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Geometry, Topology and Simplicial
Synchronization
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Abstract Simplicial synchronization reveals the role that topology and geometry
have in determining the dynamical properties of simplicial complexes. Simplicial
network geometry and topology are naturally encoded in the spectral properties of
the graph Laplacian and of the higher-order Laplacians of simplicial complexes.
Here we show how the geometry of simplicial complexes induces spectral dimen-
sions of the simplicial complex Laplacians that are responsible for changing the
phase diagram of the Kuramoto model. In particular, simplicial complexes display-
ing a non-trivial simplicial network geometry cannot sustain a synchronized state in
the infinite network limit if their spectral dimension is smaller or equal to four. This
theoretical result is here verified on the Network Geometry with Flavor simplicial
complex generativemodel displaying emergent hyperbolic geometry.On its turn sim-
plicial topology is shown to determine the dynamical properties of the higher-order
Kuramoto model. The higher-order Kuramoto model describes synchronization of
topological signals, i.e., phases not only associated to the nodes of a simplicial com-
plexes but associated also to higher-order simplices, including links, triangles and so
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on. This model displays discontinuous synchronization transitions when topological
signals of different dimension and/or their solenoidal and irrotational projections are
coupled in an adaptive way.

11.1 Introduction

The interplay between structure and dynamics of complex networks [1–3] has been
at the forefront of network theory since the beginning of the field. In this context it
has been found that the combinatorial and statistical properties of complex networks
have unexpected effects on dynamics. For instance, a scale-free degree distribution
changes the phase diagram of a wide range of dynamical processes including perco-
lation, epidemic spreading, and the Ising model. The recent interest on higher-order
networks [4–7] provides an opportunity to bring a fresh perspective to this subject.
Indeed, higher-order networks, and in particular simplicial complexes, constitute the
ideal mathematical framework to capture the simplicial network topology and geom-
etry of data. Here we reveal that the network topology and geometry of simplicial
complexes can be crucial to define higher-order dynamics. The dynamical process
considered in this chapter is synchronization [8–10], captured by theKuramotomodel
[11] and the recently introduced higher-order Kuramoto model [12]. The dynamical
properties of these dynamical processes will be shown to be highly dependent on the
spectral properties [13, 14] of the simplicial complexes [15–19] on which they are
defined. The main message of this chapter is summarized in Fig. 11.1, which high-
lights the role of network topology and network geometry in shaping higher-order
network dynamics. In particular, in this chapter we will disclose how the spectral
properties of simplicial complexes are foundational to reveal the relation higher-
order network geometry, topology and dynamics. Note that while our approach to
simplicial synchronization is based on simplicial network geometry and topology,
other approaches based on a combinatorial definition of higher-order interactions
have been pursued in the literature [20–22], as covered by the Skardal and Arenas
chapter of this book.

11.2 Simplicial Complex Models

Simplicial network models are ideal to test, in a well-controlled setting, the interplay
between simplicial network geometry, topology and dynamics. Here we focus in par-
ticular on two large classes of simplicial complexmodels with very distinct structural
properties: the Network Geometry with Flavor (NGF) [16–19] and the configuration
model of simplical complexes [15] (see schematic illustrations of the two models in
Fig. 11.2). These models are implemented in codes available at the repository [23].
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Fig. 11.1 Simplicial complexes encode the rich simplicial network topology and geometry of
data and models, which strongly affects the higher-order dynamics. In this chapter we will see
how this interplay between structure and dynamics can enrich our understanding of synchronization
dynamics defined on simplicial complexes

Fig. 11.2 Schematic representation of the two classes of simplicial complexmodels considered
in this work. The Network Geometry with Flavor is a model of growing simplicial complexes
describing emergent hyperbolic network geometries. The left panel shows a realization of the NGF
simplicial complex of dimension d = 2 and flavor s = −1. The configuration model of simplicial
complexes (right panel) is a maximum entropy model enforcing a given sequence of generalized
degrees of the nodes. Right panel reprinted with permission from Ref. [15] ©Copyright (2016) by
the American Physical Society



272 A. P. Millán et al.

11.2.1 The Network Geometry with Flavor (NGF)

TheNetwork Geometry with Flavor (NGF) [16–19] is a general mathematical frame-
work for growing simplicial complexes that displays emergent hyperbolic network
geometry. In otherwords, theNGFmodel generates simplicial complexeswith hyper-
bolic geometry that evolve following purely combinatorial and stochastic rules that
do notmake any use of the natural hyperbolic embedding of the simplicial complexes.

The NGFs are simplicial complexes characterized by two main parameters: the
dimension of the simplicial complex d and the flavor s which is a parameter that
takes values s ∈ {−1, 0, 1}. The NGFs are generated by a dynamical process which
starting at time t = 1 from a single d-dimensional simplex proceeds at each time
t > 1 by adding a new d-dimensional simplex to the simplicial complex. The new
d-dimensional simplex includes one new node and is glued to a (d − 1)-dimensional
face α of the existing simplicial complex chosen according to the probability

"α = 1 − s + skd,d−1(α)∑
α′ 1 − s + skd,d−1(α′)

, (11.1)

where kd,d−1(α) indicates the generalized degree [15] of a (d − 1)-dimensional face
α, i.e., the number of d-dimensional simplices incident to the (d − 1)-dimensional
faceα. Thismodel generates emergent hyperbolic simplicial complexeswhich satisfy
Gromov criteria [24] of hyperbolicity and are δ-hyperbolic with δ = 1 for every value
of the flavor s [25]. Moreover, for flavor s = −1 the generated simplicial complexes
form d-dimensional hyperbolic manifolds [17]. The network skeleton of the NGFs
are small world, display hierarchical community structure and are scale-free for
d ≥ 2 − s [16–18]. Interestingly, in the case d = 1 and s = 1 the NGF reduces to
the Barabási-Albert model, and for d = 1 and s = −1 the NGF reduces to random
Apollonian networks.

