1. Root finding.

a) Describe Newton’s method for finding a root of \(f : [a, b] \to \mathbb{R} \).

b) State and prove a theorem about quadratic convergence of the method. Be as general as you can and be sure to include whatever assumptions you need on the derivatives of \(f \) and the initial guess.

Solution: See formula (2.2.1) on page 58 (don’t forget that Newton’s method assumes that an initial guess, \(x_0 \), is given) and Theorem 2.1 on pages 60-61 of Atkinson.

2. Orthogonal polynomials. Consider \(C[-1, 1] \) under the weighted inner product defined by \((f, g) \equiv \int_{-1}^{1} \frac{fg}{\sqrt{1-x^2}} dx \).

a) What three-term recursion formula generates the corresponding orthogonal Chebyshev polynomials, \(T_k \)?

b) Remember that \(T_0 = 1 \) and \(T_1 = x \). Compute \(T_2 \) and the Chebyshev polynomial of degree 2 that best approximates \(f(x) = 4x^3 \). (You can avoid integrals by determining \(T_3 \) and writing \(f \) as a linear combination of the \(T_k \), \(0 \leq k \leq 3 \).)

c) Describe a quadrature rule, \(I_n(f) \), for approximating \(I(f) \equiv \int_{-1}^{1} \frac{f}{\sqrt{1-x^2}} dx \) based on \(T_0, T_1, \cdots, T_n \) for general \(n \geq 0 \) and \(f \in C[-1, 1] \). Do not evaluate anything in this rule–just describe its form in terms of the \(T_k \).

d) Compute the error, \(I(f) - I_2(f) \), for the case \(f(x) = 4x^3 \)?

Solution:

(a) \(T_{n+1} = 2xT_n(x) - T_{n-1}(x) \).

(b) \(T_0 = 1, T_1 = x, T_2 = 2x^2 - 1 \). Since \(f = 4x^3 - 3x + 3x = T_3 + 3T_1 \), then the best Chebyshev approximation must be \(C_2 = 3T_1 = 3x \) (the minimum of \(\|T_3 + p_2\|_2 \) over all polynomials of degree two is just \(\|T_3\|_2 \), so the minimum of \(\|f - C_2\|_2 = \|T_3 + 3T_1 - C_2\|_2 \) is attained by \(C_2 = 3T_1 = 3x \).

(c) The quadrature formula would be \(I_n(f) = I(C_n) = \sum_{k=0}^{n} \frac{f(T_k)}{(T_k, T_k)} \int_{-1}^{1} \frac{T_k(x)}{\sqrt{1-x^2}} dx \).

(d) \(I(f) - I_2(f) = I(f - C_2) = \int_{-1}^{1} \frac{4x^3 - 3x}{\sqrt{1-x^2}} dx = 0 \) because the integrand is odd.
3. Linear algebra.

a) Define the concept of a vector norm on \(\mathbb{R}^n \).

b) Is \(\|x\| \equiv \sup_{p \geq 1} (\sum_{k=1}^{n} |x_k|^p)^{\frac{1}{p}} \) a vector norm on \(\mathbb{R}^n \)? (You may use the fact that \(\|x\|_p \equiv (\sum_{k=1}^{n} |x_k|^p)^{\frac{1}{p}} \) is a norm.)

c) Is \(\|x\| \equiv \lim_{p \to \infty} (\sum_{k=1}^{n} |x_k|^p)^{\frac{1}{p}} \) a vector norm on \(\mathbb{R}^n \)?

d) Suppose that some vector norm, \(\| \cdot \| \), on \(\mathbb{R}^n \) is given. Define the concept of a vector induced matrix norm (or operator norm) on \(\mathbb{R}^{n \times n} \) and prove that it satisfies \(\|Ax\| \leq \|A\| \|x\| \) and \(\|AB\| \leq \|A\| \cdot \|B\| \) for any \(x \in \mathbb{R}^n \) and any \(A, B \in \mathbb{R}^{n \times n} \).

