
Applied Analysis Preliminary Exam
10.00am–1.00pm, August 21, 2012

Instructions. You have three hours to complete this exam. Work all five problems. Please start each
problem on a new page. You MUST prove your conclusions or show a counter-example for all problems
unless otherwise noted. Write your name on your exam. Each problem is worth 20 points.

Problem 1. Show that the initial value problem:

v′(x) =
1

4
sin(x+ v(x)2), v(0) =

1

4
,

has a unique solution in C2([0, 1],R).

Problem 2. Define the right and left shift operators S and T on ℓ2(N) by

S((x1, x2, x3, . . .)) = (0, x1, x2, . . .), and T ((x1, x2, x3, . . .)) = (x2, x3, x4, . . .).

You may use the relation S∗ = T without proving it. Prove the following:

(a) The point spectrum of T is the open disc D = {z ∈ C : |z| < 1} disc and S has no point spectrum.

(b) Every λ ∈ C with |λ| = 1 belongs to the continuous spectrum of S.

(c) The open unit disc D = {z ∈ C : |z| < 1} is contained in the residual spectrum of S.

(d) The continuous spectrum of S is the unit circle C = {z ∈ C : |z| = 1}.

Problem 3. Let α be a complex number, and consider the operator

[Au](x) = αu(x) + arctan(x)u(x),

acting on the Hilbert space H = L2(R).

(a) What is the norm of A?

(b) For which values of α is A self-adjoint?

(c) For which values of α is A one-to-one?

(d) For which values of α is the range of A closed?

Problem 4. Let f be a non-negative, integrable function such that
∫
R f <∞. Set for t ≥ 0

g(t) =

∫
R
e
−tx4

(
sin 1

x2+1

)
f(x)dx.

Show that:

(a) g is continuous on [0,∞).

(b) g is right differentiable at t = 0 if and only if
∫
R x

2f(x)dx is finite.

Problem 5. Show that the series
∞∑
n=1

(−1)ne−tn

n
converges uniformly to a continuous function f(t) on

[0,∞). Show that f(t) = −
∫∞
t

ds
1+es . (Hint: compute f ′(t) term by term.)
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Solution sketches:

Problem 1: Integrating the differential equation, we get

v(x) =
1

4
+

1

4

∫ x

0
sin(s+ v2(s))ds. (1)

Let ||ψ||u = supt∈[0,1] |u(t)| denote the uniform norm, and define the set

X = {ϕ ∈ C[0, 1] : ϕ(0) =
1

4
and ||ϕ||u ≤ 1}.

The set X combined with the uniform norm is a metric space. Now define the operator

[Tϕ](x) =
1

4
+

1

4

∫ x

0
sin(s+ (ϕ(s))2)ds,

the IVP can then be written as a fixed point problem Tv = v.

First observe that if ϕ ∈ X, then Tϕ ∈ X as well. To verify this, observe that [Tϕ](0) = 1/4, that Tϕ is
continuous, and that |[Tϕ](x)| ≤ 1

4 + 1
4

∫ x
0 ds ≤ 1/2.

Next observe that T is a contraction on X. Indeed, if ϕ, ψ ∈ X, then

||Tϕ− Tψ||u = sup
x

1

4

∫ x

0

∣∣sin(s+ (ϕ(s))2)− sin(s+ (ψ(s))2)
∣∣ ds ≤ sup

x

1

4

∫ x

0

∣∣(ϕ(s))2 − (ψ(s))2
∣∣ ds

≤ sup
x

1

4

∫ x

0
(|ϕ(s)|+ |ψ(s)|) |ϕ(s)− ψ(s)| ds ≤ 1

4
(||ϕ||u + ||ψ||u) ||ϕ− ψ||u ≤ 1

2
||ϕ− ψ||u.

The contraction mapping theorem now asserts the existence of a unique v ∈ X that solves Tv = v.

It remains to verify the claims on differentiability. Since v is continuous, (1) directly implies that v is C1.
Then the equation v′(x) = (1/4) sin(x+ (v(x))2) implies that v is C2.

Problem 2:

(a) Consider the equation Tx = λx. It has the only solution xn = λn−1x1. We see that x ∈ ℓ2 iff |λ| < 1.
Next consider the equation Sx = λx. If λ = 0, then clearly x = 0 so this is not an eigenvalue. If
λ ̸= 0, then the relation 0 = λx1 implies that x1 = 0, the relation x1 = λx2 implies that x2 = 0, etc.

(b) Set D = {z ∈ C : |z| < 1}. We proved in (a) that D ⊂ σ(T ). Since D = D and S = T ∗, this also
shows that D ⊂ σ(S). Since the spectrum is a closed set, we know that if |λ| = 1, then λ ∈ σ(S).
We showed in (a) that S does not have a point spectrum, so λ either belongs to the continuum or
the residual spectrum. Now if λ ∈ σr(S), then λ ∈ σp(T ) since S = T ∗, but this is impossible since
we proved in (a) that the point spectrum of T equals the open unit disc. Therefore, λ ∈ σc(S).