This model can be generalized in different directions. Instead of considering
simplicial complexes, one can use a similar model to generate cell complexes by
gluing together convex regular polytopes [18]. Another possibility is to consider
weighted simplicial complexes or to allow any new node to be incident to more than
one d-dimensional simplex [19]. Finally, the faces can be assigned a fitness that
can be used to modulate the attachment probability "α causing topological phase
transitions for certain fitness distributions [16, 17].

11.2.2 Configuration Model of Simplicial Complexes

The configuration model of simplicial complexes [15] is a maximum entropy model
of pure d-dimensional simplicial complexes. A pure d-dimensional simplicial com-
plex K can be fully encoded in a (d + 1)-dimensional adjacency tensor indicating
the presence of each d-dimensional facet of the simplicial complex. In particular
adjacency tensor a has elements aα = 1 if the d-dimensional simplex α is present in
the simplicial complex, otherwise aα = 0.
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The configurationmodel of simplicial complexes [15] is the least biased ensemble
of simplicial complexes with a given generalized degree sequence of the nodes

kd,0 = {kd,0(1), kd,0(2), . . . kd,0(N )} (11.2)

where kd,0(i) indicates the generalized degree of the node i , i.e., the number of
d-dimensional complexes of the node i ∈ {1, 2, . . . , N }.

The configuration model of simplicial complexes is fully characterized by the
probability P(K) assigned to each pure d-dimensional simplicial complex K of N
nodes. The probability P(K) maximizes the entropy S of the simplicial complex
ensemble

S = −
∑

K
P(K) ln P(K), (11.3)

given the constrain that each node i has generalized degree kd,0(i), i.e.,

∑

α∈Qd (N )|i⊂α

aα = kd,0(i), (11.4)

where Qd(N ) indicates the set of all possible d-dimensional simplices of a simpli-
cial complex formed by N nodes. Therefore the configuration model of simplicial
complexes is characterized by the uniform distribution

P(K) = 1
N

N∏

i=1

δ




∑

α∈Qd (N )|i⊂α

aα, kd,0(i)



 , (11.5)

where here and in the following δ(a, b) indicates the Kronecker delta. In Ref. [15]
the Authors proposed an algorithm for sampling simplicial complexes from this
ensemble. This algorithm [23] uses the mapping of simplicial complexes to factor
graphs. The configuration model of simplicial complexes is a very valuable null
model of simplicial complexes, and provides an ideal benchmark to study dynamical
processes on higher-order networks.

11.3 Laplacians

11.3.1 Graph Laplacian

The graph Laplacian describes linear diffusion on a network and it is an important
operator that encodes the interplay between network structure and dynamics [3,
26]. The graph Laplacian can also capture the underlying network geometry of the
skeleton of a simplicial complex, i.e., of the network obtained from the simplicial
complex by retaining only its nodes and links.
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The graph Laplacian L[0] is the discrete version of the Laplacian operator defined
on continuous functions. The graph Laplacian of a network with N[0] nodes is a
N[0] × N[0] matrix of elements

[
L [0]
]
i j = kiδ(i, j) − ai j , (11.6)

where ki is the degree of node i and ai j are the elements of the adjacency matrix of
the network. In some cases it is useful to consider a generalization of this operator
called the normalized Laplacian L̂[0] that has elements

[
L̂ [0]
]

i j
= δ(i, j) − ai j

ki
. (11.7)

For instance, the normalized Laplacian is commonly employed to describe random
walk dynamics on a network.

Both the standard and the normalized Laplacians have real eigenvalues 0 = λ1 ≤
λ2 ≤ · · · ≤ λN[0] . The density of eigenvalues is described by the spectral density,

ρ(λ) = 1
N[0]

N[0]∑

i=1

δ̃(λ − λi ), (11.8)

where δ̃ (x) indicates the delta function.The eigenvectors of the normalizedLaplacian
also encode relevant properties of the underlying network.

11.3.2 Spectral Dimension

For many complex networks, the smallest non-zero eigenvalue (also called Fiedler
eigenvalue) λ2 remains finite as the network size increases. In this case, the network
is said to have a spectral gap. On the contrary, if λ2 → 0 as N → ∞, and the density
of eigenvalues ρ(λ) scales as

ρ(λ) ∝ λd [0]
S /2−1, (11.9)

for λ + 1, the network is said to present a spectral dimension d [0]
S [26–28]. The

spectral dimension can be interpreted as the perceived dimension of the network by
diffusion processes, and it is a notable feature of networks with an underlying geo-
metrical nature. This is a definition of dimension that is alternative to the Hausdorff
dimension dH characterizing the scaling of the diameter D of a network with the
network size N , i.e., D ∝ N 1/dH .

For Euclidean lattices of dimension d, the spectral dimension coincides with the
Hausdorff dimension and we have d [0]

S = dH = d. However, in general the spectral
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dimension of a network skeleton of a simplicial complex does not have to coincide
with the topological dimension of the simplicial complex, nor with its Hausdorff
dimension [25, 27, 29, 30].

While Euclidean lattices display a finite spectral dimension, random graphs and
the configuration model of networks are instead characterized by a finite spectral
gap. The presence of a finite spectral gap indicates the mean-field nature of the
network interactions, and the absence of a clear notion of locality for these networks.
Interestingly, also the configuration model of simplicial complexes displays a finite
spectral gap.

Remarkably, the emergent network geometry of NGF reveals itself on their sig-
nificant spectral properties. Indeed the NGF network skeletons, together with other
small-world models of simplicial complexes [31], have a finite spectral dimension
whose value can be tuned according to the different control parameters [18] although
the NGFs are small world, i.e., they have an infinite Hausdorff dimension dH = ∞.

For s = −1, NGF networks formed purely by d-dimensional simplices have
d [0]
S ∼ d for d ∈ {2, 3, 4} as shown in Fig. 11.3 [33]. More generally, for NGFs

formed by regular polytopes, d [0]
S increases with the dimension d of the polytopes,

and it saturates for hypercubes and orthoplexes (d [0]
S ≤ 3) [32]. It was shown in Ref.

