
Applied Analysis Preliminary Exam (Hints/solutions)
10:00 AM – 1:00 PM, January 17, 2018

Instructions. You have three hours to complete this exam. Work all five problems. Please start
each problem on a new page. Please clearly indicate any work that you do not wish to be graded (e.g.,
write SCRATCH at the top of such a page). You MUST prove your conclusions or show a counter-
example for all problems unless otherwise noted. In your proofs, you may use any major theorem on
the syllabus or discussed in class, unless you are directly proving such a theorem (when in doubt, ask
the proctor). Write your student number on your exam, not your name. Each problem is worth 20
points. (There are no optional problems.)

1. The following two questions are unrelated.

(a) Prove the following series converges:

∞∑
k=1

k3e−k

Solution: One idea: Taylor expand ex (for x > 0) and use the remainder theorem to see
it dominates any polynomial, so bound this with a polynomial (i.e., the “comparison test”);
for example, use ek > k5/(5!), so

∑∞
k=1 k

3e−k ≤ 1/(5!)
∑∞
k=1 k

−2. Then use the “p-test” to
see that sum 1/kp converges iff p > 1. The series is non-negative, so it is bounded above,
and hence the monotone convergence theorem (for series) implies that it converges.

Another idea: use the integral test (evaluate integrals via integration-by-parts). By
taking derivatives, you can see that f(x) = x3e−x is monotonically decreasing for x > 3.

(b) Let {fn ∈ C([0, 1]) | n ∈ N} be equicontinuous. If fn → f pointwise, prove that f is
continuous.

Solution: Note that this is 2.12 from the book, and was problem 8 on homework 5
(2017).

Fix some ε > 0 and any x ∈ [0, 1], and we will show there is some δ > 0 such that
|x − y| < δ implies |f(x) − f(y)| < ε. By equicontinuity, there is some δ > 0 such that
|x − y| < δ implies |fn(x) − fn(y)| < ε/3 for all n. By point wise convergence, there is
some Nx such that |fn(x) − f(x)| < ε/3 for all n ≥ Nx, and there is some Ny such that
|fn(y)− f(y)| < ε/3 for all n ≥ Ny. Now, pick any y with |x− y| < δ, and then choose any
n ≥ maxNx, Ny, we have

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)|
< ε/3 + ε/3 + ε/3

= ε.

For full-credit, the student needs to be clear where they are using equicontinuity and not
just continuity, since the result is not true without assuming equicontinuity.

Another approach: also using compactness of [0, 1] and (uniform) equicontinuity of (fn),
we can either show it directly (as above) or use the triangle inequality to show that (fn) is
bounded. It is clear that (fn(x)) is bounded for all x, but we need to use the continuity and
compactness to show that this bound doesn’t grow arbitrarily large for different x. Once
we have it bounded, then we can apply Arzela-Ascoli to get sequential compactness and
conclude that some subsequence, (fnk

), converges uniformly to some continuous function g.
But then for all x, fnk

(x) also converges to f(x), so f(x) = g(x) for all x, hence f = g so
we conclude f is continuous.

2. Prove that if 0 ≤ λ ≤ 1, then the equation

u(x) = λ

∫ 1

0

1

1 + x+ u(s)
ds, for 0 ≤ x ≤ 1
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has exactly one continuous non-negative solution. Hint: if u is a solution, what can you say
about its maximum value? and about its minimum value?

Solution: Work with C([0, 1]) and the uniform norm. We can make the subset C+([0, 1]) ⊂
C([0, 1]) consisting of non-negative continuous functions, and since uniform convergence implies
pointwise convergence, it’s easy to see that C+ is a closed (hence complete) space. Define
T : C+([0, 1]) → C+([0, 1]) by (Tu)(x) = λ

∫ 1

0
1

1+x+u(s) ds. We can verify that indeed the range
is inside C([a, b]) by the fundamental theorem of calculus, and if u is non-negative, the integrand
is non-negative, so Tu is non-negative, so the range is inside C+([0, 1]).

