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Figure 2.3-1. Fourier cardinal functions and Gibbs’ phenomenon.
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2.4. Gibbs’ phenomenon

The overshoot shown in the lower portion of Figure 2.3-1 arises when-
ever a discontinuous function is expanded in or interpolated with smooth
functions.

What we now call Gibbs’ phenomenon was first noted by Wilbraham
(1848). Unaware of this, Michelson and Stratten (1898) found traces of
these overshoots in the output plots from a mechanical Fourier analyzer
they had constructed.

Michelson and Stratten’s analyzer is described in some detail under the

entry “Calculating machines” in the 1910 (11th) edition of The Encyclopedia

Britannica. Some hardware is preserved (but not normally on display) at

the Smithsonian in Washington, DC. The analyzer was a refinement (and

extension to about 80 modes) of an earlier version invented by Lord Kelvin

for the calculation of tides. Kelvin’s device was so well suited for its task
that it remained in use 20 years into the era of electronic computers.

This observation by Michelson (who is probably best known for this ether
experiment with Morley) prompted him to write a letter to Nature in-
quiring about the convergence properties of a Fourier series for a discon-
tinuous function. In reply, J. Gibbs (an eminent chemist) provided first a
flawed and then a satisfactory answer. Some historical notes on Gibbs’
phenomenon can be found in Hewitt and Hewitt (1979). '

Two different variations of Gibbs’ phenomenon arise in spectral meth-
ods. The overshoots on a jump of height 1 become as follows.

Equi-spaced Fourier interpolation. The notation will be simpler if we
first transform to an infinite interval. Following the line of reasoning in-
dicated in Figure 2.3-1 and noting equation (2.3-2), we have:
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Truncated Fourier expansion. We consider again a piecewise constant
function with a unit jump at the origin:

1 .
_ 7z if0<x<m,
f(x)_{—g if —r<x<0.

The Fourier series (of a 2#-periodic extension) of this function is
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The maximum value is taken for J=1, yielding (1/7) fo’r((sin H/t)ydt =
0.5895. Thus, as N— oo, the overshoot of a unit-height jump approaches
Gr = 0.0895.

Gibbs’ phenomenon for Chebyshev (Jacobi) expansions is essentially the
same as in the Fourier case when the irregularities are located inside
[—1, 1]. However, the interpolation overshoot from a unit jump at x = +1
is larger:
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Gibbs’ phenomenon (the O(1) error next to a discontinuity) is the most
notable instance of how an irregularity of a piecewise smooth function
can affect the convergence of both interpolants and truncated series ex-
pansions; see Table 2.4-1. The decay rates of Fourier expansion coeffi-
cients are the same as the order of the maximum norm of errors away
from irregularities. ‘

For continuous but not piecewise differentiable functions, a Fourier series

can do such strange things as diverging to infinity at some point(s) (in spite

of each truncation giving the best possible least-squares approximation to

the function when using up to that number of terms!). Such subtleties have

no numerical consequences - Table 2.4-11is a good guide for all situations
of numerical relevance.

2.4. Gibbs’ phenomenon

Table 2.4-1. Order of max-norm errors
caused by irregularities of a function

Max-norm of errors

(order)
Near Away from
Function irregularity  irregularity
f discontinuous 1 1/N
S discontinuous 1/N 1/N?
S discontinuous 1/N? 1/N3
J analytic (periodic) e N ¢>0
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