[18] that a similar trend is observed for different flavours of the NGF networks: d [0]
S

Fig. 11.3 Spectral dimension of NGF networks. Panel (a) The cumulative distribution ρc(λ) of
eigenvalues of the NGF with flavor s = −1 is shown for dimension d = 2, 3, 4, 5. The power-law
scaling of ρc(λ) observed for small values of λ indicates that the skeleton ofNGF has a finite spectral
dimension. Panels (b–d) The fitted spectral dimension d[0]S of the skeleton of NGF simplicial and
cell complexes being formed by simplices (panel b), hypercubes (panel c) and orthoplexes (panel
d), is shown for values of the flavor s ∈ {−1, 0, 1} as indicated in the legend of panel (d). Lines
indicate best fit of the d[0]S versus d dependence using parabolic (panel b) and exponential (panels
c, d) functional forms. Data from Ref. [32] and Ref.[18]. Details of the fits are described in Ref.
[18]
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grows quadratically with d for simplicial NGF networks, whereas it saturates at a
value d [0]

S = d̄S with 2 ≤ d̄S ≤ 3 for hypercube and orthoplex NGF networks. More-
over, it was shown recently in Ref. [25] that, in a generalization of the NGF model in
which different polytopes are glued together in the same higher-order network, the
spectral dimension of the network skeleton can be continuously tuned as a function
of the fraction of simplexes in the cell complex.

Thus, not only the dimension of the building blocks shapes the spectral dimension
of the networks, but the specific nature and symmetry of these building blocks also
play a role in the emerging spectral dimension of the network skeleton (see Fig. 11.3).

11.3.3 Higher-Order Laplacians

Important topological aspects of simplicial complexes are reflected in the spectral
properties of the higher-order Laplacians that generalize the graph Laplacian to
describe diffusion that occurs among higher-order simplices. The graph Laplacian
describes diffusion occurring among nodes connected by links. Similarly the n-th
order up-Laplacian describes the diffusion occurring among n-dimensional simplices
connected by (n + 1)-dimensional simplices and the n-th order down-Laplacian
describes the diffusion occurring among n-dimensional simplices connected by
(n − 1)-dimensional simplices. The higher-order Laplacians capture the topology
of simplicial complexes. For instance their spectrum encodes the Betti numbers, i.e.,
the number of n-dimensional cavities of the simplicial complex.

The higher-order Laplacians are defined in terms of the incidence matrices of the
simplicial complex which represent the boundary operators playing a fundamental
role in algebraic topology.

Here we provide a brief introduction to the necessary elements of algebraic topol-
ogy needed to define higher-order Laplacians.

We consider a d-dimensional simplicial complex formed by N[n] simplices of
dimension n. The simplices of the simplicial complexes are associated with an ori-
entation induced by the labelling of the nodes so that the link [i, j] has a positive
orientation if j > i and so on (see Fig. 11.4).

We consider algebraic entities called n-chains that are linear combinations of n-
dimensional simpliceswith coefficients inZ. In a less informal definition n-chains are
the elements of a free abelian group Cn with basis on the n-simplices of the simplicial
complex. The boundary map is a linear map ∂n : Cn → Cn−1 defined by its action
on each simplex α = [i0, i1, i2 . . . , in]. In particular the boundary map associates
to every n-dimensional simplex α = [i0, i1, i2 . . . , in] a linear combination of the
(n − 1)-dimensional oriented faces at its boundary, given by

∂n[i0, i1 . . . , in] =
n∑

p=0

(−1)p[i0, i1, . . . , i p−1, i p+1, . . . , in]. (11.10)
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It follows that the image of the boundary operator ∂n are the (n − 1)-chains that are
at the boundary of n-chains. For instance we have

∂2([1, 2, 3]) = [1, 2] + [2, 3] − [1, 3], (11.11)

i.e., the image of a triangle is the linear combination of the links at its boundary with
the correct orientation. Additionally, from this definition it is also easy to see that a
cyclic n-chain is in the kernel of the boundary map ∂n independently of whether the
cyclic n-chain is the boundary of a (n + 1)-chain. For instance we have

∂1([1, 2] + [2, 3] − [1, 3]) = [2] − [1] + [3] − [2] − [3] + [1] = 0, (11.12)

whether the simplex [123] belongs to the simplicial complex or not. One important
topological property of the boundary operator is that the “boundary of a boundary is
null" which implies

im ∂n+1 ⊆ ker ∂n (11.13)

or equivalently

∂n∂n+1 = 0. (11.14)

For instance we have

∂1∂2[1, 2, 3] = ∂1([1, 2] + [2, 3] − [1, 3]) = 0. (11.15)

The boundary map ∂n can be represented by a N[n−1] × N[n] incidence matrix B[n] if
we adopt as a basis of the space Cn an ordered set of the n-dimensional simplices α,
and as a basis of the spaceCn−1 an ordered set of the (n − 1)-dimensional simplices α̂.

If the basis of n-chains Cn is given by the n-simplices {α1,α2, . . .αs . . .} and the
basis of (n − 1)-chains Cn−1 is given by the (n − 1)-simplices {α̂1, α̂2, . . . α̂r . . .}
the action of the boundary map over any arbitrary n-dimensional simplex αs =
[i0, i1 . . . , in] given by Eq. (11.10) can be expressed as

∂nαs =
Nn−1∑

r=1

[B[n]]rs α̂r . (11.16)

This equation fully determines the incidence matrices B[n]. Since we have seen that
the “boundary of a boundary is null" then the incidence matrices followB[n]B[n+1] =
0 and also B.

[n+1]B
.
[n] = 0.

As an example we can consider the simplicial complex shown in Fig. 11.4 whose
incidence matrices are given by
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Fig. 11.4 Example of oriented simplicial complex.This illustrates an example of a 2-dimensional
oriented simplicial complex having associated incidence matrices given by Eqs. (11.17). Reprinted
figure with permission from Ref. [12]. ©Copyright (2020) by the American Physical Society.

