
Applied Analysis Preliminary Exam, SOLUTIONS

10.00am–1.00pm, August 21, 2018

Problem 1 Solution:

(a) Fix any x, y 2 Rn. We want to show that (g � h)  0. Note that

(g � h)(0) = 0 and (g � h)(1) = 0.

Suppose that there exists a t⇤ 2 (0, 1) for which (g � h)(t⇤) > 0. By the MVT , we
can find a ⇠ 2 (0, t⇤) such that

(g � h)0(⇠) =
(g � h)(t⇤)

t⇤
> 0

and an ⌘ 2 (t⇤, 1) such that

(g � h)0(⌘) = �
(g � h)(t⇤)

1� t⇤
< 0

Note that ⇠ < ⌘ so this contradicts the fact that (g� h)0 is monotonically increasing.
Therefore, we must have (g � h)  0 which implies that f is convex since x, y were
arbitrary.

(b) (1) Stokes’ theorem states that if S is an oriented surface in R3 with piecewise-
smooth closed boundary C, and F is a vector field with each component having
continuous partial derivatives on S, then

H
C F · dr =

RR
S(r⇥ F) · ndS where n

is the unit vector normal to S. Since r⇥F = 0, this integral is always zero, i.e.,
the integral along any simple curve is 0. So to integrate from y to x, choose any
curve, and you get the same value (if you go along a di↵erent curve back from x

to y and combine them, then you get 0, so this other curve had the same integral
once you account for the change of sign).

(2) The fundamental theorem for gradients (also known as the fundamental theo-
rem for line integrals) states that if r' is a continuous vector field on an open
connected region U in R2 or R3, then for all x,y 2 U , '(x)� '(y) =

R
C r' · dr

where C is any piecewise-smooth oriented curve in U connecting x and y. Thus
Z x

y

(r') · dr = '(x)� '(y) =

Z x

0

F · dr�

Z y

0

F · dr =

Z x

y

F · dr



Problem 2 Solution:

• We need to show that, for all x 2 C([0, 1]), Fx is also in C([0, 1]). It is enough to
show continuity of

(Ax)(t) :=

Z 1

0

K(s, t, x(s)) ds.

To this end, consider the set

⌦ := {(s, t, x(s)) : s, t 2 [0, 1]}.

By continuity of x, ⌦ is compact in [0, 1]⇥ [0, 1]⇥R. Since K is continuous, we then
have that K is uniformly continuous on ⌦.
Let " > 0. Then 9 � > 0 such that

d((s, t1, x(s)), (s, t2, x(s))) < � ) |K(s, t1, x(s))�K(s, t2, x(s))| < ".

Thus,

|Ax(t1)� Ax(t2)| = · · · < ".

So, Ax(t) is continuous.
• We next need to show that F is a contraction mapping.

|Fx� Fy| = max
0t1

|Ax(t)� Ay(t)|

= max
0t1

����
Z 1

0

K(s, t, x(s))ds�

Z 1

0

K(s, t, y(s)) ds

����

 max
0t1

Z

0,1

|K(s, t, x(s))�K(s, t, y(s))| ds

 max
0t1

✓

Z

0,1

|x(s)� y(s)|ds

= ✓
R
0,1 |x(s)� y(s)|ds  ✓ max

0s1
|x(s)� y(s)|

Since 0 < ✓ < 1, F is a contraction and we have a unique solution.

Problem 3 Solution:

(a) Let H = L2([0, 1]) and define the operator T : H ! H as

(Tf) (x) = x · f(x)

(1) Determine the point, continuous and residual spectrum of T (with brief justifi-
cation).

Solution: This is example 9.5 in the Hunter & Nachtergaele book. The answer is
that the point and residual spectrum are empty, and the continuous spectrum is
the set [0, 1]. Since T is bounded and self-adjoint, the conclusion that the residual
spectrum is empty, and that the rest of the spectrum is real and contained in
[�1, 1], follows automatically, but for more specifics you just have to calculate (as
done in the book’s example) — just show that for � /2 [0, 1] that (T � �I)f = g
has a solution f 2 L2.
A common mistake was only doing enough work to prove [0, 1] ⇢ �c but not
really showing �c ⇢ [0, 1].



