Problem 1:
(a) Prove (using the comparison test or the Weierstrass-M test) the “Cauchy root test”: If
\[C = \limsup_{n \to \infty} |a_n|^{1/n} < \infty, \]
then the series
\[\sum_{n=0}^{\infty} a_n z^n \]
converges uniformly if \(|z| < 1/C\) and diverges if \(|z| > 1/C\).
(b) What does this result say about the series
\[\sum_{n=0}^{\infty} 2^n \sin(n) z^n \]

Solution/Hint: Mainly straightforward.

Problem 2: (The two sub-problems are unrelated)
(a) One of the requirements of the Weierstrass Approximation Theorem is that the function
to be approximated is continuous on a closed and bounded interval \(I\). Show that the
Approximation Theorem does not hold if we replace \(I\) by a bounded open interval \((a,b)\)
by showing that if \(f(x) = 1/(b-x)\), then \(f: (a,b) \to \mathbb{R}\) cannot be uniformly approximated by
polynomials.
Solution/Hint: Mainly straightforward. Do not use Taylor series; even if the Taylor series
doesn’t approximate the function, that doesn’t prove that there is no other polynomial which
approximates the function.
(b) Let \((e_n)_{n \in \mathbb{N}}\) be an orthonormal basis for a Hilbert space \(H\) and \(A: H \to H\) a bounded linear
operator. If
\[\lim_{n \to \infty} \sup_{u \perp \{e_1, \ldots, e_n\}} \frac{\|Au\|}{\|u\|} = 0 \]
then prove \(A\) is a compact operator.
Solution/Hint: The general idea is to approximate \(A\) with a finite-rank operator, which
is therefore compact, and then show that these approximations converge uniformly to \(A\). If
you do this, be careful if you use double-indices.
Another approach is to show that \(A\) maps weakly convergent sequences to strongly con-
vergent sequences. With this approach, be careful with what you show. Do not prove that if
\(x_n \to x\) that then \(Ax_n \to x\), unless you prove this for any sequence \((x_n)\); several students did
this for a particular sequence \((x_n)\), but this is not strong enough to conclude \(A\) is compact.

Problem 3: Let \((X,d)\) be a complete metric space. A function \(f: X \to X\) is said to be a
contraction if there exists \(c < 1\) such that \(d(f(x), f(y)) \leq c \cdot d(x, y)\) for all \(x, y \in X\). A function \(f\)
is said to be a weak contraction if
\[d(f(x), f(y)) < d(x, y) \quad \forall x \neq y, x, y \in X. \]
Note that a weak contraction is Lipschitz continuous with Lipschitz constant 1.
(a) Prove the following variant of the contraction mapping theorem: if \(f\) is a weak contraction
and the space \(X\) is compact, then \(f\) has a unique fixed point in \(X\). Hint: consider the
function \(g(x) = d(x, f(x))\) over \(X\).
Solution/Hint: Using the hint, there is a very short proof. The uniqueness argument is
similar to the argument used in the standard contraction mapping theorem (most students
got this part).
Overall, you do not want to explicitly construct a sequence \((x_n)\) as in the standard
theorem. Some students did this and showed \(g(x_n) \to 0\), and then (falsely) concluded that
\(x_n \to 0\).
Several styles of attempted proof were not correct because they would have worked had f been non-expansive, e.g., $d(f(x), f(y)) \leq d(x, y)$ (\leq instead of $<$), for which the result isn’t true (e.g., $f(x) = -x$ on $X = [-2, -1] \cup [1, 2]$ has no fixed point). For example, consider approximating d by some d_n which is contractive in the usual sense (for some $L_n < 1$ and $L_n \to 1$). A problem here is that this can change the range; we need that $f(x) \subseteq X$, and this fails for $X = [-2, -1] \cup [1, 2]$ if you replace f with a contractive f_n, so you would need to prove why you preserve the range/domain.

If you can’t figure out the hint, then the solution is below (hold it up to a mirror to read):

(b) Let $X = \ell^2(\mathbb{N})$ and $f(x) = L(x) + b$ be an affine function defined by mapping $L : x \mapsto y$ where $x = (x_n)_{n \in \mathbb{N}}$ and $y = (y_n)_{n \in \mathbb{N}}$ with $y_n = (1 - \frac{1}{n})x_n$, and $b = (\frac{1}{n})_{n \in \mathbb{N}}$. Prove or disprove that f has a fixed point in X. Does your answer change if X is the closed unit ball in $\ell^2(\mathbb{N})$?

Solution/Hint: No, it does not. If it did, you can see that you solve the equation $x = L(x) + b$ or $(I - L)x = b$ which means that, term-by-term, you have $1/nx_n = b_n = 1/n$, so $x_n = 1$, but $(1, 1, 1, \ldots) \notin \ell^2(\mathbb{N})$ since it is not square-summable.

If X is the closed unit ball, we still do not have a fixed point, for any of these reasons: (1) it is a smaller set, so if we didn’t have a fixed point in ℓ^2 we can’t have one in a subset; (2) f does not map X to X, since it keeps shifting out (due to the offset term). Our the work from part (a) does not help us since the closed unit ball in ℓ^2 is not compact (it is bounded but not totally bounded), so we can’t use that to make a conclusion either way.

Problem 4: Let \mathcal{H} be an infinite dimensional Hilbert space, and M a subspace of \mathcal{H}. If $\varphi \in M^*$, prove φ has a unique norm-preserving extension to a bounded linear functional on all of \mathcal{H}, and that this extension vanishes on M^\perp.

Solution/Hint:
We could apply Hahn-Banach directly but it’s not powerful enough. This is a dead end. We must use the fact that we are in a Hilbert space, not just a normed vector space. For example, in a Banach space such as $X = (C([0, 1]), \| \cdot \|_\infty)$, if we have a subspace such as the periodic functions $M = \{ f \in X \mid f(0) = f(1) \}$, consider a functional $\phi(f) = f(0)$ defined on M. We could extend this to $\psi(f) = f(0)$, or we could extend it to $\psi(f) = f(1)$; both extensions agree on M, and both have norm 1. So Hahn-Banach by itself is not enough.

Instead, try using the BLT theorem (why? well, is M necessarily closed?) and then the Riesz-Representation theorem. To show it is unique, decompose \mathcal{H} into subspaces and use the fact that the norms cannot increase.

Problem 5: State and prove Fatou’s Lemma. Give an example to show why in general we must have an inequality and not an equality.

Solution/Hint: Try using the Monotone Convergence Theorem.