B[1] =

[1, 2] [1, 3] [2, 3] [3, 4]
[1] −1 −1 0 0
[2] 1 0 −1 0
[3] 0 1 1 −1
[4] 0 0 0 1

, B[2] =

[1, 2, 3]
[1, 2] 1
[1, 3] −1
[2, 3] 1
[3, 4] 0

. (11.17)

The graph Laplacian can be expressed in terms of the incidence matrix B[1] of the
graph as

L[0] = B[1]B.
[1]. (11.18)

Similarly, in a simplicial complex the higher-order Laplacian L[n] (with n > 0) [14,
34, 35] is the N[n] × N[n] matrix defined as

L[n] = L[down]
[n] + L[up]

[n] , (11.19)

where

L[down]
[n] = B.

[n]B[n], L[up]
[n] = B[n+1]B.

[n+1]. (11.20)

The n-Laplacian is positive semi-definite and, therefore, it has N[n] non negative
eigenvalues 0 ≤ λ1 ≤ λ2 ≤ . . . λr ≤ . . . ≤ λN[n] .A notable property of the spectrum
of the n-th order Laplacian is that the degeneracy of zero eigenvalues is given by
the n-th Betti number. Despite the fact that the construction of the higher-order
Laplacians described above seems to rely on the choice of the orientations adopted
for the simplices of the simplicial complex, it is possible to show that the higher-
order Laplacians are independent on the orientation of the simplices as long as such
orientation is induced by the labeling of the nodes.

We note that also the up and the down Laplacians are positive semi-definite and
that from the definition of these matrices it follows immediately than the non-zero
eigenvalues in the spectrum of L[up]

[n] are the same as the non-zero eigenvalues in the
spectrum of L[down]

[n] .
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By considering the property of the incidence matrices such that B[n]B[n+1] = 0, it
is possible to derive the Hodge decomposition of the space of n-chains, which reads

RDn = img(B.
[n]) ⊕ ker(L[n]) ⊕ img(B[n+1]). (11.21)

This implies that the higher-order LaplacianL[n] can be simultaneously diagonalized
with the n-th order up and n-th order down Laplacian and that the non-zero eigen-
vectors of L[n] are either non-zero eigenvector of L

[down]
[n] or non-zero eigenvectors of

L[up]
[n] . Therefore there is a basis in which L[n], L

[down]
[n] and L[up]

[n] have diagonal form
given by

U−1L[n]U =




D[down]
[n] 0 0
0 0 0
0 0 D[up]

[n]



 , U−1L[down]
[n] U =




D[down]
[n] 0 0
0 0 0
0 0 0



 , U−1L[up]
[n] U =




0 0 0
0 0 0
0 0 D[up]

[n]



 ,

where D[up]
[n] and D[down]

[n] are diagonal matrices having positive diagonal elements.

11.3.4 Higher Order Spectral Dimension

The notion of spectral dimension (see Sect. 11.3.2) can be generalized to n-order
up-Laplacians with important consequences for higher-order simplicial complex
dynamics. Here, we will focus on the model of NGF simplicial complexes intro-
duced in Sect. 11.2.1. In Sect. 11.3.2, we have shown that the graph Laplacian of
NGFs displays a finite spectral dimension d [0]

S [18, 32, 33]. Interestingly, higher-
order up-Laplacians L[up]

[n] and the higher-order down-Laplacians L[down]
[n] of NGFs

also display a finite spectral dimension.
In particular, the higher-order up-Laplacians of NGFs display a finite spectral

dimension d [n]
S depending on the order n, the dimension of the simplicial complex d

and theflavor parameter s [13]. Therefore,we candefinedifferent spectral dimensions
for 0 < n < d − 1. In order to show this remarkable geometrical property of NGFs
in Fig. 11.5 we provide numerical evidence of the scaling of the cumulative density
of non-zero eigenvalues ρ

up
c (λ) of the L[up]

[n] with λ for λ + 1, given by

Fig. 11.5 The cumulative density of non-zero eigenvaluesρ
up
c (λ) of theL[up]

[n] forNGFof dimension
d = 3 and flavor s = −1 (panel a), s = 0 (panel b), and s = 1 (panel c) for n = 0 (blue solid
lines), n = 1 (red dashed lines), n = 2 (yellow dotted lines) and n = 3 (purple dot-dashed lines).
Considered NGFs sizes are N[0] = 2000 nodes, N[1] = 5994 links, N[2] = 5992 triangles, and
N[3] = 1997 tetrahedra. Adapted figure from [13]
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ρ[up]
c (λ) ∝ λd [n]

S /2, (11.22)

for different value of the order n of the up-Laplacian, and the flavor s of the NGF. It
follows that a NGFmodel is not characterized by a single spectral dimension, i.e., the
spectral dimension d [0]

S of the graph Laplacian, rather the NGF simplicial complexes
have a higher-order network geometry encoded in a vector of spectral dimensions

dS =
(
d [0]
S , d [1]

S , d [2]
S . . . , d [d−1]

S

)
. (11.23)

Consequently, the diffusion dynamics defined on simplices of different order n of the
sameNGF simplicial complex can be significantly different [36].We finally note that
for deterministic Apollonian and pseudo-fractal simplicial complexes that constitute
the deterministic counterpart of NGF simplicial complexes, the higher-order spectral
dimension can be predicted analytically by the real-space renormalization group [37]
showing that the higher-order spectral dimension of these structures depends on the
order n and remains finite as long as 0 ≤ n < d − 1.

11.4 Simplicial Synchronization

Synchronization is a fundamental dynamical state observed in a wide variety of
complex systems and capturing among other phenomena important aspects of brain
dynamics and circadian rhythms. TheKuramotomodel [8–11, 38] is a stylizedmodel
that explains how coupled oscillators, that in absence of interactions would have
different intrinsic frequencies, can start to follow a collective coherent motion when
their coupling constant σ , measuring the strength of their interaction, is larger than
a critical value σc also called synchronization threshold.

