Applied Analysis Preliminary Exam

1:30 PM - 4:30 PM, January 9, 2020

Instructions You have three hours to complete this exam. Work all five problems. Please start each problem on a new page. Please clearly indicate any work that you do not wish to be graded (e.g., write SCRATCH at the top of such a page). You MUST prove your conclusions or show a counter-example for all problems unless otherwise noted. In your proofs, you may use any major theorem on the syllabus or discussed in class, unless you are directly proving such a theorem (when in doubt, ask the proctor). Write your student number on your exam, not your name. Each problem is worth 20 points. (There are no optional problems.)

- 1. The following two problems are unrelated.
 - (a) Let X and Y be normed vector spaces, and D ⊂ X a convex subset of X. If f : D → Y is Hölder continuous with exponent α > 1, prove that in fact f is a constant function. Hint: recall Hölder continuity with exponent α means ||f(x) f(x')||_Y ≤ c · ||x x'||^α_X for some constant c, for all x, x' ∈ D. Hint: you may wish to apply the triangle inequality repeatedly.
 - (b) Consider the following variant of the Weierstrass Function: $f(x) = 2 \sum_{n=1}^{\infty} a^n \cos(b^n x)$ with $a = \frac{1}{8}$ and b = 49 (this function is not differentiable at any point). Prove
 - i. that $f \in L^2(\mathbb{T})$ where \mathbb{T} is the 1D torus of length 2π , and
 - ii. that f is continuous.
- 2. Let I = [0,1] and $k: I^2 \to \mathbb{R}$ be a continuous function. Fix some $1 \le p \le \infty$, and define

$$\forall f \in L^p(I), \ \forall x \in I, \quad (Tf)(x) = \int_0^1 k(x,y)f(y) \, dy.$$

- (a) Prove that Tf is a continuous function on I.
- (b) Prove the image of the unit ball in $L^p(I)$ is pre-compact in C(I)
- 3. Let $A \in \mathcal{B}(\mathcal{H})$ be a bounded linear operator on a Hilbert space.
 - (a) Let $\lambda \neq 0$ be in the point spectrum of A, and define the corresponding eigenspace M_{λ} to be the set of all associated eigenvectors. Prove M_{λ} is a Hilbert space.
 - (b) If we also assume that A is a compact operator, prove that M_{λ} must be finite dimensional
- 4. Let X be a normed linear space. If $x_n \rightharpoonup x$ in X, prove $||x|| \le \liminf ||x_n||$.
- 5. If $f \ge 0$ is measurable and $\int_E f \, d\mu = 0$ (where μ is the Lebesgue measure), prove that f(x) = 0 almost everywhere on E.

Hint: define $E_n = \{x \mid f(x) > 1/n\}$ and consider $\bigcup_{n=1}^{\infty} E_n$. Note that measures are countably sub-additive.