(c) Let λ ∈ D. Then

ran(S − λI) =
(
ker(S∗ − λ̄I)

)⊥
=

(
ker(T − λ̄I)

)⊥
.

We proved in (a) that λ̄ is an eigenvalue of T so S − λI is not dense in H. Since we also proved in
(a) that λ is not an eigenvalue, it follows that λ ∈ σr(S).

(d) We showed in (b) that if |λ| = 1, then λ ∈ σc(S), and in (c) that if |λ| < 1, then λ ∈ σr(S). Since
||S|| = 1, it follows that the spectrum of S is contained in the closed unit disc. Therefore σc(S) = C.
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Problem 3: Let I denote the line in the complex plane I = {z ∈ C : Im(z) = 0 Re(z) ∈ [−π
2 ,

π
2 ]}.

(a) Set α = β + iγ where β and γ are real. Set C = supz∈I |α + z| =
√

(π2 + |β|)2 + γ2. Since
|[Au](x)| ≤ C|u(x)| for all x, we get ||A|| ≤ C. For the converse, suppose that β ≥ 0 (the proof for
β < 0 is analogous). Set un = χ[n,n+1]. Then ||un|| = 1 and

||Aun||2 =
∫ n+1

n
|(α+arctan(x))|2 dx =

∫ n+1

n

(
(β+arctan(x))2+γ2) dx ≥ (β+arctan(n))2+γ2 → C.

(b) We have

(Au, v) = ᾱ

∫
R
u(x) v(x) dx+

∫
R
arctan(x)u(x) v(x) dx (2)

(u,Av) = α

∫
R
u(x) v(x) dx+

∫
R
arctan(x)u(x) v(x) dx. (3)

We see that A is self-adjoint if and only if α is real.

(c) Suppose that Au = 0. Then (α + arctan(x))u(x) = 0 almost everywhere. This can happen only if
u = 0. It follows that A is one-to-one for all α.

(d) If α /∈ I, then set δ = minz∈I |α − z| = dist(I, α). Since I is closed, δ > 0. Clearly ||Au|| ≥ δ||u||,
so A has closed range. To prove the converse, we will use that since A is one-to-one for all α, it
has closed range if and only if it has a continuous inverse. Suppose first that α ∈ (−π/2, π/2). Set
In = (tan(α) − 1/n, tan(α) + 1/n) and un = χIn . Then limn→0 ||Aun||/||un|| = 0, so A does not
have a bounded inverse. If α = ±π, then use un = χ±[n,n+1] to show that A is not coercive.

Problem 4: Since g(t) =
∫
R e

−tx4 sin 1
1+x2 f(x)dx with t ≥ 0 and f ≥ 0, we get h(t, x) = e

−tx4 sin 1
1+x2 f(x) ≤

f , limt→t0 h(t, x) = h(t0, x). (i) By LBCT limt→t0 g(t) = g(t0) and g(t) is continuous on [0,∞); (ii)

If x2f(x) ∈ L1(R), then |h(t+δ,x)−h(t,x)
δ | ≤ x4 sin 1

1+x2 f(x) ≤ x2f(x) for t ≥ 0, t + δ ≥ 0. We need to

show h(t+δ,x)−h(t,x)
δ → x4 sin 1

1+x2 e
−tx4 sin 1

1+x2 f(x). By applying LBCT to the above equation, we get

g′(t) =
∫
R x

4 sin 1
1+x2 e

−tx4 sin 1
1+x2 f(x)dx. (iii) If g′(0+) exists, then from Fatou’s lemma, we get

−g(0+) = lim
t→0+

∫
R

f(x)− h(t, x)

t
dx ≥

∫
R

lim
t→0+

f(x)− h(t, x)

t
dx

=

∫
R
x4 sin

1

1 + x2
f(x) ≥ 2

π

∫
R

x4

1 + x2
f(x)dx.

Hence,
∫
R x

2f(x)dx ≤
∫
R(

x4

1+x2 + 1)f(x)dx <∞.

Problem 5: Set

fN (t) =

N∑
n=1

(−1)n e−tn

n
.

To prove uniform convergence, we observe that for each fixed t, the sum passes the alternating se-
quence test, and therefore converges to some finite value which we call f(t). Moreover, |fN (t) − f(t)| ≤∣∣∣ (−1)N+1e−t(N+1)

N+1

∣∣∣ ≤ 1
N+1 . The convergence is therefore uniform. Since each fN is continuous, it follows

that f is continuous as well.
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To prove the statement about the sum, we differentiate fN to find

f ′N (t) = −
N∑

n=1

(−1)n e−tn = −
N∑

n=1

(−e−t)n = −(−e−t)− (−e−t)N+1

1− (−e−t)
=

1

et + 1
+

(−1)N+1e−tN

et + 1
.

Since limt→∞ fN (t) = 0, we have

fN (t) = −
∫ ∞

t
f ′N (s) ds = −

∫ ∞

t

1

es + 1
ds+ (−1)N

∫ ∞

t

e−sN

es + 1
ds.

The absolute value of the integrand in the second term is bounded by the L1 function g(t) = (et + 1)−1.
We can therefore invoke dominated convergence as N → ∞ to establish that the second term converges
to zero.
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