In order tomodel the coupling between the oscillators theKuramotomodel consid-
ers a network of N[0] nodes and associates a phase θi to each node i ∈ {1, 2, . . . , N[0]}
of the network. Therefore in the Kuramoto model, the dynamical state of the network
is determined by the vector θ of phases associated to its nodes given by

θ = (θ1, θ2, . . . , θN[0])
.. (11.24)

Each phase θi describes the dynamical state of an oscillator that in absence of interac-
tions oscillates at an intrinsic frequency ωi drawn independently from a distribution
g(ω). Common choices for g(ω) are the unimodal Gaussian or Lorentzian distribu-
tions.

The equations determining the dynamics of the phases associated to the nodes
include an important contribution indicating the coupling among the phases of neigh-
bour nodes. This coupling term has a strength modulated by the coupling constant σ .
In particular, it is assumed that this contribution expresses the tendency of the phase
of any given node to oscillate together with the phases of its neighbour nodes. The
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resulting standard Kuramoto dynamics is captured by the differential equations

θ̇i = ωi + σ

N[0]∑

j=1

ai j sin
(
θ j − θi

)
, (11.25)

valid for every node i of the network,where ai j is the generic element of the adjacency
matrix of the network. The level of synchronization in the system is measured by the
Kuramoto order parameter,

Z0 = R0ei* = 1
N

N[0]∑

j=1

eiθ j , (11.26)

where R0 and* are both real and where 0 ≤ R0 ≤ 1 measures the overall coherence
and * = *(t) is the phase of global oscillations.

The relation between the Kuramoto model and the graph Laplacian of the under-
lying network is revealed when the Kuramoto model is linearized for |θi − θ j | + 1
for every pair of neighbour nodes (i, j). In this limit the Kuramoto model can be
shown to be described by the system of equations

θ̇ = ω − σL[0]θ , (11.27)

where ω indicates the vector of elements ωi with i ∈ {1, 2, . . . , N[0]}.
The Kuramoto model has been analytically solved only on a fully connected

network, although important progress has been made in understanding the Kuramoto
model in random complex networks [9, 39, 40],

In the fully connected network and in random networks the Kuramoto model
displays a second order phase transition at the synchronization threshold σ = σc

when the number of nodes goes to infinity, i.e., N[0] → ∞. For σ < σc the Kuramoto
model is in an incoherent state characterizedbyhaving a zero order parameter R0 = 0.
For σ > σc the Kuramoto model is in a coherent state characterized by a non-zero
order parameter R0 > 0 [8–10, 38].

In this chapter we show how the network geometry and topology of simplicial
complexes, directly acting on the spectral properties of the graph Laplacian and the
higher-order Laplacians, can dramatically change the dynamical properties of the
synchronization process on higher-order networks.

– Simplicial network geometry and the Kuramoto model. First we will illus-
trate how the phase diagram of the Kuramoto model changes when the model is
defined on the skeleton of simplicial complexes with distinct higher-order net-
work geometry. We have previously introduced the finite spectral dimension d [0]

S
of the graph Laplacian as a fundamental observable of the higher-order network
geometry of networks and simplicial complexes. In the following we will discuss
how the dynamics of the Kuramoto model depends on d [0]

S revealing that network
geometries have a more rich dynamics than random networks.
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– Simplicial network topology and the higher-orderKuramotomodel. Secondly
we will reveal how the Kuramoto model can be considered as a limiting case
of a much wider class of higher-order Kuramoto models describing coupling of
topological signals. Topological signals are phases of oscillators associated not
only to the nodes but also to higher-order simplices of a simplicial complex.
For instance topological signals can be associated with both nodes and links of
a simplicial complex as schematically described by Fig. 11.6. In this case the
dynamical state of a simplicial complex is captured by the vector θ of the phases
associated to the nodes (defined in Eq. (11.24)) and by the vector φ of the phases
associated to the links of the simplicial complex given by

φ =
(
φ,1 ,φ,2 , . . . ,φ,N[1]

).
. (11.28)

The phases associated to the links of the simplicial complexes are topological sig-
nals that have the potential to capture the dynamics of fluxes in brain networks [41]
and biological transportation networks [42]. The newly formulated higher-order
Kuramoto model opens new scenarios for characterizing how topology affects
dynamics on higher-order networks and simplicial complexes. As we will dis-
cuss in Sect. 11.5 the higher-order Kuramoto model has a linearized dynamics
described by the higher-order Laplacians of the simplicial complex, and can dis-

Fig. 11.6 Schematic representation of the Kuramoto model and the higher-order Kuramoto
model capturing dynamics of topological signals. The Kuramoto model (panel a) captures the
emergence of a synchronized state among coupled oscillators described by phases associated to the
nodes of a network. The higher-order Kuramoto model (panel b) reveals the synchronization of
topological signals on simplicial complexes, i.e., oscillators associated not only to the nodes of a
simplicial complex, but also to higher-dimensional simplices such as links or triangles. Interestingly,
topological signals of different dimension can co-exist and co-evolve and can be non-trivially
coupled leading to simultaneous explosive transitions
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play the simultaneous explosive synchronization transition of the soleinodal and
the irrotational component of topological signals and even the simultaneous explo-
sive synchronization transition of topological signals of different dimensions.

11.5 Kuramoto Model on Simplicial Network Geometry

11.5.1 Synchronization on Simplicial Network Skeletons
with Finite Spectral Dimension

In order to investigate the role that simplicial network geometry has on the Kuramoto
model we explore the phase diagram of the normalized Kuramotomodel on networks
with finite spectral dimension [32]. Our theoretical results are then validated by
simulations performed over the skeleton of the NGF with flavor s = −1. Indeed
NGF with flavor s = −1 provide a very suitable benchmark to test our theoretical
results as they display a spectral dimension d [0]

S that can be changed by tuning the
dimension d of the simplicial complex [33].