Solution:

a) \(\| \cdot \| \) is a vector norm if:

i. \(\|x\| \geq 0 \quad \forall x \neq 0 \) and \(\|x\| = 0 \) implies \(x = 0 \).

ii. \(\|\alpha x\| = |\alpha|\|x\| \quad \forall x \in \mathbb{R}^n \) and \(\forall \alpha \in \mathbb{R} \),

iii. \(\|x + y\| \leq \|x\| + \|y\| \quad \forall x, y \in \mathbb{R}^n \).

b) Yes. To see this, note for fixed \(p \) that \(\|x\|_\infty \leq \|x\|_p \leq n^{\frac{1}{p}}\|x\|_\infty \). Taking the sup over \(p \) thus yields \(\|x\|_\infty \leq \|x\| \leq n\|x\|_\infty \). This proves that the first condition holds. The second and third are true because \(\|x\|_p \) is a norm.

c) Yes, again because \(\|x\|_\infty \leq \|x\|_p \leq n^{\frac{1}{p}}\|x\|_\infty \), which upon taking limits shows that \(\|x\| = \|x\|_\infty \).

d) \(\|A\| = \sup_{x \neq 0} \frac{\|Ax\|}{\|x\|} \). But then \(\frac{\|Ax\|}{\|x\|} \leq \|A\| \) for all \(x \neq 0 \), which implies that \(\|Ax\| \leq \|A\| \|x\| \). The case \(x = 0 \) is obvious. We can use this to also conclude that \(\|AB\| = \sup_{x \neq 0} \frac{\|ABx\|}{\|x\|} \leq \|A\| \sup_{x \neq 0} \frac{\|Bx\|}{\|x\|} = \|A\| \cdot \|B\| \).

4. Tridiagonal matrix properties. Define the \(k \times k \) tridiagonal matrix

\[
T_k = \begin{bmatrix}
 a_1 & b_2 & & \\
 c_2 & a_2 & b_3 & \\
 & c_3 & a_3 & \ddots \\
 & & \ddots & \ddots & b_k \\
 & & & c_k & a_k \\
\end{bmatrix}.
\]

The characteristic polynomial of \(T_k \) is given by \(p_k(\lambda) = \text{det}(\lambda I - T_k) \).

a) Define \(p_k(\lambda) \) in terms of \(p_{k-1}(\lambda) \) and \(p_{k-2}(\lambda) \).

b) Show that if \(c_j b_j > 0 \) for \(j = 2, \ldots, k \), then \(p_k(\lambda) = 0 \) has only real roots. (Hint: find a real similarity transformation that symmetrizes \(T_k \).)

c) Assume \(c_j b_j > 0 \) for \(j = 2, \ldots, k \) and assume that the roots of \(p_{k-2}(\lambda) \) separate the roots of \(p_{k-1}(\lambda) \), that is, between each adjacent pair of roots of \(p_{k-1}(\lambda) \), there is a root of \(p_{k-2}(\lambda) \). Prove that the roots of \(p_{k-1}(\lambda) \) separate the roots of \(p_k(\lambda) \). (Hint: draw a picture and use the recursion.)
Solution:

(a) Expanding the last column of \(\det(\lambda I - T_k) \) yields
\[
p_k(\lambda) = (\lambda - a_k)p_{k-1}(\lambda) - b_kc_kp_{k-2}(\lambda).
\]

(b) Let \(r_i = \sqrt{b_j/c_j}, d_1 = 1.0 \) and \(d_j = r_jd_{j-1} \) for \(j > 1 \). Define the matrix \(D_k = \text{diag}(d_1, \ldots, d_j, \ldots, d_k) \). This yields
\[
D_kT_kD_k^{-1} = \begin{bmatrix}
a_1 & \sqrt{b_2c_2} & & \\
\sqrt{b_2c_2} & a_2 & \sqrt{b_3c_3} & \\
& \sqrt{b_3c_3} & a_3 & \ddots \\
& & \ddots & \ddots & \sqrt{b_kc_k} \\
& & & \sqrt{b_kc_k} & a_k
\end{bmatrix}.
\]

(c) Denote the roots of \(p_\ell(\lambda) \) by \(\lambda_\ell^1 < \lambda_\ell^2, \ldots, < \lambda_\ell^\ell \). Using the recursion derived above we see that
\[
p_k(\lambda_j^{k-1}) = -b_kc_kp_{k-2}(\lambda_j^{k-1})
p_k(\lambda_{j+1}^{k-1}) = -b_kc_kp_{k-2}(\lambda_{j+1}^{k-1})
\]
Since the roots of \(p_{k-2}(\lambda) \) separate the roots of \(p_{k-1}(\lambda) \), we have \(p_{k-2}(\lambda_j^{k-1})p_{k-2}(\lambda_{j+1}^{k-1}) < 0 \) and conclude that \(p_k(\lambda) \) must have at least one root between each root of \(p_{k-1}(\lambda) \).

