Applied Analysis Preliminary Exam
10.00aM—-1.00pM, AUGusT 21, 2012

INSTRUCTIONS. You have three hours to complete this exam. Work all five problems. Please start each
problem on a new page. You MUST prove your conclusions or show a counter-example for all problems
unless otherwise noted. Write your name on your exam. Each problem is worth 20 points.

Problem 1. Show that the initial value problem:

v (x) = isin(x + v(z)?), v(0) = =

has a unique solution in C?([0, 1], R).
Problem 2. Define the right and left shift operators S and 7' on ¢2(N) by
S((z1,z2,23,...)) = (0,21, 22,...), and T((x1,x2,x3,...)) = (x2,23,24,...).
You may use the relation S* = T without proving it. Prove the following:
(a) The point spectrum of 7' is the open disc D = {z € C: |z| < 1} disc and S has no point spectrum.
(b) Every A € C with |A| = 1 belongs to the continuous spectrum of S.
(c) The open unit disc D = {z € C: |z| < 1} is contained in the residual spectrum of S.
)

(d) The continuous spectrum of S is the unit circle C' = {z € C: |z] = 1}.

Problem 3. Let a be a complex number, and consider the operator
[Au](z) = cu(x) + arctan(z) u(z),

acting on the Hilbert space H = L%(R).

(a) What is the norm of A?

(b) For which values of « is A self-adjoint?

(c¢) For which values of « is A one-to-one?

(d) For which values of « is the range of A closed?

Problem 4. Let f be a non-negative, integrable function such that fR f<oo. Set fort>0

in Ll
g(t) = / e—tz‘*(sm wQH)f(x)dx.
R
Show that:
(a) g is continuous on [0, c0).

(b) g is right differentiable at ¢ = 0 if and only if [ 2 f(x)da is finite.

oo
—1)" —tn
Problem 5. Show that the series Z% converges uniformly to a continuous function f(t) on
n
n=1
[0,00). Show that f(t) = — [ lises. (Hint: compute f’(t) term by term.)




Solution sketches:

Problem 1: Integrating the differential equation, we get

v(x) = i i/: sin(s + v2(s))ds. (1)

Let [[1||u = supsepo 1) |u(t)| denote the uniform norm, and define the set

X ={p€C1] : 6(0) =y and [l6llu < 1},

The set X combined with the uniform norm is a metric space. Now define the operator

[Tole) =+ 1 [ sints + (00602,

the IVP can then be written as a fixed point problem Twv = v.

First observe that if ¢ € X, then T¢ € X as well. To verify this, observe that [T'¢](0) = 1/4, that T'¢ is
continuous, and that |[T'¢](z)| < 3+ 1 [i7ds < 1/2.

Next observe that T is a contraction on X. Indeed, if ¢,% € X, then

176 = Twlls =sup [ fsins -+ (0(5)?) — sin(s + ()] ds < sup 7 [](6(5))* = (0(5)| s

1

<supg [ 10+ [0 1669~ v ds < el + 1611 19 = vl < 56 = vl

The contraction mapping theorem now asserts the existence of a unique v € X that solves Tv = v.

It remains to verify the claims on differentiability. Since v is continuous, (1) directly implies that v is C?.
Then the equation v/(z) = (1/4) sin(x + (v(z))?) implies that v is C2.

Problem 2:

(a) Consider the equation Tz = Az. It has the only solution z;,, = A" “1z;. We see that x € ¢ iff |\| < 1.
Next consider the equation Sx = Ax. If A = 0, then clearly x = 0 so this is not an eigenvalue. If
A # 0, then the relation 0 = Az implies that 21 = 0, the relation 1 = Axo implies that xo = 0, etc.

(b) Set D = {2z € C: |z| < 1}. We proved in (a) that D C o(T). Since D = D and S = T*, this also
shows that D C o(S). Since the spectrum is a closed set, we know that if |A\| = 1, then X\ € o(95).
We showed in (a) that S does not have a point spectrum, so A either belongs to the continuum or
the residual spectrum. Now if A € 0,(9), then A € o,(T) since S = T*, but this is impossible since
we proved in (a) that the point spectrum of 7" equals the open unit disc. Therefore, A € o.(5).

