
Solutions

Problem 1:

(a) What does it mean for an operator to be compact? A linear operator T : H → H is
compact if T (B) is a precompact subset of H for every bounded subset B ⊂ H (recall
“precompact” means its closure is compact, or equivalently, that every sequence has a
convergent subsequence). That is to say for every bounded sequence (xn) ⊂ H, then
(Txn) has a convergent subsequence.

(b) Discuss convergence: Note that the problem doesn’t ask the student to prove if the limit
is in B(H), so this may be assumed.

(a) We show convergence in norm is sufficient.

Solution 1 Let (xm) ⊂ H be a bounded sequence with ‖xm‖ ≤ B for all m. We
will show that there is a subsequence (mk) such that (Axmk

) is Cauchy, and since
H is complete, therefore it is convergent. The only tricky part is defining mk. Since
A1 is compact, there is a subsequence (mk(1)) such that A1(xmk(1)

) is convergent

(to, say, y1). Since A2 is compact, there is a subsequence mk(2) of (mk(1)) such that
A2(xmk(2)

) is convergent to y2 (and A1(xmk(2)
) is still convergent to y1, since this is

a subsequence of the subsequence).

For each k, we have a subsequence of the subsequence associated with k−1. We can
take the kth term of this new subsequence, and make this into a master subsequence
(mk). This is known as the diagonalization trick. Since this master subsequence
is bounded, and ‖An − A‖ → ∞, an ε/3 argument shows that the sequence (yk)
is Cauchy, and thus there is some y with yk → y, and then again using an ε/3
argument we see that Axmk

→ y, thus proving that A is a compact operator.

Solution 2 A slicker proof is using the fact that a compact operator can be arbi-
trarily well-approximated by a finite-rank operator; using this, the proof is trivial
(basically, that’s what this problem is trying to show).

Solution 3 Use the fact that a compact operator (on a Hilbert space) maps weakly
convergent sequences to strongly convergent ones, i.e., if An is compact, then xk ⇀ x
implies Anxk → Anx. Thus we only need to show Axk → Ax. We do this with the
usual triangle inequalities:

‖Axk −Ax‖ ≤ ‖Axk −Anxk‖+ ‖Anxk −Anx‖+ ‖Anx−Ax‖

and we can make all terms small. But note that we require norm convergence and
boundedness in order for the first and third terms to be BOTH small. If we have
only strong convergence, then we can make them small separately (by choosing n
large enough) but not necessarily have both of them small. The middle term is
arbitrarily small by choosing k sufficiently large.

Solution 4 Let B ⊂ H be bounded, so for every n, An(B) is pre-compact and
hence totally bounded. It is sufficient to show A(B) is totally bounded since H is
Banach. Let the radius of B be M , i.e., x ∈ B implies ‖x‖ ≤M . We will show that
for any ε > 0, there is a finite ε-net of A(B). Fix ε > 0.

Pick n large enough such that ‖An−A‖ < ε/(3M). Since An(B) is totally bounded,
let (yi)

N
i=1 ⊂ B be a finite ε/3 net of An(B). Since yi ∈ An(B), we can write it as

Anxi.



For any x ∈ B, we have

‖(An −A)x‖ < ε/(3M)‖x‖ ≤ ε/3.

Hence if we pick an arbitrary point A(x) ∈ A(B), it is within ε/3 of the point
An(x) ∈ An(B). By the triangle inequality, since (xi) is an ε/3 net for An(B), there
is some Axi that is within ε of A(x).

Explicitly, for x ∈ B, there is some xi such that

‖Ax−Axi‖ ≤ ‖Ax−Anx‖+ ‖Anx−Anxi‖+ ‖Anxi −Axi‖
< ε/3 + ε/3 + ε/3 = ε.

Hence {Axi} is a finite ε-net for A(B), and since ε was arbitrary, this means A(B)
is totally bounded, hence pre-compact.

(b) We show strong convergence is not sufficient. Take An to be defined as in Example
5.46 in the book, where for x = (x1, x2, . . . , xn, xn+1, . . .) ⊂ `2 we have An(x) =
(x1, . . . , xn, 0, 0 . . .). For any fixed n, limnAnx = x therefore An converges strongly
to A = I (note that it does not converge in norm, since ‖An − Am‖ = 1 for
m 6= n). The identity is not compact. For example, take a sequence (xm) where
xm = (0, . . . , 1, 0, . . .), i.e., it is 0 except for a 1 in the mth position. This sequence
is bounded but since ‖xm − xm′‖ = 1 for all m 6= m′, it cannot have a Cauchy
subsequence, hence it does not have a convergent subsequence, so the identity is not
compact. (Note: in finite dimensions, the identity is compact).

