Department of Applied Mathematics
Preliminary Examination in Numerical Analysis
August 17, 2016,10am—1 pm.

Submit solutions to four (and no more) of the following six problems. Show all your work, and
justify all your answers. No calculators allowed.

Problems and solutions given below:

1,

Root finding / Nonlinear equations

Consider the scalar equation F(x)=0. Assume « is a root of the equation.

a.

b.

Give the recursion for the Newton method for approximating a root.

Give conditions on F(X) near « that guarantee convergence for x, sufficiently close to « .
. . . 1
Consider the following Taylor expansion: F(a)=F(x)+ F'(X)(e —x) + > F"(w)(a —x)?, where

w= px+(1- p)a for some £ <[0,1]. Using the Taylor expansion, derive a relationship between the
error at step j +1 in terms of the error at step j .

Show how the conditions stated in part (b), together with the Taylor expansion above, can be used to
bound the error at step j+1 in terms of the error in step j .

Finally, show how the development above can be used to establish convergence. With what order
does the iteration converge?



Solution: Nonlinear Equations

(a) Newton:
F(z;)

i 1
F'(z;) W

Lj+1 = I

(b). Assume F(z), F'(x), F"(z) are all continuous in some neighborhood of a; assume F(a) =
0, F'{ax) # 0. Then, if x; is sufficiently close to . the iterates ;. for 3 > 0, will converge
to o

(c) Note that F(a) = 0 and solve for a to get

a=r Fiz) lF”(w}{n — )k

T Fl(r) 2 F'(x)

Let r = r; and use the recursion for Newton's method to get

1 F"(w)
2 F'(x)

(o — ;)%

(d) By continuity, we may assume F'(z) # 0 in a neighborhood N = (& — 1, + 7). Let

\ — DaXzen F"(x)
T 2mingey F'(x)’

It x;, is sufliciently close to a, we have the bound
la — Tj1| < M|a — x;)?

(e) If M| —x;| <1, then
@ — 2| < Ja — ]

If ryp is chosen so that |a — xy| < g and M|a — x| < 1, then
Mla — x| < (M|a — x|

which implies M|o— x| < M|a — x|, and, thus, r; € . By induction, this also implies
xj € N for j > 1 and

Mo — z;] < (Mo — x_1))* < (M]a — z])* .

Thus, xr; — o and convergence is quadratic.




2. Quadrature

Determine the nodes and the weights in the 2-node Gaussian quadrature formula

.[om f(x) e dx=wy f(x) +w, f(x,).

Solution:

One approach is to find the first three orthogonal polynomials ¢;(x),i=0,1,2 for e™* over [0,o] and then
read off the nodes as the two zeros of ¢, (x), after which the weights follow by requiring the exact result
when appliedto f(x)=1 and f(x)=x. Alternatively, we can start by writing down the nonlinear system

that arises from enforcing the exact result for the functions 1, x, x2, X

W W, = j:’ (1) e *dx =1 1)
WX + WyX, = J? (x)e ¥dx =1 )
W XE + Wy X3 = j;o(xz) e ¥dx =2 3)
WX + W, X3 = _[:(x3) e Xdx=6 4)

This type of nonlinear systems have a special structure that readily allows them to be solved. Let
p(x)=Cy+Cx+1- x? be the quadratic polynomial that has X, and x, as its roots. We next form

co {ed. W}+c, {eq. Q3+1{eq. 3} =  O=co+¢ +2

Co-{eq.(2)}+c, -{eq.3)}+1-{eq. (4)} = 0=cy+2c,+6
This system has the solution ¢, =2, ¢, =4, i.e. p(x)= x? —4x+ 2 with roots (nodes) X2 = 232

To get the weights, it suffices to require the exact result for f(x)=1 and f(x)=x. This leads to the linear

1 1 W, 1
system Y1=|7|, with the solution w, , =1i£.
2-J2 242w | |1 2" 57y



|«

Interpolation / Approximation

Define what is meant by cubic splines and, for these, natural and not-a-knot conditions.

x|-1 0 1 2
Determine the not-a-knot cubic spline s(x) that satisfies the data y | > 3 2 1

If, at the nodes x = —h, 0, h, one has function values Y 1 Yo Y, and forms a quadratic interpolant
s(x) , one obtains s'(0) = [—% Y +% Yy, ]/ h, i.e. the finite difference weights can be written as

[—%, 0, +§]/ h. It might be tempting to replace the quadratic interpolant here with a natural cubic

spline (hoping to increase the approximation’s order of accuracy). Work out the weights you get in
this case.

Solution:

A cubic spline is a cubic polynomial between adjacent nodes, and features continuous function, first
and second derivative at the nodes — i.e. the third derivative may be discontinuous at the nodes.
Without additional end conditions, a cubic spline will have two free parameters. A natural cubic
spline adds the two extra conditions that s"(x) =0 at each end point. The not-a-knot cubic spline

instead removes two ‘freedoms’, i.e. the cubic spline is not allowed to have a jump in its third
derivative one node point in from each boundary.

