Instructions:
You have three hours to complete this exam. Work all five problems. Please start each problem on a new page. You MUST prove your conclusions or show a counter-example for all problems. Write your name on your exam. Each problem is worth 20 points.

1. (a) Let \(f : \mathbb{R}^3 \to \mathbb{R} \) be the function \(f(x, y, z) = x^2 + 3y \). Find the minimum value of \(f \) on the unit sphere \(S = \{(x, y, z) : x^2 + y^2 + z^2 = 1\} \).
(b) For what values of \((a, b)\) is the map \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) defined by \(f(x, y) = (ay, y^2 + y^3 - bx) \) a diffeomorphism? When this is the case, find \(f^{-1} \).

2. Let \((T f)(x) = \int_{[0,1]} |x - y|^{1/2} f(y)dy\) for integrable function \(f \).
(a) Show that \(T \) is a compact operator from \(H = L^2(0,1) \) to \(H \).
(b) Show that the equation \(f(x) = g(x) + \int_{[0,1]} |x - y|^{1/2} f(y)dy \)
has a solution \(f \in L^2[0, 1] \) for every \(g \in L^2[0, 1] \).
(c) Show that \(\sigma(T) \subset [-1, \sqrt{3}/3] \) where \(\sigma(T) \) is the spectrum of \(T \).

3. Let \(f_n(x) \) and \(g_n(x) \) be measurable functions on \([0, 1]\), such that \(f_n \to 1/x \) in \(m. \) and \(g_n \to 1/x \) in \(m. \) on \([0, 1]\). Show that \(f_n g_n \to 1/x^2 \) in \(m. \) on \([0, 1]\).

4. Denote by \(Z \) the spaces of all classes of a.e. real-valued measurable functions \(f \) on \([0, 1]\), with two functions \(f \) and \(g \) in the same class iff \(f = g \) a.e. on \([0,1]\). Define on \(Z \) the metric:
\[\rho(f, g) = \int_{[0,1]} \frac{|f - g|}{1 + |f - g|}. \]
Show that with this metric (you don’t need to show this is a metric) \(Z \) is complete.

5. Prove the existence of a \(C^2 \) solution to the initial value problem
\[u''(t) + u'^2 + t^2 u + e^u = 0, \quad \text{with} \ u(0) = 0, \ u'(0) = 0. \]
for \(t \in [0, \delta] \), for some \(\delta > 0 \).