
Applied Analysis Preliminary Exam
10.00am–1.00pm, August 21, 2017 (Draft v7, Aug 20)

Instructions. You have three hours to complete this exam. Work all five problems. Please
start each problem on a new page. Please clearly indicate any work that you do not wish to be
graded (e.g., write SCRATCH at the top of such a page). You MUST prove your conclusions
or show a counter-example for all problems unless otherwise noted. In your proofs, you may
use any major theorem on the syllabus or discussed in class, unless you are directly proving
such a theorem (when in doubt, ask the proctor). Write your student number on your exam,
not your name. Each problem is worth 20 points. (There are no optional problems.)

Problem 1:

(a) Let F be a family of equicontinuous functions from a metric space (X, dX) to a metric
space (Y, dY ). Show that the completion of F is also equicontinuous.

(b) Let (fn)n≥1 be a sequence of functions in C([0, 1]). Let || · || be the sup norm. Suppose
that, for all n, we have
• ||fn|| ≤ 1,
• fn is differentiable, and
• ||f ′n|| ≤M for some M ≥ 0.

Show that the completion of {fn}n≥1 is compact, and therefore that it has a convergent
subsequence.

Problem 2:
Show that there is a continuous function u on [0, 1] such that

u(x) = x2 +
1

8

∫ x

0

sin(u2(y)) dy.

Problem 3:
Let f ∈ L∞(R). Show that

lim
n→∞

(∫
R

|f(x)|n

1 + x2
dx

)1/n

exists and equals ||f ||∞.



Problem 4:
Let K : L2([0, 1])→ L2([0, 1]) be the integral operator defined by

Kf(x) =

∫ x

0

f(y) dy.

This operator can be shown to be compact by using the Arzelà-Ascoli Theorem. For this
problem, you may take compactness as fact.

(a) Find the adjoint operator K∗ of K.
(b) Show that ||K||2 = ||K∗K||.
(c) Show that ||K|| = 2/π. (Hint: Use part (b).)
(d) Prove that

Knf(x) =
1

(n− 1)!

∫ x

0

f(y)(x− y)n−1 dy.

(e) Show that the spectral radius of K is equal to 0.
(Hint: You might want to use the Stirling approximation bounds

√
2πnn+1/2e−n ≤ n! ≤ e nn+1/2e−n.)

Problem 5:

(a) State the Riesz Representation Theorem.

(b) Consider the second order boundary value problem

f ′′(x) = b(x)f(x) + q(x) for 0 < x < 1 and f ′(0) = f ′(1) = 0, (1)

where b, q ∈ C([0, 1]) are fixed and there exists a δ > 0 such that b(x) ≥ δ for
0 ≤ x ≤ 1. A “weak solution” of (1) is a function f that makes the integro-differential
equation ∫ 1

0

(f ′(x)c′(x) + b(x)f(x)c(x)) dx =

∫ 1

0

q(x)c(x) dx (2)

an identity for any c ∈ C1([0, 1]).
The goal of this problem is to show that there exists a unique solution f to (2) in the
completion of C1([0, 1]).

(i) Define an inner product on C1([0, 1]) as

〈g, h〉 :=

∫ 1

0

(g′(x)h′(x) + b(x)g(x)h(x)) dx.

Verify that this is a valid real inner product.

(ii) Let H denote the completion of C1([0, 1]). Note that H is a Hilbert space with
the inherited inner product〈

lim
m
gm, lim

n
hn

〉
= lim

m,n
〈gm, hn〉.

Define a functional ϕ : H → R by

φ(u) :=

∫ 1

0

q(x)u(x) dx.

Check that φ is bounded on H. (Be clear about any norms you use.)

(iii) Conclude that there exists a unique f ∈ H that solves (1). (Explain!)



