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Preliminary Examination in Numerical Analysis 
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Submit solutions to four (and no more) of the following six problems. Show all your work, and 

justify all your answers. No calculators allowed. 

 
----------------------------------------------------------------------------------------------------------------------------------- 

Problems and solutions given below: 
----------------------------------------------------------------------------------------------------------------------------------- 
 
 
1. Root finding / Nonlinear equations 
 
Consider the scalar equation ( ) 0F x  . Assume   is a root of the equation. 
 
a. Give the recursion for the Newton method for approximating a root. 
 
b. Give conditions on ( )F x  near  that guarantee convergence for 0x sufficiently close to  .   

c. Consider the following Taylor expansion: 21
( ) ( ) '( )( ) ''( )( ) ,

2
F F x F x x F w x         where 

(1 )w x      for some [0,1].   Using the Taylor expansion, derive a relationship between the 

error at step 1j   in terms of the error at step j . 
  
d. Show how the conditions stated in part (b), together with the Taylor expansion above, can be used to 

bound the error at step 1j   in terms of the error in step j .  
 
e. Finally, show how the development above can be used to establish convergence. With what order 

does the iteration converge?  
 
 
  





 
2. Quadrature  
 
Determine the nodes and the weights in the 2-node Gaussian quadrature formula 

  1 1 2 20
( ) ( ) ( ).xf x e dx w f x w f x

      

 
 
Solution: 
 

One approach is to find the first three orthogonal polynomials ( ), 0,1,2i x i   for xe  over [0, ]  and then 

read off the nodes as the two zeros of 2 ( )x , after which the weights follow by requiring the exact result 

when applied to ( ) 1f x   and ( ) .f x x  Alternatively, we can start by writing down the nonlinear system 

that arises from enforcing the exact result for the functions 2 31, , , :x x x   

   1 2 0
(1) 1xw w e dx

             (1) 

 1 1 2 2 0
( ) 1xw x w x x e dx

             (2) 

 2 2 2
1 1 2 2 0

( ) 2xw x w x x e dx
            (3) 

 3 3 3
1 1 2 2 0

( ) 6xw x w x x e dx
            (4) 

This type of nonlinear systems have a special structure that readily allows them to be solved. Let 
2

0 1( ) 1p x c c x x     be the quadratic polynomial that has 1x  and 2x  as its roots. We next form 

0 1{ . (1)} { . (2)} 1 { . (3)}c eq c eq eq          0 10 2c c      

0 1{ . (2)} { . (3)} 1 { . (4)}c eq c eq eq          0 20 2 6c c     

This system has the solution 0 2c  , 1 4,c   i.e. 2( ) 4 2p x x x    with roots (nodes) 1,2 2 2.x     

 
To get the weights, it suffices to require the exact result for ( ) 1f x   and ( ) .f x x  This leads to the linear 

system 1

2

1 1 1
,

12 2 2 2

w

w

     
          

 with the solution 1,2
1 2

.
2 4

w     

 
 
 
  



3. Interpolation / Approximation   
 
a. Define what is meant by cubic splines and, for these, natural and not-a-knot conditions. 

b. Determine the not-a-knot cubic spline ( )s x  that satisfies the data  
1 0 1 2

2 3 4 1

x

y


  

 . 

c. If, at the nodes , 0,x h h  , one has function values 0, ,h hy y y  and forms a quadratic interpolant 

( )s x , one obtains 1 1

2 2
'(0) [ ] /h hs y y h   , i.e. the finite difference weights can be written as 

1 1

2 2
[ , 0, ] / .h   It might be tempting to replace the quadratic interpolant here with a natural cubic 

spline (hoping to increase the approximation’s order of accuracy). Work out the weights you get in 
this case.    

 
Solution: 
 
a. A cubic spline is a cubic polynomial between adjacent nodes, and features continuous function, first 

and second derivative at the nodes – i.e. the third derivative may be discontinuous at the nodes. 
Without additional end conditions, a cubic spline will have two free parameters. A natural cubic 
spline adds the two extra conditions that ''( ) 0s x   at each end point. The not-a-knot cubic spline 

instead removes two ‘freedoms’, i.e. the cubic spline is not allowed to have a jump in its third 
derivative one node point in from each boundary.  

 
b. With four node points, and jumps in the third derivative not allowed at either of the two internal 

nodes, the spline becomes a single cubic, i.e. we can immediately find it, for ex., by Lagrange’s or 
Newton’s interpolation formulas. Choosing, for ex., the Newton approach, the divided difference 
table becomes 

 
-1 -2 
  -1 
0 -3  0  

-1  1 
  1 -4  3 

  5 
2  1 

 
 from which we read off the polynomial as ( ) 2 1 ( 1) 0 ( 1) 1 ( 1) ( 1)s x x x x x x x              

3 2 3.x x    
 
c. Since the spline ( )s x  is not discontinuous at 0x   until in the third derivative, we can write it: 

  [ ,0]h   2 3a bx cx dx     

  [0, ]h   2 3a bx cx ex     

The natural end conditions give 2 6 0c dh   and 2 6 0c eh  , resp., i.e. .e d   Enforcing the 
values at the nodes now give 

 

2 3

0
2 3

h

h

a bh ch dh y

a y

a bh ch dh y

    
 
    

   

Subtracting the top equation from the bottom one gives 2 ,h hbh y y   and we obtain the same 

approximation for '(0)s  as before. 