With four node points, and jumps in the third derivative not allowed at either of the two internal
nodes, the spline becomes a single cubic, i.e. we can immediately find it, for ex., by Lagrange’s or
Newton’s interpolation formulas. Choosing, for ex., the Newton approach, the divided difference
table becomes

-1 -2

0 -3

2 1

from which we read off the polynomial as s(x)=-2-1-(x+1)+0-(x +1)x+1-(x =1)x(x+1) =

X3 —2x 3.

Since the spline s(x) is not discontinuous at X =0 until in the third derivative, we can write it:
[-h,0] a+bx+cx® +dx’
[0,+h] a+bx+cx® +ex®

The natural end conditions give 2c—6dh =0 and 2c+6eh =0, resp., i.e. € =—d. Enforcing the
values at the nodes now give

a-bh+ch’—dh® =y,

a =Y

a+bh+ch®*—dh® =y,
Subtracting the top equation from the bottom one gives 2bh =y, —y,, and we obtain the same
approximation for s'(0) as before.



4. Linear Algebra

Consider the linear system Ax =b, where A ., X Do

a. Describe the three possible cases for existence and unigueness of a solution of the linear system.
Give criteriaon A, b that distinguish each case.

b. Let x, s be a minimizer of the least squares functional, that is, let
| Ax; s —bll; = mxin | Ax-bll, .

(i Does X, s always exist? Explain your answer.
(i) Give conditions on A, b such that x, ¢ is unique.
(iii) In the case of a unique solution, give an expression for the least squares solution X, .

(iv) If there is an infinite number of solutions to the least squares problem, find the solution of
minimal norm.

C. The minimal norm solution can be computed by using the singular value decomposition (SVD) of A.
Define the singular value decomposition and show how it can be used to compute the minimal norm
least squares solution.



Solution: Linear Algebra

(a) The three cases are:

There exists a unique solution if:
(i) The columns of A are linearly independent (or any equivalent statement).
(i1) b € Range A (equivalently, b is orthogonal to the null space of A*).
There exists an infinite number of solutions if:
(1) The columns of A are linearly dependent (or any equivalent statement).
(ii) b € Range A (equivalently, b is orthogonal to the null space of A*).
There exists no solution if:

(1) b € Range of A.
(b)

(1) There is always at least one minimizer of the quadratic functional. To see this, take
the gradient of the quadratic functional and set it equal to zero:

A*Az — A =0,

The question is if A*b is always in the range of A*A. Suppose v € Null Space of
A* A = Null Space of A. Consider

(A%h,v) = (b, Av) = 0.

Thus, A*b is orthogonal to the Null Space of 4* A, which implies it is in the Range
of AA.

(i) The following equivalent conditions yield a unique least squares solution
(a) The columns of 4 are linearly independent.
(b) The square system A*A is nonsingular.
(iii) If (A*A) is nonsingular, then the unique least squares solution is given by
2ps = (A A) ' A'B
(iv) The minimal length solution is given by
= (A*A) A*b = A'b.

Lonin

where (A*A)7 is the pseudo-inverse of (A*A) (AT is the psendo-invers of A).




() The psendo-inverse can be computed by using the singular value decomposition (SVD)
of A,
A=UEV"

where U, Vipwm are unitary and £, is diagonal:

1]
Lo

0

=nEm

o o8

and 7; are the singular values. Then,

(A*A)iA* = At = VEiD*,

where _
Bl n = diagd..., A
and ]
{rf. = = Tj 7 0,
iT 1o =1,




5. Numerical ODE

The following are two different linear multistep methods for solving the ODE y'(t) = f (t, y(t)) :

) Yna =Y+ 3@ )~ Fra¥os)

.. k
(“) Yni = Yna +§(7 f (tn ) yn) -2f (tn—li y—l) +f (tn—Zi yn—Z))

In order to assess the basic properties of these two schemes,

we run the Matlab code .l | | K2
: : ;
r = exp(pi*2i*linspace(0,1)); 081 ! /)
plot(r.*(r-1)./((3*r-1)/2),"k-"); hold on 04t I'
plot((r."3-r)./((7*r."2-2*r+1)/3),"k--"); '
axis equal 021 U

xi = 0.2+0.8i; roots([1,-7*xi/3,2*xi/3-1,-xi/3])

and obtain the plot shown to the right, together with the output ~ ©2f \

04

ans =
-0.3082 + 1.1297i
0.7431 + 0.9314i
0.0318 - 0.1944i

-06

-08

-0.5

0.5

For each of the two schemes, determine

a. Will the schemes convergence to the ODE solution in the limit of k — 0, or diverge?
b. What is their formal order of accuracy?

C. Identify their stability domains,

d Do the schemes feature A-stability?