Problem 1 Solution:

(a) This part is almost trivial. It is just here to help with part (b).
Recall that F being equicontinuous means that, for any ε > 0, ∃ δ > 0 such that
dX(x, y) < δ ⇒ dY (f(x), f(y)) < ε holds ∀ f ∈ F .
To show equicontinuity of the completion, we need only worry about the additional
included functions. Let g be a function in the completion of F that was not in F
to begin with. Since F is dense in the completion, we can find an f ∈ F that is
arbitrarily close to g. In particular, chose f ∈ F such that dY (f(x), g(x)) < ε/3
∀x ∈ X.
Let ε > 0. Note that

dY (g(x), g(y)) ≤ dY (g(x), f(x)) + dY (f(x), f(y)) + dY (f(y), g(y)).

Since f ∈ F , we can find a δ > 0 such that dY (f(x), f(y)) < ε/3 and we are done.
This δ gives us dX(x, y) < δ ⇒ dY (g(x), g(y)) < ε.

(b) We will use the Arzelà-Ascoli Throrem: Let K be a compact metric space. A subset
of C(K) is compact if and only if it is closed, bounded, and equicontinuous.
The completion of {fn}, is, by definition, closed
By the assumptions of this problem, we also have that the completion of {fn} is
bounded.
It remains to show that the completion of {fn} is equicontinuous.
Take ε > 0. Fix n. By the Intermediate Value Theorem, we know that, ∀ x, y ∈ [0, 1],
there exists a c between x and y such that fn(x)− fn(y) = f ′n(c)(x− y).
Thus, we have that fn(x)− fn(y) ≤M |x− y|.
Define δ = ε/M . We then have

|x− y| < δ ⇒ |fn(x)− fn(y)| < ε.

Note that this is independent of the choice of n.
Thus, the family of functions {fn} is equicontinuous.
By part (a) we know then that the completion of this family is equicontinuous.
By the Arzelà-Ascoli Throrem, we then have that the completion of {fn} is compact,
as desired.

Problem 2 Solution:
We will use the Contraction Mapping Theorem: If T : X → X is a contraction mapping on
a complete metric space (X, d), then T has exaclty one fixed point. (i.e. There is exactly
one x ∈ X such that T (x) = x.)
Define

Tu(x) = x2 +
1

8

∫ x

0

sin(u2(y)) dy.

Note that T maps C([0, 1]) functions to C([0, 1]) functions. Since C([0, 1]) is complete with
respect to the sup norm || · ||∞, the contraction mapping theorem applies.
It remains to show that T is a contraction.

||Tu− Tv||∞ = sup
0≤x≤1

|Tu(x)− Tv(x)|

= sup
0≤x≤1

∣∣∣∣18
∫ x

0

[sinu2(y)− sin v2(y)] dy

∣∣∣∣
≤ 1

8
sup

0≤x≤1

∫ x

0

| sinu2(y)− sin v2(y)| dy



By the mean value theorem, we know that there is some s ∈ [0, 1] such that

sinu− sin v

u− v
≤ cos s ≤ 1

so

| sinu(y)− sin v(y)| ≤ |u(y)− v(y)|.
So, we have that

||Tu− Tv||∞ ≤ 1
8

sup
0≤x≤1

∫ x

0

|u2(y)− v2(y)| dy

= 1
8

sup
0≤x≤1

∫ x

0

|u(y) + v(y)| · |u(y)− v(y)| dy

≤ 1
8

sup
0≤x≤1

∫ x

0

(|u(y)|+ |v(y)|) · |u(y)− v(y)| dy

Since u and v are assumed to be continuous functions on the closed bounded interval [0, 1],
they are bounded on [0, 1]. Suppose that they are bounded by M > 0. Then

||Tu− Tv||∞ ≤ 2M
8

sup
0≤x≤1

∫ x

0

|u(y)− v(y)| dy

≤ M
4

∫ 1

0
|u(y)− v(y)| dy ≤ M

4
||u− v||∞

∫ 1

0
dy

= M
4
||u− v||∞

This may or may not be a contraction, depending on the value of M , but, we are trying to
show existence of a solution in C([0, 1]). If we can show existence of a solution on some
subset of C([0, 1]), we are done. So, let’s limit our search to the set of continuous functions on
[0, 1] that are bounded, in the uniform norm, by some fixed constant M such that M < 4.
Fix such an M and define the space

C := {u ∈ C([0, 1]) : ||u||∞ ≤M} ⊆ C([0, 1]).