(c) Since strong convergence implies weak convergence, weak convergence is not suffi-
cient

Problem 2: First, we note that we can calculate the Fourier series and make coefficients ûn,
which are uniquely determined by the problem specifications except for û0. We do the calcu-
lation using integration-by-parts twice (though this fails for n = 0), or by directly calculating
û′′ and then divide by (in)2.
• Is the function uniquely specified? No, because û0 is not determined. There can be an

arbitrary constant offset (but no arbitrary linear offset, in order to keep it periodic — this
should be mentioned).
• The Fourier coefficients are of the form ûn = c/n3 where c is an unimportant constant.

A function u is in the Sobolev space Hs iff nsûn ∈ `2, so this means we need cns−3 ∈ `2.
From calculus, we know that n−.5−ε ∈ `2 iff ε > 0, so u ∈ Hs for s < 2.5. Thus s is not
unique (note that Hs ⊂ Hs′ if s′ ≤ s, so s is never unique unless it is s = 0).

Another way that is not quite as sharp: note that u′′ is discontinuous, so therefore u′′

cannot be in Hs for s > 1/2 otherwise we violate the Sobolev embedding theorem. Hence
u cannot be in Hs for s > 2.5. It’s also clear that u′′ is a weak derivative of u so u is in
Hs for s ≤ 2. The region between 2 and 2.5 is not made clear with this method.

Problem 3:

(a) The question is whether we can interchange the limit and the integral. First, we observe
that the integrand is bounded by one; there are several ways to prove this, e.g., the
binomial theorem, or via induction with k. Now that the integrand is positive and bounded
by 1, we can apply the Lebesgue Dominated Convergence Theorem and interchange the
limit and integral.



Now, to evaluate the limit of the integrand, use standard techniques (e.g., L’Hôpital’s
rule) to get a value of 0 for x ∈ (0, 1] and 1 for x = 0. Integrating this function gives a
value of 0.

(b) The partial sums sn are monotone since bk and r are nonnegative. The partial sums are
also bounded, since (bk) is bounded (say, bk ≤M for all k), and r < 1, so that

sn ≤M
n∑
k=1

rk =
Mr(1− rn)

1− r
≤ Mr

1− r

Thus we have a bounded, monotone sequence of real numbers, so the Monotone Con-
vergence Theorem says this sequence must converge. (Note that it need not converge to
Mr/(1−r), since M was just a bound on (bk); rather, it converges to r/(1−r)·lim supk bk).

Problem 4:

(a) H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2, and H3(x) = 8x3 − 12x.

(b) Follow the hint and let v(x) = e−x
2
, so the term in the hint is (where v(m) is the mth

derivative of v)

(−1)n
∫
R
Hn(x)v(m) dx = Hn(x)v(m−1)

∣∣∣
R
−
∫
R

2nHn−1(x)v(m−1) dx

= −
∫
R

2nHn−1(x)v(m−1) dx

= . . .

= (−1)n2nn!

∫
R
H0(x)v(m−n) dx

and H0(x) = 1. If n < m, integrating once more gives 0 since v and its derivatives
approach zero as x goes to ±∞, and this proves the orthogonality.

(c) This follows directly from part (b), since we have just moved the weight function to ϕ.
(d) Because this is an orthonormal basis, we just calculate

f8 =

∫
R
f(x)c8ϕ8(x) dx.

Problem 5:

(a) Let 0 ∈ intC and x ∈ X. Then there is an ε > 0 such that Bε(0) ⊂ C, and in particular
ε
2 ∈ C, so γC(x) ≤ 2/ε <∞. Now let C be convex, and let x, y ∈ C with γC(x) = λ and

γC(y) = µ. Then x′ = x/λ ∈ C and y′ = y/µ ∈ C, and by convexity, z = λ
λ+µx

′+ µ
λ+µy

′ ∈
C. Since z = (x+ y)/(λ+ µ), it follows γC(x+ y) ≤ λ+ µ. It helps to draw a picture to
see how the sub-additive property fails if C is not convex.

(b) This follows immediately by defining the sub-linear functional p(x) = ‖ψ‖‖x‖.

(c) Without loss of generality, shift C and d such that 0 ∈ intC, since the problem is trans-
lation invariant. Let Y = span(d) and define the linear functional ψ(λd) = λ ∀λd ∈ Y , so
in particular ψ(d) = 1. Let p(d) = γC(d) which is sub-linear, and p(d) ≥ 1 since d /∈ C.
It follows ψ(λd) ≤ p(λd) ∀λz ∈ Y since either λ > 0 in which case we use the fact that
both ψ and p are positive homogenous, or λ ≤ 0 in which case ψ(λd) ≤ 0 ≤ p(λd).

We can apply the Hahn-Banach theorem and extend ψ to a linear functional Ψ on X,
with Ψ(x) ≤ p(x) ∀x ∈ X. We still have Ψ(d) = 1. Since p(x) ≤ 1 ∀x ∈ C, this implies



Ψ(x) ≤ Ψ(d) ∀x ∈ C, and thus the hyperplane defined by {x ∈ X : Ψ(x) = Ψ(d)}
separates d and C.


