Applied Analysis Preliminary Exam
10.00am—1.00pm, August 21, 2017 (Draft v7, Aug 20)

Instructions. You have three hours to complete this exam. Work all five problems. Please
start each problem on a new page. Please clearly indicate any work that you do not wish to be
graded (e.g., write SCRATCH at the top of such a page). You MUST prove your conclusions
or show a counter-example for all problems unless otherwise noted. In your proofs, you may
use any major theorem on the syllabus or discussed in class, unless you are directly proving
such a theorem (when in doubt, ask the proctor). Write your student number on your exam,
not your name. Each problem is worth 20 points. (There are no optional problems.)

Problem 1:

(a) Let F be a family of equicontinuous functions from a metric space (X, dx) to a metric
space (Y, dy). Show that the completion of F is also equicontinuous.

(b) Let (fn)n>1 be a sequence of functions in C([0, 1]). Let ||-|| be the sup norm. Suppose
that, for all n, we have
NIAES
e f, is differentiable, and
e ||fI|] < M for some M > 0.

Show that the completion of { f,, },>1 is compact, and therefore that it has a convergent

subsequence.
Problem 2:
Show that there is a continuous function u on [0, 1] such that
1 T
u(z) = 2% + g/ sin(u?(y)) dy.
0
Problem 3:

Let f € L°(R). Show that

n 1/n
lim (/ |f ()] da:)
n—oo R 1—{—1‘2

exists and equals || f||.



Problem 4:
Let K : L?([0,1]) — L*(]0,1]) be the integral operator defined by

Kf(x) = / i) dy.

This operator can be shown to be compact by using the Arzela-Ascoli Theorem. For this
problem, you may take compactness as fact.

(a) Find the adjoint operator K* of K.

(b) Show that || K[> = || K*K]|.

(c) Show that ||K|| = 2/7. (Hint: Use part (b).)

(d) Prove that

K fe) = oy [ £ =y

(e) Show that the spectral radius of K is equal to 0.
(Hint: You might want to use the Stirling approximation bounds

/27_[_nn+1/2€—n < n < enn+1/2€—n‘)

Problem 5:
(a) State the Riesz Representation Theorem.

(b) Consider the second order boundary value problem
P'(2) = b(@)f(x) +q(x) for 0<z<1 and f(0) = f/(1) =0, 1)

where b,q € C([0,1]) are fixed and there exists a 6 > 0 such that b(x) > ¢ for

0 <z <1. A “weak solution” of (1) is a function f that makes the integro-differential
equation

/0 (f'(@)c(z) + b(x) f(x)c(x)) dv = /0 q(x)e(r) dz (2)

an identity for any ¢ € C*([0,1]).
The goal of this problem is to show that there exists a unique solution f to (2) in the
completion of C*([0, 1]).

(i) Define an inner product on C*([0,1]) as

1
(0.) = [ (/@ (@) + bo)g(a)h(a)) da
0
Verify that this is a valid real inner product.

(ii) Let H denote the completion of C*(]0,1]). Note that H is a Hilbert space with
the inherited inner product

<lim Gm, lim hn> = lim (g, hn)-
Define a functional ¢ : H — R by
1
ow) = [ glajuto) do.
0
Check that ¢ is bounded on H. (Be clear about any norms you use.)
(iii) Conclude that there exists a unique f € H that solves (1). (Explain!)



Problem 1 Solution:

(a) This part is almost trivial. It is just here to help with part (b).
Recall that F being equicontinuous means that, for any ¢ > 0, 3 § > 0 such that
dx(z,y) <0 = dy(f(z), f(y)) <eholdsV f € F.
To show equicontinuity of the completion, we need only worry about the additional
included functions. Let g be a function in the completion of F that was not in F
to begin with. Since F is dense in the completion, we can find an f € F that is
arbitrarily close to g. In particular, chose f € F such that dy(f(z),g(z)) < €/3
Ve e X.
Let € > 0. Note that

dy(9(z),9(y)) < dy(g(x), f(z)) +dy(f(z), f(y) +dv (f(y),9(v))

Since f € F, we can find a 6 > 0 such that dy(f(z), f(y)) < £/3 and we are done.
This § gives us dx(z,y) < 0 = dy(g(z),g(y)) < e.