Note that this is a closed (and non-empty!) subset of the complete C([0, 1]) and is therefore
complete. Furthermore, M can be chosen so that T : C → C.
Thus, we have a contraction maping on a complete space (that is a subspace of the space of
interest). By the Contraction Mapping Theorem, there exists a unique fixed point u ∈ C ⊆
C([0, 1]), which is a solution to the problem.

Problem 3 Solution:
This is trivial if ||f ||∞ = 0. So, let us consider the case where ||f ||∞ > 0.
Note that (∫

R

|f(x)|n

1 + x2
dx

)1/n

≤ ||f ||∞
(∫

R

1

1 + x2
dx

)1/n

= ||f ||∞ · π1/n → ||f ||∞ (S1)

as n→∞.
On the other hand, by definition of ||f ||∞, for any 0 < ε < ||f ||∞, there exists an A ⊆ R
(with positive Lebesgue measure) such that |f(x)| > ||f ||∞ − ε ∀ x ∈ A.
Thus, we have ∫

R

|f(x)|n

1 + x2
dx ≥

∫
A

|f(x)|n

1 + x2
dx ≥ (||f ||∞ − ε)n

∫
A

1

1 + x2
dx.

Note that
∫
A

1
1+x2 dx is strictly positive. Call it c > 0.



For all n, we now have(∫
R

|f(x)|n

1 + x2
dx

)1/n

≥ (||f ||∞ − ε) · c1/n → ||f ||∞ − ε

as n→∞.
This implies that

lim inf
n→∞

(∫
R

|f(x)|n

1 + x2
dx

)1/n

≥ ||f ||∞ − ε.

Since this holds for any 0 < ε < ||f ||∞, we have

lim inf
n→∞

(∫
R

|f(x)|n

1 + x2
dx

)1/n

≥ ||f ||∞.

On the other hand, (S1) implies that

lim sup
n→∞

(∫
R

|f(x)|n

1 + x2
dx

)1/n

≤ ||f ||∞.

Thus, we have

lim
n→∞

(∫
R

|f(x)|n

1 + x2
dx

)1/n

= ||f ||∞,

as desired.

Problem 4 Solution:
Note: This is the Volterra operator. Recall that L2([0, 1]) is a Hilbert space with inner
product

< f, g >=

∫ 1

0

f(x)g(x) dx.

Note that, in what follows, the norms will be switching between the Hilbert space norm

||f || =
√
< f, f >

and the operator norm

||K|| = sup
||f ||≤1

||Kf ||.

(a) The adjoint K∗ must satisfy

< f,Kg >=< K∗f, g >

for all f, g ∈ L2([0, 1]).
By inspection, it is easy to see that the adjoint will be defined by

K∗f(x) =

∫ 1

x

f(y) dy.

Check:

< f,Kg >=

∫ 1

0

f(x)(Kg)(x) dx =

∫ 1

0

f(x)

∫ x

0

g(y) dy dx
Fubini

=

∫ 1

0

g(y)

∫ 1

y

f(x) dx dy =< K∗f, g >
√

(b) For any ||f || ≤ 1,

||Kf ||2 =< Kf,Kf >=< K∗Kf, f >
C.S.

≤ ||K∗Kf || · ||f || ≤ ||K∗K|| ≤ ||K∗|| · ||K||.

Thus, we have that ||K|| ≤ ||K∗||.
By a symmetric argument, ||K∗|| ≤ ||K|| and so ||K||2 = ||K∗K||.



(c) Since K∗K is compact and self-adjoint, the Spectral Theorem gives us that its norm
is the magnitude of its largest eigenvalue. So, we proceed by finding the eigenvalues
of K∗K.
Suppose that K∗Kf = λf . Then

λf ′′(x) =
∂2

∂x2
K∗Kf =

∂2

∂x2

∫ 1

x

f(y)

∫ y

0

f(u) du dy = · · · = −f(x).