 
 
 
4. Linear Algebra 
 
Consider the linear system ,Ax b  where 1 1, , .n m m nA x b    

 
a. Describe the three possible cases for existence and uniqueness of a solution of the linear system. 

Give criteria on ,A b   that distinguish each case. 
 
b. Let LSx be a minimizer of the least squares functional, that is, let 

2 2|| || min || || .LS
x

Ax b Ax b     

(i) Does LSx always exist? Explain your answer. 

(ii) Give conditions on ,A b  such that LSx  is unique.  

(iii) In the case of a unique solution, give an expression for the least squares solution LSx . 

(iv) If there is an infinite number of solutions to the least squares problem, find the solution of 
minimal norm.  

 
c. The minimal norm solution can be computed by using the singular value decomposition (SVD) of A. 

Define the singular value decomposition and show how it can be used to compute the minimal norm 
least squares solution. 

 
 

  





 
  



 
5. Numerical ODE  
     
The following are two different linear multistep methods for solving the ODE '( ) ( , ( ))y t f t y t : 

(i) 1 1 1(3 ( , ) ( , ))
2n n n n n n
k

y y f t y f t y       

(ii)  1 1 1 1 2 2(7 ( , ) 2 ( , ) ( , ))
3n n n n n n n
k

y y f t y f t y f t y           

In order to assess the basic properties of these two schemes,  
we run the Matlab code 
 

r = exp(pi*2i*linspace(0,1)); 
plot(r.*(r-1)./((3*r-1)/2),'k-'); hold on 
plot((r.^3-r)./((7*r.^2-2*r+1)/3),'k--'); 
axis equal 
xi = 0.2+0.8i; roots([1,-7*xi/3,2*xi/3-1,-xi/3]) 
 

and obtain the plot shown to the right, together with the output 
 

ans = 
  -0.3082 + 1.1297i 
   0.7431 + 0.9314i 
   0.0318 - 0.1944i 

 
For each of the two schemes, determine 
a. Will the schemes convergence to the ODE solution in the limit of 0k  , or diverge? 
b. What is their formal order of accuracy? 
c. Identify their stability domains,  
d. Do the schemes feature A-stability? 
 
 
Solution: 
 
(a) The requirements are consistency and root condition. Consistency follows from part (b), where we 

show the order to be one or higher. For the root condition, apply the methods to the ODE ' 0y   and 

check the characteristic equation: 
(i) 1 0 1r r      root condition satisfied   convergence 

(ii)  2 1 0 1r r       root condition satisfied   convergence 

(b) Apply the scheme, at 0,t   to the functions 21, , ,t t   and see how far the approximations remain 

exact: 
(i) [1]:1 1 0  , OK,  

2
[ ] : 0 [3 1],kt k     OK,  

2 2
2

[ ] : 0 [0 2 ],kt k k    OK,  

3 3 2
2

[ ] : 0 [0 3 ],kt k k    Fail; Hence, Second order. 

(ii) [1]:1 1 0  , OK, 

3
[ ] : [7 2 1]kt k k     , OK,  

2 2 2
3

[ ] : (0 4 4 )kt k k k k    , OK, 



3 3 3 2 2
3

[ ] : (0 6 12 ),kt k k k k      OK, 

  4 4 4 3 3
3

[ ] : (0 8 32 ),kt k k k k     Fail; Hence, Third order.  

(c) When applied to ' ,y y  the stability domains are the regions in the complex k   plane such 

that all roots to the characteristic equation, are inside (or on) the unit circle. 

(i) The polynomial to inspect becomes 3 12
2 2

( 1) 0.r r      The solid curve in the figure 

shows where a root crosses the unit circle, so it suffices to inspect one point outside and one 
point inside this curve.  
Outside: Consider some   that is massively large. Since the products of the roots equals the 

constant term of the quadratic, 1
1 2 2

.r r     Hence, at least one root is outside the unit 

circle. 

Inside: Take for ex. 1

2
.   Solving the quadratic gives 1 1

1,2 8 8
[1 17] [1 4.1],r      i.e. 

both roots are well inside the unit circle. This inside of the curve in the figure therefore 
shows the stability domain.  

 

(ii) The polynomial to inspect becomes 7 2 13 2
3 3 3

( 1) 0.r r r        The dashed curve shows 

where a root crosses the unit circle. 
Outside:  For the same reason as above, this is outside the stability domain. 
Inside:  The numerical root evaluation in the program shows two roots outside the unit 
circle. This ODE solver therefore has the unusual property of altogether lacking a stability 
domain (with the exception of the single point 0).    

Note: The plotted (dashed) curve shows where a root r crosses the unit circle. However, for 
this equation, there turns out to be another root that is outside, so the curve is irrelevant as 
far as the stability domain is concerned. All roots must be inside the unit circle for the  
value to correspond to the inside of the stability domain. 

 
(d) Neither scheme is A-stable (as this requires the complete left half-plane to fall within the methods 

stability domain).   
 
 
6. Numerical PDE 
 
Consider the parabolic equation  

2

2

u u
a f

t x

 
 

 
  

where a is a constant. 
 

a. Give the formula for the following finite difference approximations. 
(i) Forward Euler: Centered differences in space, forward difference in time. 
(ii) Backward Euler: Centered differences in space, backward difference in time. 
(iii) Leapfrog: Centered difference in space and centered difference in time. 

 
b. What is the order of accuracy of each method? 
 
c. Use a von Neumann analysis (or any appropriate analysis) to determine the stability of each method. 
 



 
 
 

 
 
  



 