(2) Is T compact? Prove your answer.

Solution: One method is to use the spectral theorem. Since T is bounded and self-
adjoint, then if it were compact, we could apply the spectral theorem, but since it
has no eigenvalues, the spectral theorem would imply that T is the zero operator,
which it is not (or similarly, the spectral theorem implies that the continuous
spectrum is contained in {0}, which it isn’t). Hence T is not compact .

Another approach is to look at something like (en) where (en) is an orthonormal
basis for L2([.5, 1]) (and define en(x) = 0 for x 2 [0, .5)). So it is not an or-
thonormal basis for L2([0, 1]) but it is still orthonormal. Thus (en) is a bounded
sequence (it was not important for it to be orthonormal, there are many choices
you could make for explicit sequences). An operator T is compact i↵ for every
bounded sequence (en), (Ten) has a convergent subsequence. So does (Ten) have
a convergent subsequence? Since .5  x  1, we can bound kTen�Temk � c > 0
for some constant, which means (Ten) cannot be Cauchy, hence cannot have a
convergent subsequence. Hence T cannot be compact.

(b) Consider the space C([0, 1]) with the norm kfk = supx2[0,1] |x · f(x)|. Is this a valid
norm? If so, then is this space Banach? Prove your answers.

Solution: This is a valid norm: check that kfk � 0 and kfk = 0 i↵ f = 0; and check
k↵fk = |↵| · kfk, and check the triangle inequality.

Is the space Banach? No, it cannot be. Let X = C([0, 1]) with the usual uniform
norm kfku, and let Y = C([0, 1]) with this new norm. Consider the identity map
I : X ! Y . We know that X is Banach. Suppose Y is Banach, then by the
Open Mapping theorem or its corollary Proposition 5.30 , we need the inverse of
I to be bounded: specifically, can we find c > 0 such that ckfku  kI(f)k for all
f 2 X? This is impossible. We can demonstrate that by choosing a sequence of
continuous functions fn (for n � 2) that are triangles with base [0, 2/n] and height 1
at x = 1/n, so that kfnku = 1, but kfnk = 1/n. This implies that 1/c � n for all n,
which is impossible.
You don’t have to use Open Mapping. You can directly find a sequence (fn) that
converges (under this norm) to a discontinuous function. For example, consider
fn(x) = (1 � x)n; we know this converges pointwise, but not uniformly, to the dis-

continuous function f(x) =

(
1 x = 0

0 x > 0
on [0, 1]. In fact, it also converges to f with

respect to this new norm, hence the space cannot be complete. To show that, we just
need to show

max
x2[0,1]

x(1� x)n ! 0

You can explicitly compute the max since it is a smooth function; by calculus, the
derivative of x(1 � x)n is 0 when x = 1/(n + 1), which gives a maximal value of
1/(n+1)(1�1/(n+1))n (and the endpoints are not maximal, since they are 0). This
maximal value is less than 1/(n + 1) since (1 � 1/(n + 1))n  1, hence we can say
kfn � fk ! 0.
An even simpler example with the same discontinuous limit f(x) is with fn(x) = 1/n
(constant functions), as then you can see that kfn � fk = 1/n ! 0.



Problem 4 Solution:

(a) Show that there is a bounded linear map J : H ! H such that Jx is the unique
element satisfying A(x, y) = hJx, yi for all y 2 H.

Solution: If x is fixed, then y 7! A(x, y) is linear (sinceA is bilinear), and it is bounded
since we assume |A(x, y)|  �kxk·kyk. Therefore, by the Riesz representation theorem ,
for a fixed x, we can write A(x, y) = hz, yi for all y, for some z 2 H, and this z is
unique. This z is some function of x, so let’s write it as z = J(x). Fixing y now,
we know x 7! A(x, y) is linear in x (and bounded), and it is equivalent to writing
x 7! hJ(x), yi. Therefore J(x) must be bounded and linear.

(b) Show that ↵kxk  kJxk.