Since each \(p_\ell(\lambda) \) is monic and \(\lambda_{k-1}^{k-1} \) is greater than all the roots of \(p_{k-2}(\lambda) \), then we may conclude that \(p_{k-2}(\lambda_{k-1}^{k-1}) > 0 \). Consider the equation
\[
p_k(\lambda_{k-1}^{k-1}) = -b_kc_kp_{k-2}(\lambda_{k-1}^{k-1}) < 0.
\]
Since \(p_k(\lambda) \) is also monic, this implies that \(p_k(\lambda) \) has a root greater than \(\lambda_{k-1}^{k-1} \). A similar argument shows the \(p_k(\lambda) \) has a root less than \(\lambda_1^{k-1} \).

Thus, the roots of \(p_{k-1}(\lambda) \) separate the roots of \(p_k(\lambda) \).

5. Ordinary differential equations. Consider the two step method (Adams-Bashforth)
\[
y_{n+2} = y_{n+1} + h \left[\frac{3}{2} f(t_{n+1}, y_{n+1}) - \frac{1}{2} f(t_n, y_n) \right]
\]
Show that it is convergent and find its order. Sketch is region of absolute stability. State the relevant theorems.

Solution: The characteristic equation is
\[
r^2 - (1 + \frac{3}{2}h\lambda)r + \frac{1}{2}h\lambda = 0
\]
See Atkinson 6.8 for details.
Consider the heat equation
\[\frac{\partial \phi}{\partial t} = \partial_x (a(x) \partial_x \phi), \]
with initial condition
\[\phi|_{t=0} = \phi_0, \]
and periodic boundary conditions on the interval \([0, 1]\). Fully describe the Crank-Nicolson scheme for this problem, using a staggered grid for the spatial operator. Taking \(a(x) = 1\), show that the scheme is unconditionally stable.

Solution: We have
\[\frac{d\phi_j}{dt} = \left[a_{j-\frac{1}{2}} \phi_{j-1} - (a_{j-\frac{1}{2}} + a_{j+\frac{1}{2}})\phi_j + a_{j+\frac{1}{2}} \phi_{j+1} \right] / h_x^2, \]
where \(\phi_j = \phi(h \cdot j)\), \(a_{j-\frac{1}{2}} = a(h \cdot (j - \frac{1}{2}))\), \(h = 1/N\), and \(j = 1, \ldots, N\). Periodicity is imposed by setting \(\phi_0 = \phi_{N+1}\). Writing this system of ODEs as
\[\frac{d\phi}{dt} = \frac{1}{h_x^2} A\phi, \]
where \(\phi = \{\phi_1, \ldots, \phi_N\}^t\) and \(A\) is a tridiagonal matrix, we apply the trapezoidal rule in time as follows:
\[\phi^{k+1} - \phi^k = \frac{1}{2} \frac{h_t}{h_x^2} A(\phi^{k+1} + \phi^k) \]
where \(\phi^0 = \phi_0\). If \(a(x) = 1\), then matrix \(A\) is circulant, it is diagonalized by the Discrete Fourier transform, and it has non-positive eigenvalues. We have
\[\phi^{k+1} = (I - \frac{1}{2} \frac{h_t}{h_x^2} A)^{-1} (I + \frac{1}{2} \frac{h_t}{h_x^2} A) \phi^k \]
Since \(A\) is non-positive definite, it is easy to verify that the eigenvalues of \((I - \frac{1}{2} \frac{h_t}{h_x^2} A)^{-1}(I + \frac{1}{2} \frac{h_t}{h_x^2} A)\) are all less or equal to 1, confirming unconditional stability.