The normalized Kuramoto model determines the dynamics of the phases θ asso-
ciated to the nodes of a network. The only difference with the standard Kuramoto
model is that the coupling between the phase of a given node i and the phases of its
neighbour nodes is normalized with the node degree ki . Therefore, the normalized
Kuramoto model is dictated by the differential equations

θ̇i = ωi + σ

N[0]∑

j=1

ai j
ki

sin
(
θ j − θi

)
, (11.29)

where here and in the following we consider internal frequencies ωi drawn inde-
pendently from a normal distribution, i.e., ωi ∼ N (0, 1). The normalization of the
coupling term by the degree of the node i is a very efficient way to screen out the
effects of the heterogeneity of the degrees of the nodes and single out only the effects
due to the geometrical nature of the network of their interactions.

The linearized equation of the normalized Kuramoto model is therefore deter-
mined by the normalized Laplacian L̂[0] instead of the graph Laplacian L[0], i.e.,

θ̇ = ω − σ L̂[0]θ . (11.30)

The analytical investigationof the stability of the synchronizedphase indicates that
the spectral dimension d [0]

S of the (normalized) graph Laplacian of the network plays
a fundamental role for determining the phase diagram of the normalized Kuramoto
model in the limit of infinite network size N[0] → ∞ [32]. Interestingly, we note that
the spectral dimension of the graph Laplacian and the normalized graph Laplacian
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take the same value under very general regularity conditions of the network [28]. For
the very heterogeneousNGF, numerical results show that the two spectral dimensions
differ by a small amount as long as the topological dimension d is small. Depending
on the value of the spectral dimension the phase diagram of the normalizedKuramoto
model defined in the infinite network limit changes drastically [32]:

(1) For networkswithfinite spectral dimensiond [0]
S ≤ 2, theKuramotomodel cannot

synchronize and is found in the incoherent state for every value of the coupling
constant σ .

(2) For networks with spectral dimension 2 < d [0]
S ≤ 4, global synchronization is

not achievable in the infinite network limit but an entrained state can be observed.
Therefore it is possible the Kuramoto model can have a transition between an
incoherent state and an entrained phase.

(3) Only for networks with spectral dimension d [0]
S > 4 it is possible to see a syn-

chronized phase.

These results reveal how the dynamics of the Kuramoto model depends on the
simplicial network geometry on which is defined, and extend previous results valid
on regular lattices of dimension d [43, 44].

11.5.2 Frustrated Synchronization on Network Geometry
with Flavor

The NGF constitutes a perfect model to investigate numerically the role that simpli-
cial network geometry has on the dynamics of the Kuramoto model [32, 33]. Indeed,
aswe discussed previously, theNGF displays an emergent hyperbolic network geom-
etry and for flavor s = −1 generates random hyperbolic manifolds. The simplicial
network geometry of NGF is also reflected on their spectral properties. Specifically,
NGFs have a finite spectral dimension d [0]

S which for flavor s = −1 and d ∈ {2, 3, 4}
can be approximated by d [0]

S 0 d. It follows that by changing the dimension d of the
NGF with flavor s = −1 we can explore the dynamics of the Kuramoto model when
the global synchronization state is not stable in the infinite network limit.

A computational finite size analysis of the Kuramoto model [32, 33] reveals,
in agreement with the theoretical expectations, that for d = 2 and d [0]

S 0 2, global
synchronization is never achieved for large network sizes. On the other hand, syn-
chronization in NGFs with d = 3 and d = 4 and d [0]

S 0 d is only possible for finite
networks. In fact its onset occurs for higher couplingswhen the system size increases,
revealing, in agreement with the theoretical expectation, that in the limit N[0] → ∞
this state is never achieved.

Interestingly, we observe that for NGF with d = 3 and d = 4 and d [0]
S 0 d the

Kuramotomodel exhibits a phase with entrained synchronization that we call a phase
of frustrated synchronization for a wide range of coupling values. In the frustrated
synchronization regime the order parameter R0 displays strong temporal fluctuations.
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This phase is observed on finite NGF between the incoherent state and the globally
synchronized state, and for d = 3 a much broader regime of large fluctuations is
observed than for the d = 4 case.

Interestingly, the frustrated synchronization phase of NGFs is not only character-
ized by strong temporal fluctuations of the global order parameter but displays also
strong spatial fluctuations induced by the non-trivial hyperbolic network geometry
of the NGF. As such, the frustrated synchronization phase can capture an important
mechanism for inducing spatio-temporal fluctuations in brain dynamics.

The hyperbolic network geometry of NGF has a strong hierarchical nature that is
responsible for the emergence of a relevant community structure. In order to study
how the dynamics of the Kuramoto model is affected by the community structure
of the NGFs, we define mesoscopic synchronization order parameters Zmod that

Fig. 11.7 Frustrated synchronization on NGF characterized by spatio-temporal fluctuations
of the order parameter. Panel (a) The synchronization order parameter R0(T ) calculated at time
T is plotted versus the coupling constant σ revealing the regime of frustrated synchronization (top
panel). The time series R0(t) are shown (bottom panel) for the values of the coupling constant σ
indicated by arrows in the top panel. These time series reveal the temporal fluctuations of the order
parameter in the frustrated synchronization regime. Panel (b) The spatial fluctuations of the order
parameter in the frustrated synchronization regime are revealed by the local order parameter Zmod
of four different communities of the NGF calculated for σ = 5 (top panel). In this representation,
a circular trajectory describes a situation of global oscillations of the nodes in the community, with
constant Rmod(t). Random trajectories around the origin describe unsynchronized communities.
Partially synchronized communities, on the other hand,maydescribemore complex trajectories. The
bottom panel shows the corresponding time series of Rmod(t). Panel (c) Synchronization transition
as given by the mean order parameter R̄0 averaged over time and its variance σR0 , as functions of
σ , for different network sizes N = 100 (blue), 200, 400, …, 3200 (black). The apparent onset of
the synchronized regime is retarded to large values of the coupling constant σ for large network
sizes, revealing that the NGF of dimension d = 3 cannot sustain a synchronized phase in the limit
of infinite network sizes. All simulations reported in the figures are obtained for NGF of flavor
s = −1, dimension d = 3 and number of nodes N[0] = 1600. In panel (a) T = 500. Figure adapted
from [33]
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characterize the dynamical state of each community:

Zmod = Rmodei*mod = 1
|C|
∑

j∈C
eiθ j , (11.31)

where C is the set of nodes in the community and |C| the total number of nodes in said
community. Figure11.7b displays the trajectory of Zmod = Zmod(t) in the complex
plane for some exemplary modules of an NGF with flavour s = −1 in d = 3, for
the coupling that leads to the largest fluctuations of R0 as a function of time. As
shown in the figure, different modules display different synchronization regimes and
may oscillate at different frequencies. Due to the underlying geometrical structure
of NGFs, these modules correspond to spatially localized regions.