(c) Let A € D. Then
— e « oy L T L
ran(S — ) = (ker(S* — X))~ = (ker(T' — X))~
We proved in (a) that X is an eigenvalue of T so S — Al is not dense in H. Since we also proved in

(a) that A is not an eigenvalue, it follows that A € 0,(5).

(d) We showed in (b) that if [A\| = 1, then X € 0.(S5), and in (c) that if |A|] < 1, then A € 0,(S). Since
[|S]| = 1, it follows that the spectrum of S is contained in the closed unit disc. Therefore o.(S) = C.



Problem 3: Let I denote the line in the complex plane I = {z € C: Im(z) = 0 Re(z) € [-7,

3

l\?\ﬁ

(a) Set o = [ 4 @y where § and 7 are real. Set C' = sup,c;|a + z| = /(5 +|B])? +~2 Since
I[Au)(z)| < Clu(z)| for all x, we get ||A|| < C. For the converse, suppose that 5 > 0 (the proof for
B < 0 is analogous). Set uy, = X[nn+1]- Then |Juy|[ =1 and

n+1 n+1
|| Ay, |)? = / |(a+arctan(z))|? dz = / ((B+arctan(x))2+’yz) dx > (B+arctan(n))?+~% — C.

n

(b) We have

(Au,v) x)dr + /Rarctan(x)u(x)v(:c) dx (2)

(u, Av) / x)dx + / arctan(z) u(x) v(x) dx. (3)
R
We see that A is self-adjoint if and only if « is real.

(c) Suppose that Au = 0. Then («a + arctan(x)) u(z) = 0 almost everywhere. This can happen only if
u = 0. It follows that A is one-to-one for all a.

(d) If o ¢ I, then set 06 = min,ey |a — 2| = dist(/, ). Since [ is closed, d > 0. Clearly ||Aul|| > d]|ul|,
so A has closed range. To prove the converse, we will use that since A is one-to-one for all «, it
has closed range if and only if it has a continuous inverse. Suppose first that a € (—7/2, 7/2). Set
I, = (tan(a) — 1/n, tan(a) + 1/n) and u, = x1,. Then lim, ¢ ||Auy]||/||un|] = 0, so A does not
have a bounded inverse. If a = &, then use up = X4[nn41) to show that A is not coercive.

tzt sin
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Problem 4: Since g(t) = [, et s f(z)dz witht > 0and f > 0, we get h(t,z) =€ 1+e? f(z) <
[, limy_yy, h(t,x) = h(to,x). (i) By LBCT limy_¢, g(t) = g(to) and g(t) is continuous on [0,00); (i)
If 22f(z) € L'(R), then \w| < ztsin flx) < 22f(x) for t > 0, t+ 6 > 0. We need to

h(t+d,z)—h(t,x) 4 _: 1
5 — aisiny e

1
4 1 1+$2
TN f(z). By applying LBCT to the above equation, we get

show

izt sin L
g'(t) = [patsin ﬁe s f(z)dz. (iid) If ¢’(0F) exists, then from Fatou’s lemma, we get

[ f@) = hit) _ f(x) ~ hlt,)
‘9(0+>—t£%‘+/ S >At£%td$

[t f()>2/ —y
= [ *sin x ———— f(x)dx
R 1 +$2 7w Jpl+a?
Hence, [, a? f(x)dx < fR(ljf% +1)f(z)dx < .

Problem 5: Set

N ne—tn
In(t) = Z (1)n :
n=1

To prove uniform convergence, we observe that for each fixed t, the sum passes the alternating se-
quence test, and therefore converges to some finite value which we call f(¢). Moreover, |fn(t) — f(t)] <

_1)N+1e—t(N+1) . . . . . .
(=1 Nil < Nil. The convergence is therefore uniform. Since each fx is continuous, it follows

that f is continuous as well.




To prove the statement about the sum, we differentiate fn to find

N N
! — n _—tn __ —t\n __ (_e_t) B (_e_t)N+1 o 1 (_1)N+1€_tN
fN(t)__nZ::l(_l) ) __nz::l(_e Feo 1= (=e™) I R

Since limy_, o fn(t) = 0, we have

B o) , B fee) 1 N ooefsN
fN(t)——/t fN(s)ds——/t —ds (1) /t C s

The absolute value of the integrand in the second term is bounded by the L' function g(t) = (e’ + 1)1
We can therefore invoke dominated convergence as N — oo to establish that the second term converges
to zero.