In fact, we are going to “boot-strap” a bit to find some better bounds on Tu. We saw that if
u ≥ 0 then Tu ≥ 0, and from this, we conclude an upper bound for x ∈ [0, 1],

(Tu)(x) ≤ λ

1 + x
.

Suppose we further restrict our domain to functions u(x) ≤ λ/(1 + x) (again, this set is
closed).[Note: if you further bound this by just u(x) ≤ λ, it works too.] Now, here is the
“boot-strapping” part: we can a new better lower bound on Tu:

(Tu)(x) ≥ λ
∫ 1

0

1

1 + x+ λ
1+x

ds =
λ(1 + x)

(1 + x)2 + λ
.

We can even further restrict our domain to include this new lower bound as well (call this domain
just “C”), and so we know T : C → C. To make the new lower bound simpler, using x ≥ 0 in the
denominator and x ≤ 1 in the numerator, we have (Tu)(x) ≥ λ/(4+λ). [There are other variants
possible: if we earlier showed u(x) ≤ λ and plugged that in, then we have u(x) ≥ λ/(2+λ) using
x ≤ 1.]

[Be careful with the following reasoning: noting that u ≡ 0 is not a solution, and that u
is continuous, we can require that our set C can be restricted to continuous functions that are
nonzero, and hence there is some set of non-zero measure where u > δ > 0. But the problem
with this is that this restriction of C is no longer a closed subset of C([0, 1]), hence not complete].

Now we wish to show T is contractive in the uniform norm, so the statement of the problem
then follows from the Banach fixed point (aka contraction mapping) theorem.

‖Tu− Tv‖u = sup
x
λ

∣∣∣∣∫ 1

0

1

1 + x+ u(s)
− 1

1 + x+ v(s)
ds

∣∣∣∣
= sup

x
λ

∣∣∣∣∫ 1

0

(1 + x+ v(s))− (1 + x+ u(s))

(1 + x+ u(s))(1 + x+ v(s))
ds

∣∣∣∣
≤ sup

x
λ

∫ 1

0

|u(s)− v(s)|
(1 + x+ u(s))(1 + x+ v(s))

ds

≤ sup
x
λ

∫ 1

0

|u(s)− v(s)|
(1 + u(s))(1 + v(s))

ds

≤ λ
∫ 1

0

|u(s)− v(s)|
(1 + λ/(4 + λ))2

ds

≤ ‖u− v‖∞
λ

(1 + λ/(4 + λ))2

and λ 7→ λ
(1+λ/(4+λ))2 is continuous and increasing and bounded strictly by 1 on [0, 1] (in fact,

we can go until about λ . 1.66). [If we bounded u(x) ≥ λ/(2 + λ) earlier, then we can bound
the numerator by 1 + 2λ/(2 + λ), and get that we have a contraction if λ2 − λ − 2 < 0, i.e., if
λ ∈ (−1, 2)]. Hence T is a contraction on C if 0 ≤ λ ≤ 1.
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3. The following two questions are unrelated.

(a) Let X and Y be Banach spaces and let T : X → Y be a continuous linear bijection. Prove
that there exists a positive constant β such that

‖Tx‖ ≥ β‖x‖ for all x ∈ X.

Solution: Follows immediately from the open mapping theorem, which proves T−1 is
continuous and hence bounded (since it is linear). It is also possible to cite Prop. 5.30 from
Hunter and Nachtergaele’s book.

(b) i. Consider the bounded linear operator T : `2 → `2 defined by, for x = (xn)n∈N ∈ `2,

(Tx)n =
1

n
xn.

Prove that 0 is in the spectrum of T .
Solution: For grading, we want to make sure the student knows the different types

of spectrum (point spectrum/eigenvalues, residual spectrum, continuous spectrum).
The value λ = 0 is not an eigenvalue, but it is in the spectrum because T − λI (for
λ = 0) is not onto.

