 1) + i sin (θ)

∆x

Solving for a and separating the real and complex parts and using the identities
cos (θ) = cos2 (θ/2) − sin2 (θ/2) and sin (θ) = 2 sin (θ/2) cos (θ/2) yields

a =

(

1 − (
4∆t

∆x2
+

2b∆t

∆x
) sin2 (θ/2)

)

+ i

(

2b∆t

∆x
sin (θ/2) cos (θ/2)

)

.

Stability is guaranteed if |a| ≤ 1.0 for all θ ∈ [0, 2π]. This is complicated by the
presence of real and imaginary parts.
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