To solve the resulting second order differential equation λf ′′(x) + f(x) = 0, note that
the characteristic equation is r2 + 1/λ = 0. For simplicity, use ω2 = 1/λ. We then
get that f must be of the form

f(x) = c1e
1ωx + c2e

−iωx.

Compute

K∗Kf(x) =

∫ 1

x

f(y)

∫ y

0

f(u) du dy = · · ·

· · · = 1

ω2
f(x) +

1

iω
(c1 − c2)x−

1

ω2
(c1e

iω + c2e
−iω)− 1

iω
(c1 − c2) (3)

From the second term and the fact that K∗Kf(x) = λf(x) = (1/ω)f(x), we must
have c1 = c2. Plugging this back into (3), we have

K∗Kf(x) =
1

ω2
f(x) +−2c1 cos(ωx).

Since this should equal λf = 1
ω2f(x), we are forced to have the cosine term be zero

and so we get

ω =
2n+ 1

2
π for any n ∈ Z.

Thus, the eigenvalues have the form

λ =
1

ω2
=

4

π(2n+ 1)2

which is largest when n = 0, making λ = 4/π2 the largest eigenvalue.
By the spectral theorem, we then have that

||K||2 = ||K∗K|| = 4

π2

which implies that

||K|| = 2

π
,

as desired.
(d) This is straightforward induction on n.
(e) The spectral radius, r(K), of a bounded linear operator K, may be computed as

r(K) = lim
n→∞

||Kn||1/n.

From part (d), we have that

||Kn|| ≤ 1

(n− 1)!
.

Thus,

||Kn||1/n ≤
(

1

(n− 1)!

)1/n

By the Stirling approximation bounds, we know that

(n− 1)! ≥
√

2π(n− 1)n−1/2en−1,



so we have that

[(n− 1)!]1/n ≥ (
√

2π)1/n(n− 1)1−1/(2n)e1/n−1

which goes to −∞ as n→∞.
In conclusion, the spectral radius is

r(K) = lim
n→∞

||Kn||1/n = 0,

as desired.

Problem 5 Solution:

(a) If ϕ is a bounded linear functional on a Hilbert space H, there is a unique vector
y ∈ H such that φ(x) =< y, x > for all x ∈ H.

(b) (i) Verifying inner product:
◦ Take any α1, α2 ∈ R. By linearity of the integral, it is easy to see that

< g, α1h1 + α2h2 >= α1 < g, h1 > +α2 < g, h2 >

for g, h1, h2 ∈ C ′([0, 1]).
◦ Note that, for any g ∈ C ′([0, 1]),

〈g, g〉 =

∫ 1

0

[
(g′(x))2 + b(x)(g(x))2

]
dx ≥ 0 (4)

since b ≥ 0.
◦ Clearly, g = 0 ⇒ < g, g >= 0. On the other hand, b ≥ δ > 0 ensures that
< g, g >= 0 ⇒ g = 0.

(ii) We wish to show that there exists a constant M ≥ 0 such that

|φ(u)| ≤M ||u||
where | · | is the Euclidean norm and || · || is the Hilbert space norm defined as

|| · || =
√
〈·, ·〉.

First, we claim that

||u|| ≥
√
δ||u||2 for any u ∈ H, (5)

where || · ||2 denotes the L2 norm. Indeed, by (4),

||u||2 =

∫ 1

0

[
(u′(x))2 + b(x)(u(x))2

]
dx

≥
∫ 1

0

b(x)(u(x))2 dx ≥ δ

∫ 1

0

(u(x))2 dx = δ||u||22.

Now, by the Cauchy-Schwartz inequality and (5),

|φ(u)| ≤ ||q||2 ||u||2 ≤
||q||2√
δ
||u|| for any u ∈ H.

Since q is continuous on [0, 1], ||q||2 must be finite. We therefore conclude that
|φ(u)| ≤M ||u|| for all u ∈ H, and so φ is bounded on H.

(iii) From the Riesz Representation Theorem we know there must exist an f ∈ H
satisfying φ(u) = 〈f, u〉. This f is the solution to (2)!