(b) We will use the Arzela-Ascoli Throrem: Let K be a compact metric space. A subset
of C(K) is compact if and only if it is closed, bounded, and equicontinuous.
The completion of {f,}, is, by definition, closed
By the assumptions of this problem, we also have that the completion of {f,} is
bounded.
It remains to show that the completion of {f,} is equicontinuous.
Take € > 0. Fix n. By the Intermediate Value Theorem, we know that, V z,y € [0, 1],
there exists a ¢ between = and y such that f,(z) — f.(y) = f.(c)(x — y).
Thus, we have that f,(x) — f.(y) < M|z — y].
Define 6 = ¢/M. We then have

‘x_yl <0 = ’fn(x) - fn(y)’ <E.

Note that this is independent of the choice of n.

Thus, the family of functions { f,} is equicontinuous.

By part (a) we know then that the completion of this family is equicontinuous.

By the Arzela-Ascoli Throrem, we then have that the completion of {f,} is compact,
as desired.

Problem 2 Solution:

We will use the Contraction Mapping Theorem: If 7": X — X is a contraction mapping on
a complete metric space (X,d), then T has exaclty one fixed point. (i.e. There is exactly
one z € X such that T'(x) = z.)

Define

Tu(z) = 2° + é /Ow sin(u’(y)) dy.

Note that 7" maps C([0, 1]) functions to C([0, 1]) functions. Since C([0,1]) is complete with

respect to the sup norm || - ||, the contraction mapping theorem applies.
It remains to show that 7" is a contraction.
|Tu —Tv||ee = sup |Tu(z)— Tov(z)|
0<z<1
| .9
= sup |= | [sinu®(y) —sinv*(y)] dy
0<z<1 0

< & sup /0 | sinu?(y) — sinv*(y)| dy

0<z<1



By the mean value theorem, we know that there is some s € [0, 1] such that

sinu — sinv
—— <coss<1
U —v
SO
|sinu(y) —sinv(y)| < |u(y) —v(y)l-

So, we have that

| Tu —Tv|le < l sup/ |u —v (y)| dy

O<x<1

= & sup |u(y) + o)l |uly) —v(y)| dy

< s [ (u)] + o)) - u(o) ~ o)l dy
0<z<1 Jo

Since u and v are assumed to be continuous functions on the closed bounded interval [0, 1],

they are bounded on [0, 1]. Suppose that they are bounded by M > 0. Then

| Tu —Tv||lw < —sup/ lu(y) —v(y)| dy

0<z<1

1 1
< &[5 luly) —v()ldy < Flu— vl fy dy

Tl = vl

This may or may not be a contraction, depending on the value of M, but, we are trying to
show existence of a solution in C([0,1]). If we can show existence of a solution on some
subset of C([0, 1]), we are done. So, let’s limit our search to the set of continuous functions on
[0, 1] that are bounded, in the uniform norm, by some fixed constant M such that M < 4.
Fix such an M and define the space

C = {u e C([0,1]) : [Julle < M} € C([0, 1]).

Note that this is a closed (and non-empty!) subset of the complete C([0, 1]) and is therefore
complete. Furthermore, M can be chosen so that T : C' — C.

Thus, we have a contraction maping on a complete space (that is a subspace of the space of
interest). By the Contraction Mapping Theorem, there exists a unique fixed point u € C' C
C([0,1]), which is a solution to the problem.

Problem 3 Solution:
This is trivial if || f||c = 0. So, let us consider the case where || f||o > 0.
Note that

) 1/n 1/n
([P ) <l ([ o) =Wl s > 1Al (8D

R1+$2 R1+x2

as n — 0o.
On the other hand, by definition of ||f||«, for any 0 < & < ||f||c, there exists an A C R
(with positive Lebesgue measure) such that |f(z)] > ||f]lec —€ V @ € A.

Thus, we have
|f(@)[" / 1
> w—&)" dz.
(VO arz [ YO o> (i) o [ s

Note that fA ﬁ dz is strictly positive. Call it ¢ > 0.




For all n, we now have

( |/ ()"

R 1+l’2

1/n
d:c) > (1l =€) - " = [|flloo — &

as n — oo.
This implies that

o @ N
11££f(41+x2dx > 1]l — <.

Since this holds for any 0 < ¢ < || f||s, We have

. If@)r "
hﬁaﬂf(Rmm Z [ Flee-

On the other hand, (S1) implies that
n 1/n
lim sup ( /()] dm) < [l

n—00 g 1+ 22

2)|n 1/n
nm( 7(z)] dx) .

n—00 R ]_—|—x2

Thus, we have

as desired.