Solution:

@ The requirements are consistency and root condition. Consistency follows from part (b), where we
show the order to be one or higher. For the root condition, apply the methods to the ODE y'=0 and

check the characteristic equation:
(i) r-1=0 =r=1 root condition satisfied = convergence
(ii) r’-1=0=r=+1

(b) Apply the scheme, at t =0, to the functions 1, t, t,... and see how far the approximations remain

exact:
()  [:1=1+0, OK,

[t]:k =0+5[3-1], OK,

root condition satisfied = convergence

[t*]:k® =0+5[0+2k], OK,

[t3]:k3 = 0+;[0—3k2], Fail; Hence, Second order.
(i)  [1:1=1+0, OK,

[t]:k =—k +5[7-2+1], OK

[t°]:k? =k® + 5 (0+ 4k — 4K) , OK,



[t°]:k® =—k® + £ (0- 6k* +12k?), OK,
[t*]:k* =k* +§(O +8k® —32k?), Fail; Hence, Third order.
(©) When applied to y'= 1y, the stability domains are the regions in the complex £ = Ak plane such
that all roots to the characteristic equation, are inside (or on) the unit circle.
(M The polynomial to inspect becomes r? + (%5 -Dr —%g =0. The solid curve in the figure
shows where a root crosses the unit circle, so it suffices to inspect one point outside and one

point inside this curve.
Outside: Consider some ¢ that is massively large. Since the products of the roots equals the

constant term of the quadratic, r, - r, = —%5. Hence, at least one root is outside the unit

circle.
Inside: Take for ex. £ =_. Solving the quadratic gives 1, = ([1=17]~ ([1+4.1], ie.

both roots are well inside the unit circle. This inside of the curve in the figure therefore
shows the stability domain.

(i) The polynomial to inspect becomes r® — £ £r?+(2£-1)r - £=0. The dashed curve shows

where a root crosses the unit circle.

Outside: For the same reason as above, this is outside the stability domain.

Inside: The numerical root evaluation in the program shows two roots outside the unit
circle. This ODE solver therefore has the unusual property of altogether lacking a stability
domain (with the exception of the single point £ =0).

Note: The plotted (dashed) curve shows where a root r crosses the unit circle. However, for
this equation, there turns out to be another root that is outside, so the curve is irrelevant as
far as the stability domain is concerned. All roots must be inside the unit circle for the & —

value to correspond to the inside of the stability domain.

(d) Neither scheme is A-stable (as this requires the complete left half-plane to fall within the methods
stability domain).

6. Numerical PDE

Consider the parabolic equation

au o4
—=a—+f
ot
where a is a constant.
a. Give the formula for the following finite difference approximations.
Q) Forward Euler: Centered differences in space, forward difference in time.

(i) Backward Euler: Centered differences in space, backward difference in time.
(iii)  Leapfrog: Centered difference in space and centered difference in time.

b. What is the order of accuracy of each method?

C. Use a von Neumann analysis (or any appropriate analysis) to determine the stability of each method.



Solution: PDEs

(a).(b) Let u(x;.tx) be approximated by uﬁ.". The schemes are as follows.

Forward Euler:
— 2t b ]+ at Y

with truncation error

O(8t) + O(62%).
Backward Euler:

e oadt oo kK k-1 k
o e [uj1 — 2uf +ujn] =wj— + 0t

with truncation error
O(6t) + O(8x2).
Leapfrog:
I I‘:'—j gﬂfjf -
g

. k-1 5 A ot rh
uj = + = [ujT — 2u; +ui ] + 20t £}

with truncation error
O(6t?) + O(dz?).

(c) Let u;‘ = A¥el and plug into each scheme with f = 0.
Forward Euler:

Neeii? — yk-1gii0 | )}-_1“5‘1 [Eﬂj—llg_ it _;_1__,_4'|j+|m'1 a1

dr?
Divide by A*'e"? to get

Zadt :
A=1+4 Fﬁ-[mb(?ﬂ] —1).

We see that |[A| < 1.0 for all values of 6 if

adt :
53 S 1/2.

Forward Euler is stable for 6t < %I&-




Backward Euler Repeating the process we obtain
-}L'LEUE _ % [lifzﬁ—l]ﬁ‘ _ ?}Lkﬂuﬂ + )Lic.!l_j+llvﬂ] — Ai—lﬂ:l_;a

Again, dividing by A*=1¢9% yields

Ml—iﬂ—ﬁ{m{iﬂj—lj]= 1,

dx?

or 1

A= =<1
1+228(1 — cos(ifl)) —
Thus, Backward Euler is stable for all 6t and dx, that is. it is unconditionally stable.

Leapfrog In this case, we have

‘}Lk+lEijE — }Lk—lfijﬂ + g_".lli [Akcil_j—l'lﬂ o Ejhkﬂijﬂ + Akf’.i[j_l}ﬂ]
.

Dividing by AF1e9% yields

ot

M=1+ A(2a7— (cos(if) — 1)).

or
2ait :
2 — f— —_ =
AN = (1 —cos(f)) —1=10

Setting
2adt

ot

_ —B+VBTH1
- 2

B = (5=(1 — cos(if)) = 0,

we see

A

The negative root yields
|A| = 1.0

for some # for every choice of 4t and dx. Thus, the Leapfrog method is unconditioally
unstable.




