1. Root finding
Formulate Newton’s method for solving the nonlinear 2x2 system of equations

{f(X,Y) =0
g(xy) =0

In the same style as how one proves quadratic convergence in the scalar case for f(x) =0, show quadratic
convergence (assuming sufficient smoothness of f, g, root being simple, etc.) in the 2x2 case. Assuming the root
X=a, Y= [ to be of multiplicity one, define €, =X, —a, 17, =Y, — [, and show that both ¢,,; and 7,,, are of

size O(&2,17°)..

Solution:

f (%))
(%)

this can be written as f'(x,)(&,.1—&,) =—f(X,). Re-expanding around the root & gives

We first recall the proof for the scalar case f(x)=0. Newton then becomes X, =X, — . With X, =a+¢,,

[f'()+O(e)(eny— &) =T () +&,T () + O(s,f)]. The expression &, (&) cancels between the two sides,
=0

and we are left with &,,, = O(&2).

In the 2x2 case, the Newton system takes the form

fx fy X — %, f
- . (1)
9 9y eval. at Xy, Y= Yn 9 eval. at Xy,

For simplicity, denote quantities of sizes O(g,,77,),0(¢2,772) by O(A),O(A?), respectively. Expanding the matrix
and the right hand side (RHS) of (1) around the root (e, ) (rather than evaluating at (X,,Y,)) changes (1) to

fo fy +[0§A)} {em—en}:_ H N {enHO(&)}
gx gy eval. at @, : 77n+1_77n g :val.ata,ﬁ, gx gy eval. & o8 77r. :

ff 1 0| [O(A) --- _ 2
Multiplying by the inverseof | * 7 gives ﬂ }{ ( ) . }Heﬂﬂ En:|=_|:€n:|+|:0(.A )} , which
gx gy eval. at o, 8 01 : i Mo =1 1, .

2
simplifies to {8””} = {O(,A )} .
77n+1 :



™

Quadrature
(1) Consider quadrature
(U]) Iq'rmd - Za'ff(r‘?.]: T € [_]'! l]
i=0

for the integral
1
I = f flr)w(x)dr,
-1

where w is a positive weight in (—1,1). Let
"
Qi (z) = [[ (2 —2:)
i=1

denote the polynomial of degree i + 1 associated with the (distinet) quad-
rature nodes xy, *y,...,0,. Prove that

1
(0.2) /;1 Qo (@) plz)w(r)de =0

for any polynomial of degree less or equal to m — 1 if and only if the
quadrature formula is exact for all polynomials of degree less or equal n+m.

Proof:

(1) If the quadrature formula (0.1) is exact for all polynomials of degree less
or equal n +m, then

1 n
/ : Qupr (2)plr)w (x)de = Z g () p ) w (x;) = 0.

- i=(
Let us consider polynomial f (x) of degree less or equal to n+ m. We can
write

Sfla) = Qe (@) Ty (&) + gn (),

where g, is the remainder of the division of f by the polynomial £, ;. We
have using (0.2)

I = ﬁllf'(x}w(x)dm
1

1
f Qs (2) Tt () w0 (&) dt + f g (2)w (z) dx
-1 -1

1
= ];1 Gn (2) w () de

and, by the direct evaluation,

Iquﬂd — Z Q'if (T'.')
=l

= > i (@) pla) w(w:) + Y aig (2)

=0 i=0
n
= > aiga ().
i=0

We obtain the result by observing that the quadrature weights a; can always
be chosen to satisfy

I= Iq-tead
for an arbitrary polynomial of degree less or equal to n.



3. Interpolation / Approximation

Assuming that ¢,, N=0,1,2,... form a set of orthogonal polynomials of degrees n over some interval [a,b] with

weight function w(x) > 0, show that they obey a three-term recursion relation of the form
¢n+1(x)_(anx+bn)¢n(x)+cn¢n—l(x):01 n=l,2,3,...

where the coefficients a,,b,,c, do not depend on x.

Solution:

Given the polynomials ¢,(X), we can determine @,,b,,C, such that we eliminate the terms of degrees
n+1,n,n—1appearing in @,.,(X).Instead of a zero in the right hand side (RHS), one might expect it to become a
polynomial of degree n-2, which we can write as d, ¢, ,+d, .0, ,+...+d,@ +d,@,. It remains to show that all
these d-coefficients vanish. Thus, form the scalar product of the LHS with ¢, (X), with 0<k <n-2. We want to
show that each of the four terms in the LHS then vanish.

(@,,1,9.) =0 due to orthogonality

(X@,,¢,): Move across the “ x”; then rewrite X¢,(X) as an expansionin @, ;,¢,,...,®,. The polynomial

@,(x) is orthogonal to all these, since k< n-2.
, and . both vanish, again since k<n-2.
(¢n ¢k) ¢n 1 ¢k

Hence, all the coefficients d, vanish, and therefore so does any possible non-zero RHS of the recursion relation.
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Linear Algebra

Let A € C"*" be a symmetric complex valued matrix, A = A’. It is possible to
show that one can find vectors u and nonnegative numbers p solving the so-called
con-eigenvalue problem,

AT = pu.
Show that vectors u form an orthonormal basis and there exists a unitary matrix
U € C"*" and a real nonnegative matrix

= diag (g1, p2, .- fin)

such that
A=UZU"
Proof: . _ _
If A= A" then A = A%and 44 = AA* and A4 = A*A . Since we have
AT = pu,
we alzo have
Au =

as well as
Adu = pAu = p.j'u..
AAu = pdAu = p’7.
We recognize that u and @ are the singular vectors and, thus, they are orthonormal.