Problem 4 Solution:
Note: This is the Volterra operator. Recall that L?([0,1]) is a Hilbert space with inner
product

1
<= [ f@gl)ds
0
Note that, in what follows, the norms will be switching between the Hilbert space norm

Al =v<fif>

and the operator norm

|K[| = sup [[Kf]].
If11<1
(a) The adjoint K* must satisfy

< fKg>=<K*f, g >

for all f,g € L*([0,1]).
By inspection, it is easy to see that the adjoint will be defined by

K@) = | ) dy
Check:
<rkg>= [ s@wae = [ 1) [Towayas "2 [ o / @ drdy =< K*fg>
(b) For any |17l < 1,

C.S.
IKfIf =< Kf,Kf >=<K'Kf,f>< [[K*K[||- ||| < [[K*KI| < |[K|| - [| ]].

Thus, we have that ||K|| < ||K*||.
By a symmetric argument, ||K*|| < [|K]| and so ||K||* = || K*K]|.



(¢) Since K*K is compact and self-adjoint, the Spectral Theorem gives us that its norm

is the magnitude of its largest eigenvalue. So, we proceed by finding the eigenvalues
of K*K.
Suppose that K*K f = Af. Then

M@ = kK= [ ) [ty = =5

To solve the resulting second order differential equation \f”(z)+ f(z) = 0, note that
the characteristic equation is 7% + 1/\ = 0. For simplicity, use w? = 1/X. We then
get that f must be of the form

_ lwx —iwT
= .
f(x) = c1e’“" + coe

Compute
K*Kf(x) / / f(u)dudy =
= /@) + (o — ) — (e + o) 1( ) )
= o2 i i (&1 Cy )T 2 c1e Cy€e i C1 Co
From the second term and the fact that K*K f(x) = Af(z) = (1/w)f(z), we must

have ¢; = ¢y. Plugging this back into (3), we have

K'Kf(x) = wif(x) + —2¢; cos(w).

2

Since this should equal A\f = ﬁ f(x), we are forced to have the cosine term be zero

and so we get
2n+1

2
Thus, the eigenvalues have the form

I 4

w? (20 +1)2

which is largest when n = 0, making A = 4/72 the largest eigenvalue.
By the spectral theorem, we then have that

w = s for any n € Z.

A:

. 4
IK]]* = [[K°K]| = —

which implies that

2
T

as desired.
(d) This is straightforward induction on n.
(e) The spectral radius, r(K), of a bounded linear operator K, may be computed as

r(K) = lim [[K"|

From part (d), we have that
1

(n—1)

. 1 1/n
Oy —
(n—1)!

By the Stirling approximation bounds, we know that

(n— D! >V2r(n —1)""1/2en 1,

K" <

Thus,




so we have that
[(n — 1)!]1/71 > ( /_27T)1/n<n _ 1)1—1/(2n)61/n—1

which goes to —oco as n — .
In conclusion, the spectral radius is

— T n||l/n _
() = Tim [|K" " =0,
as desired.

Problem 5 Solution:

(a) If ¢ is a bounded linear functional on a Hilbert space #, there is a unique vector
y € H such that ¢(z) =< y,z > for all z € H.
(b) (i) Verifying inner product:
o Take any aq,as € R. By linearity of the integral, it is easy to see that
< g,a1hy +aghy >=a; < g,hy > +az < g,hy >

for g, h1, he € C'([0, 1]).
o Note that, for any g € C’(]0, 1]),

(9,9) = / (¢ (2))? + b() (g(x))?] do > 0 (4)

since b > 0.
o Clearly, g =0 = < g,g >= 0. On the other hand, b > § > 0 ensures that
<g,g>=0= g=0.
(ii) We wish to show that there exists a constant M > 0 such that
|¢(u)| < M[ul|

where | - | is the Euclidean norm and || - || is the Hilbert space norm defined as
-1 = V)
First, we claim that

[ul| > Vd[[ull> for any u € H, ()
where || - ||2 denotes the L? norm. Indeed, by (4),

] = / [ (2))? + b(a) (u(2))?] da
> / br) (u(a))? de > 6 / (u())? de = 5] Jul 2.

Now, by the Cauchy-Schwartz inequality and (5),

q
6(0)] < llalla llalls < 12 ) for any u € .

Ve
Since ¢ is continuous on [0, 1], ||¢||2 must be finite. We therefore conclude that
|p(u)| < M |Ju|| for all uw € H, and so ¢ is bounded on H.
(iii) From the Riesz Representation Theorem we know there must exist an f € H
satisfying ¢(u) = (f,w). This f is the solution to (2)!