We note here that the frustrated synchronization observed in NGF can be related
with analogous phases observed in other hierarchical models [45, 46] where tempo-
ral fluctuations of the synchronization order parameter are observed. However, the
combination of both temporal and spatial fluctuations is a specific property of the
frustrated synchronization in NGF due to their rich simplicial network geometry.

11.6 Higher-Order Kuramoto Model: a Topological
Approach to Synchronization

11.6.1 Synchronization of Topological Signals

Simplicial complexes are formed by nodes and higher-order simplices including
links, triangles, tetrahedra, and so on. As such, simplicial complexes have the ability
to sustain topological signals, i.e., dynamic variables not only associated with the
nodes of their network skeleton but also associated to links, triangles, and so on [12,
14, 47]. Topological signals have the ability to capture dynamics associated to links,
such as fluxes in brain networks [41] and biological transportation networks [42, 48].

Here we will present the higher-order Kuramoto model [12] that reveals how
topological signals can undergo continuous and discontinuous synchronization tran-
sitions. Interestingly, we will observe that this synchronization transition can be
detected only if the signals are filtered with the appropriate topological operators.
Therefore, the model not only captures a new topological critical phenomenon but
also prescribes a way to process real data in order to investigate whether this topo-
logical synchronization phenomenon can be observed in real systems such as the
brain or biological transportation networks.
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11.6.2 Higher-Order Kuramoto Dynamics

The higher-order Kuramoto model [30] describes the synchronization of topolog-
ical signals defined on simplices of dimension n. For instance, one can consider
topological signals defined on the links of a simplicial complex (case n = 1) or alter-
natively one can consider signals defined on the triangles of a simplicial complex
(case n = 2). The higher-order Kuramoto model is the most natural extension of the
Kuramoto model to capture the synchronization of higher-order topological signals.

The standard Kuramoto dynamics describes the dynamics of the phases θ asso-
ciated to the nodes of the network. This dynamics, defined by Eq. (11.25), can be
expressed in terms of the incidence matrix B[1] (see Appendix) as

θ̇ = ω − σ B[1] sin BT
[1]θ . (11.32)

The higher-order Kuramoto dynamics describes instead the dynamics of topolog-
ical signals φ with φα indicating the phase associated to the simplex α of dimension
n > 0. Therefore, using the insights coming from algebraic topology, the natural
definition of the simple higher-order Kuramoto model is

φ̇ = ω̂ − σ B[n+1] sin BT
[n+1]φ − σ BT

[n] sin B[n]φ, (11.33)

where ω̂ is the vector of intrinsic frequencies ω̂α associated with each n-dimensional
simplex α drawn independently from a normal distribution, i.e., ω̂α ∼ N (-1, 1/τ1).
As the standard Kuramoto model can be related to the graph Laplacian via lin-
earization (see Eq. 11.27), the higher-order Kuramoto model can be related to the
higher-order Laplacian upon linearization, leading to

φ̇ = ω̂ − σL[n]φ. (11.34)

Thehigher-orderKuramoto dynamics definedon topological signalsφ associated ton
dimensional simplices canbeprojected on (n + 1) and (n − 1)dimensional simplices
by applying to the signals the incidence matrices. For instance a dynamics defined
on topological signals associated to links can be projected on nodes or on triangles.
Specifically, we have that the projected dynamics φ[−] on (n − 1)-dimensional sim-
plices and the projected dynamics φ[+] on (n + 1)-dimensional simplices is given by

φ[−] = B[n]φ,

φ[+] = B.
[n+1]φ, (11.35)

where, for n = 1, B[n] indicates the discrete divergence and B.
[n+1] indicates the

discrete curl. Therefore φ[−] indicates the irrotational component of φ while φ[+]

indicates the solenoidal component of φ. For the simple higher-order Kuramoto
model defined in Eq. (11.33), by recalling that B.

[n+1]B
.
[n] = 0 and that B[n]B[n+1] =

0, it follows that the projected topological signals φ[−] and φ[+] obey the uncoupled
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system of equations

φ̇[−] = B[n]ω̂ − σ L[up]
[n−1] sin

(
φ[−]) ,

φ̇[+] = BT
[n+1]ω̂ − σ L[down]

[n+1] sin
(
φ[+]) . (11.36)

Therefore, the solenoidal and the irrotational components of the topological signals
are decoupled for the simple higher-order Kuramoto model.

The higher-order Kuramoto dynamics is remarkable from two perspectives:

(1) First of all it uses topology to naturally define the higher-order interactions
between the topological signals. Indeed the incidence matrices define higher-
order interactions with a clear prescription indicating the coupled variables
and the sign of their interactions. For example, the higher-order Kuramoto
dynamics for n = 1 dimensional simplices of the simplicial complex shown
in Fig. 11.4 reads

θ̇[1,2] = ω̂[1,2] − σ sin(θ[2,3] − θ[1,3] + θ[1,2]) − σ
[
sin(θ[1,2] − θ[2,3])+ sin(θ[1,3] + θ[1,2])

]
,

θ̇[1,3] = ω̂[1,3] + σ sin(θ[2,3] − θ[1,3] + θ[1,2]) − σ
[
sin(θ[1,3] + θ[1,2])+ sin(θ̂[3])

]
,

θ̇[2,3] = ω̂[2,3] − σ sin(θ[2,3] − θ[1,3] + θ[1,2]) − σ
[
sin(θ[2,3] − θ[1,2])+ sin(θ̂[3])

]
,

θ̇[3,4] = ω̂[3,4] − σ
[
sin(θ[3,4]) − sin(θ̂[3])

]
, (11.37)

with θ̂[3] indicating the three-body interaction

θ̂[3] = θ[13] + θ[23] − θ[34]. (11.38)

Therefore, the choice of the higher-order interactions in thehigher-orderKuramoto
model is naturally dictated by topology.

