
Department of Applied Mathematics

Preliminary Examination in Numerical Analysis

Monday August 20, 2012 (10 am - 1 pm)

Submit solutions to four (and no more) of the following six problems. Justify all your answers. 

Nonlinear equations:

1. Suppose that    is continuous on the real interval  and is a contraction ing : [a,b] d [a,b] [a,b]

the sense that there exists a constant   such that� c (0, 1)

|g(x) − g(y)| [ � |x − y| for all x, y c [a,b].

Prove that there exists a unique fixed point in  and that the fixed point iteration [a,b] xn+1 = g(xn)

converges to it for any    Also, prove that the error is reduced by a factor of at least  x0 c [a,b]. �
from each iteration to the next.

Numerical quadrature:

2. We consider here three different strategies for determining weights in 3-node quadrature

approximations of the form 

.¶
0

1

u(x)dx l �u(0) + �u( 12 ) + � u(1)

Determine the quadrature weights  that are obtained in the following three cases:(�,�, �)

a. Trapezoidal rule,

b. Simpson's formula,

c. Exact integration of the interpolating natural cubic spline (i.e., the cubic spline across 

  with end conditions that the second derivative is zero).[0, 1]

Interpolation / Approximation:

3. Let   be a real-valued continuous function on the closed interval  Suppose thatf : [a,b] d ≠ [a,b].

  solves the minimax problem in the sense that it is a polynomial of degree less than or equal topn
&

  that minimizes   over all polynomials of degree equal to n, where n m 1 maxxc[a,b] |e(x)|

 Prove that there must exist at least two points such that e(x) = f (x) − pn(x). �,� c [a,b],
  and  |e(�)| = |e(�)| = maxxc[a,b] |f (x) − pn

&(x)| e(�) = −e(�).



Linear algebra:

4. Let  here denote the Euclidean norm and suppose that  (i.e., A is a real-valued || $ || A c ≠n%n n % n

matrix).

a. Prove that  when Q and R are  unitary matrices.||QAR|| = ||A|| n % n

b. Define the singular value decomposition of A.

c. Prove that ||A|| = ||AT ||.

d. Prove that the spectral radius of A, denoted here by  is bounded by �(A), ||A||.

e. Prove that   when A is symmetric.�(A) = ||A||

f. Illustrate by a simple example that   can be very much larger than ||A|| �(A).

Numerical ODE:

5. Consider a linear multistep scheme of the form

yn+1 = a1yn + a2yn−1 + h (b0f (xn+1, yn+1) + b1f (xn, yn))

for solving the ODE   y ∏ = f (x, y).

a. Based on some general 'rule of thumb', explain what is the highest order of accuracy this

scheme can attain.

b. Determine the coefficients   that makes it reach this order of accuracy.a1,a2,b0,b1

c. Determine whether or not the obtained scheme satisfies the root condition.

d. Write down an equation that describes the edge of the scheme's stability domain.

e. It transpires that the domain boundary obtained in part (d) above can be expressed

explicitly in the form

,   � = −
4 sin4(�/2)

5 − 4 cos(�)
+ i

(8 + cos(�)) sin(�)

5 − 4 cos(�)
0 [ � [ 2�.

Determine, based on this (or by some other means), whether the scheme is A-stable.

Numerical PDE:

6. Consider the PDE   and approximate it with Forward Euler in time, centered second orderu t = uxx
finite differences in space. You can assume that the spatial domain is either periodic or [−∞,∞].

a. Write down the difference equation for this scheme.

b. Use von Neumann analysis to obtain the stability condition that relates the allowable time

step k and space step h.  

c. Obtain the same result via an ODE stability domain-based argument.