There are several ways to show that it is not onto. One way: note that if it were
onto, then we satisfy the assumptions of the open mapping theorem, so T−1 would be
a bounded linear operator, but it’s clear that T−1 cannot be bounded. Another way:
note that λn = 1/n is clearly an eigenvalue, and that the spectrum is closed (i.e., the
resolvent set is open), so therefore the limit point λ = 0 must be in the spectrum.

ii. For the same linear operator T from part (i), prove or disprove that I +T is a compact
operator (I is the identity).

Solution: While T is compact, I is not compact, and I + T is not compact either.
To show this, consider the bounded sequence of canonical basis vectors en. Then
(I + T )(en) = (1 + 1/n)en and this sequence is not Cauchy, hence it has no convergent
subsequences, so (I + T ) does not map bounded sets to precompact sets, so it is not a
compact operator.

Note: for full credit, you need some argument. It is not OK to just say that since I
is not compact, therefore I + T is not compact. For example, if we took T = −I, then
I + T is compact.

4. Let f belong to the Sobolev space H1(T). Prove there exists a unique function g ∈ L2(T) such
that ∫

T
gϕ dx = −

∫
T
fϕ′ dx ∀ϕ ∈ C1(T).

Solution:

Let (f̂n) and (ϕ̂n) be the Fourier coefficients of f and ϕ, respectively. Then ((in)ϕ̂n) are the
Fourier coefficients of ϕ′. Via Parseval’s theorem,

T (ϕ) := −
∫
T
fϕ′ dx = −〈f, ϕ′〉L2

= −
∞∑

n=−∞
f̂n · (inϕ̂n)

= −
∞∑

n=−∞
−inf̂n · (ϕ̂n)

≤ ‖f‖H1 · ‖ϕ‖2

showing that T is a bounded linear functional on C1 (it is also OK if the students cite Definition
7.7 in Hunter and Nachtergaele to jump to this fact). It acts on C1, which is dense in L2, so by
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the BLT theorem, it can be extended uniquely to a bounded linear functional T on L2. By the
Riesz representation theorem, there is an element g ∈ L2 such that T (ϕ) = 〈g, ϕ〉, which gives
the desired equality. This element g is called the “weak derivative” of f , and is usually denoted
by f ′.

5. Let (qi)i∈N be an enumeration of Q∩ [0, 1] and let λ denote the Lebesgue measure. Consider the
functions fn, for n ∈ N, defined on [0, 1] as

fn(x) =

{
1 if x = qi for some i ≤ n
0 else.

(a) Prove fn is a Lebesgue measurable function

(b) Let f(x) = limn→∞ fn(x) for x ∈ [0, 1]. Is
∫ 1

0
f dλ defined? If so, calculate or bound the

value of the integral, if possible. Justify your work.

(c) Does the Riemann integral of fn exist? Does the Riemann integral of f exist? Very briefly
justify your work.

Solution:

(a) The quickest proof is observing that fn is a simple function. Otherwise, note that fn is
Lebesgue measurable iff for every c ∈ R, the set Ac = {x | fn(x) > c} is a Lebesgue mea-
surable set (Prop. 12.23, and change < to > for convenience, which follows from properties
of a σ-algebra). For c < 0, the set Ac = [0, 1] which is measurable; for c ≥ 1, the set Ac = ∅
which is measurable; and for 0 ≤ c < 1, Ac is a finite collection of points in [0, 1], and
it is measurable (similiar to Example 12.12, i.e., following arguments of Thm 12.10 about
inner/outer approximations by closed/open sets).

(b) Straightforward from monotone convergence theorem, since fn ≥ 0 and are monotone in-
creasing. The value of the integral is zero.

(c) Each fn is piecewise continuous with only finitely many discontinuities, so it is Riemann
integrable, and the integral is zero. The limiting function f is the Dirichlet function, which
is not Riemann integrable. It is clearly nowhere continuous.
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