Defining ¥ = diag (g1, g2, ..., o} and the unitary matrix U = {(uy, ua,. .. uy, ), we
have

AU =UE
or

A=USU" = USU"



5. DE

Consider the 4™ order Adams-Bashforth scheme (AB4) for solving the ODE y'= f(X,y):
h
Yoe1 = Yn +z(55 fn -59 fn—1 +37 fn—2 _gfn—3) :

a. Apply the root condition to this scheme. Explain the outcome of the test, and explain what information
this provides regarding the scheme.

b. The Matlab code
1 : —_— ,
r = exp(complex(0,linspace(0,2*pi))); 08
xi = 24*(r."4-r."3)./(55%r."3-59*r."24+37*r-9);
plot(xi) ; 0.6
. . 04
generates the figure shown to the right.
02
i Derive the relation used in the code. 0
.. . 02
ii. Explain (no need to do the algebra) how you
would go from the figure to obtain the stability o4
domain for the AB4 scheme. 06
08
iii. Explain what information a stability domain . S T
conveys. 03 02 01 0 01 02 03 04 05
Solution:
a. To apply the root condition, we apply the scheme in question to the ODE y'=0, which in this case gives

the linear recursion relation Y,,, — ¥, =0, with characteristic equation r —1=0. The root condition tells that a

scheme is stable when all roots are on or inside or on the periphery of the unit circle, and the ones on the unit
circle have multiplicity one. With only one root r = 1 in the present case, the root condition is obviously satisfied.

The key information this provides is that, if furthermore consistency is satisfied (which is the case here, since the
scheme has accuracy 1% order or better), numerical solutions to y'= f(X,y) will converge to the true ones when

the step size h— 0.

i Stability domains are obtained when applying a scheme to the ODE y'= A1y . We obtain here

Vo = Ys +%(55yn =59y, . +37Y, ,—9Y,3) . Write h1=¢, and note that this is a linear recursion relation with

g

characteristic equation r* =r3 +£(55r —59r24+37r —9) . Solving this relation for & gives the relation used in

the Matlab code.



ii. The generated curve marks all possible &-values for when a root r is on the periphery of the unit circle. If
& crosses a curve segment, a root moves between the inside and the outside of the unit circle. The stability

domain (in the complex ¢ -plane) is characterized by no root falling outside the unit circle. In order to check when
this is the case, one needs to select a test point £ inside each of the enclosed regions, and for this £ -value check

the four roots r. Doing so, one will find that the enclosed region just left of the origin satisfies all r-roots being
inside the unit circle, but none of the other regions do. For example, crossing the boundary in the upper or lower
right loops corresponds to a root r moving across the unit circle while another root remains outside it.

iii. For ODEs of the form y'= 1y, the stability domain tells the values of h for which there are no growing

numerical solutions. (Not part of the present question: If an ODE system is obtained from Method-of-Lines
discretization of a time dependent PDE, it provides information on the step sizes that can be used in time vs.
space).

6. PDE

Consider the Poisson’s equation
(Orr + Oyy)u = flz,y) (2,y)e B=1[0,1] x]0,1]
with the Dirichlet houndary condition

it |g.f._anenn = 0.
Set f to be
flr,y) = —47%[cos(2mz) — 4cos(dmz)] [cos (2my) — cos (4my)]
+ —4n? [cos (2my) — 4cos (4my)] [cos (2mz) — cos (4mx)]
vielding the solution

u (r,y) = (cos (2mx) — cos (dmx)) (cos (2my) — cos (dmy)) .

At the first glance it may appear that seeking solution as a sine series,
o
ulr,y) = Z Hopen SIN{TH0E) 80 (ThRY)
m,ie=1

should be an efficient approach. However, it turns out that the sine series converges
rather slowly,

(1) Can you figure out why the convergence of the sine series is fairly slow?

(2) What are other bases one can use to achieve high accuracy? Suggest a basis

that would be more efficient in this case.
(3) Sketch a numerical scheme to compute the solution with high accuracy.
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(1)

(2)

The even derivatives of the sine series,

55."’831 [ Z LTI— sin{'frnm]sin(?my)]

=1

is also a sine series,

=]
! Z (—ﬂm}k’ |[—ﬂ".-1}E Uppr SIN (TI0T) sin{fmy]]
=1

and, thus, is zero on the boundary. However, it is easy to see that this is
not the case for the solution u (x, y). This mismatch of properties requires
a large number of terms to approximate the solution near the boundary.
One can use orthogonal polynomials, e.g. Legendre polynomials, to ap-
proximate the solution,

[+ &]
ulz,y) = Z Unn P (22 — 1) P (2y — 1).
e, rn=>0
This series converges rapidly since the boundary conditions for the even
derivatives are not forced on the solution.
We can truncate the Legendre series so that

N
un (@) = D thyun P (22— 1) P(2y — 1),
m.n=(0
is an accurate approximation of the solution. We use the Legendre series for
the right hand side and discretize the equation using the Gauss-Legendre
nodes (appropriate for the polynomials of degree V) and set up the numer-
ical scheme using such nodes in both r and y directions.