Solution: If x = 0, this follows trivially, so assume x 6= 0 from now on. We
assume ↵kxk2  kA(x, x)k, and by part (a), A(x, x) = hJ(x), xi. Now, using
Cauchy-Schwartz , |hJ(x), xi|  kJ(x)k · kxk, so combining this we have

↵kxk2  kA(x, x)k  kJ(x)k · kxk

and dividing by kxk gives the result.

(c) Show that J is bijective. Hint: to show J is onto, first show that it has closed range

Solution: First, show J has a trivial kernel. This follows immediately from what we
proved in part (b). Similarly, J⇤ must have a trivial kernel, which we can show as
follows: let y 2 ker(J⇤), so J⇤y = 0, and hence for all x, 0 = hx, J⇤yi = hJx, yi. In
particular, we can choose x = y, so we have 0 = hJy, yi = A(y, y). If y 6= 0, this
violates our assumption that ↵kyk2  kA(y, y)k.

Furthermore, the inequality in part (b) implies that J has closed range (via the
open mapping theorem or its corollary Proposition 5.30 from Hunter & Nachter-
gaele).
Now, use the fact that for any J 2 B(H), we have H = ran(J)�ker(J⇤) (cf. Theorem
8.17 in Hunter and Nachtergaele; note that the book suggests using the “projection
theorem” for this proof, presumably meaning Thm. 6.13, but this approach does not
seem as straightforward). Since we showed the range of J is closed and the kernel of
J⇤ is trivial, we concluded that J is onto. We showed the kernel of J is trivial, so it
is also one-to-one, and hence J is bijective.
Make sure not to claim that injective and closed range implies bijective; for example,
the right-shift operator on `2(N) is injective and has closed range, but is not onto.

(d) Show that for any bounded linear functional ' 2 H
⇤, there exists a unique element

x 2 H such that A(x, y) = '(y) for all y 2 H. Note: this result is used to prove

existence and uniqueness of weak solutions of PDE

Solution: Again using the Riesz representation theorem , we can write '(y) = hz, yi
for some unique z 2 H. But we can also wrote '(y) = A(x, y) = hJx, yi for some
unique Jx. Hence Jx = z. Because J is bijective, the equation Jx = z has a solution
x (and it is unique).

Comment : we just proved exercise 12.23 in the Hunter & Nachtergaele book, which
is used to prove Theorem 12.81, which is the famous “Lax-Milgram” theorem. To see
how this is used to prove existence and uniqueness for weak solutions to PDE, see,
e.g., http://drp.math.umd.edu/Project-Slides/DRP-Talk-Spring-2016.pdf.

http://drp.math.umd.edu/Project-Slides/DRP-Talk-Spring-2016.pdf


Problem 5 Solution: It does converge. You could probably prove this via Fubini’s theorem
(with the counting measure, to turn the sum into an integral), but here’s a method with the
monotone convergence theorem (“MCT”). Define

fn(x) =

(
0 x < n

f(x) x � n.

Then
1X

n=1

Z 1

n

f(x) dx = lim
N!1

NX

n=1

Z 1

n

f(x) dx

= lim
N!1

NX

n=1

Z

R
fn(x) dx

= lim
N!1

Z

R

NX

n=1

fn(x) dx (linearity of integral)

=

Z

R
lim

N!1

NX

n=1

fn(x) dx (this is monotone in N due to non-negativity, so use MCT )

=

Z

R

1X

n=1

fn(x) dx

=

Z

R
bxcf(x) dx (by observation)



Z

R
xf(x) dx

so it is a bounded, monotone sequence, hence it converges.

You can also use Fubini’s theorem, writing the sum as an integral via the counting mea-
sure (see example 12.30 in the book). Fubini applies, since both the counting measure and
Lebesgue measure are �-finite. Everything is non-negative, so we can ignore the absolute
value. Thus Fubini says that if the integral works in either order, the integral exists, and
it’s the same value in either order. So you can jump straight to the last three lines above,
and then since it is bounded, concluded the equality with the sum in the original order, and
make the same conclusion.

You can also use DCT to interchange the limit, since
PN

n=1 fn(x)  bxcf(x), and we know
xf(x) is integrable, so this is a dominating function.