(2) The synchronization of the higher-order Kuramoto model is only detectable if
the right topological filtering of the data is performed. Indeed the naïve order
parameter

Rn =
1

N[n]

∣∣∣∣∣∣

N[n]∑

α=1

eiφα

∣∣∣∣∣∣
(11.39)

associated to the unfiltered topological signal φ does not detect any synchro-
nization transition (see Fig. 11.8). Instead, the order parameter associated to the
solenoidal and the irrotational components of the topological signal do detect
the synchronization transition of the topological signals (see Fig. 11.8). These
order parameters are given by
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R[−]
n = 1

N[n−1]

∣∣∣∣∣∣

N[n−1]∑

α=1

eiφ
[−]
α

∣∣∣∣∣∣
, R[+]

n = 1
N[n+1]

∣∣∣∣∣∣

N[n+1]∑

α=1

eiφ
[+]
α

∣∣∣∣∣∣
, (11.40)

or alternatively by

R↓
n = 1

N[n]

∣∣∣∣∣∣

N[n]∑

α=1

eiφ
↓
α

∣∣∣∣∣∣
, R↑

n = 1
N[n]

∣∣∣∣∣∣

N[n]∑

α=1

eiφ
↑
α

∣∣∣∣∣∣
, (11.41)

where φ↓ = L[down]
[n] φ and φ↑ = L[up]

[n] φ.

The synchronization transition described by the simple higher-order Kuramoto
model leads to a continuous transition occurring at zero coupling, i.e., the synchro-
nization threshold is σc = 0 as long as n > 0. However, the higher-order Kuramoto
model admits a formulation called explosive higher order Kuramoto model that dis-
plays instead a discontinuous transition at a non zero coupling σc > 0.

The explosive higher-order Kuramoto dynamics [12] implements an adaptive cou-
pling of the projected dynamics of φ[+] and φ[−] through their global order param-
eters. The adopted adaptive coupling is inspired by analogous couplings previously
applied tomultilayer and simple networks [49]. The explosive higher-orderKuramoto
model [12] is defined by the system of equations

φ̇ = ω̂ − σ R[−]B[n+1] sin BT
[n+1]φ − σ R[+]BT

[n] sin B[n]φ. (11.42)

It follows that the dynamics projected on the (n + 1) and (n − 1)-dimensional sim-
plices now obeys the coupled system of equations

φ̇[+] = BT
[n+1]ω̂ − σ R[−]L[down]

[n+1] sin
(
φ[+]) ,

φ̇[−] = B[n]ω̂ − σ R[+]L[up]
[n−1] sin

(
φ[−]) . (11.43)

Numerical simulations on the configuration model of simplicial complexes with
power-law distribution of generalized degrees reveal that the explosive higher-order
Kuramoto model displays a discontinuous phase transition. The nature of the transi-
tion confirms the theoretical expectations obtained with an approximate phenomeno-
logical approach. This transition is clearly detected by a discontinuity in R[+]

n and
R[−]
n and in R↓

n and R↑
n as well, but is not captured by the naïve order parameter Rn

(see Fig. 11.8).
InRef. [12] it has been shown that the nature of the phase transitiondoes not change

if the generalized degree distribution is more uniform or if the simplicial complex
has a non trivial network geometry. Interestingly, simple and explosive higher-order
Kuramoto models can be investigated on simplicial complexes constructed from real
connectomes leading to continuous (for the simple higher-order Kuramoto model)
and discontinuous (for the explosive higher-order Kuramoto model) synchronization
transitions.
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Fig. 11.8 Higher-order Kuramoto dynamics. The synchronization of higher-order topological
signals is captured by the simple and explosive higher-order Kuramoto models. Panel (a) The
order parameters R[+]

1 and R[−]
1 reveal the synchronization transition of topological signals defined

on links (n = 1) of the configuration model of simplicial complexes. Panel (b) The naïve order
parameter R1 does not reveal the synchronization transition of topological signals defined on the
links of the configuration model of simplicial complex, while the order parameters R↑

1 and R↓
1 ,

sensible on the irrotational and solenoidal decomposition of the signal, to reveal the transition (as
well as R[+]

1 and R[−]
1 shown in panel (a)). The underlying network is the same for both panels and

has N[0] = 1000 nodes, N[1] = 5299 links and N[2] = 4147 triangles. The generalized degree of the
nodes is power-law distributed with power-law exponent γ = 2.8. Panel (c) shows the theoretical
expectations provided by an effective phenomenological model treated in Ref. [12] for the simple
(top) and explosive (bottom) higher-order Kuramoto models. Reprinted figure with permission
from Ref. [12] ©Copyright (2020) by the American Physical Society

11.6.3 Coupled Topological Signals

So far we have considered the synchronization of topological signals defined on
simplices of dimension n > 0. However, topological signals associated to simplices
of different dimension can co-exist and co-evolve. For instance, phases associated
to the nodes of a simplicial complex can be coupled with phases associated to its
links. In this section we will show how different topological signals, i.e., phases
defined on simplicial complexes of different dimensions, can be coupled to each
other leading to simultaneous explosive synchronization transitions. For simplicity
of presentation wewill focus on phases defined on nodes and links, but we emphasize
that our formalism allows one to consider the interaction of more general topological
signals.

We start by considering Model 1, an explosive higher-order Kuramoto model of
coupled signals of nodes and links. This model differs from the explosive higher-
order Kuramoto model defined in the previous section as it includes an additional
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Fig. 11.9 Simultaneous explosive synchronization of coupled topological signals. Model 1 dis-
plays the simultaneous explosive (discontinuous) transition captured by the order parameters R0,
R[−]
1 and R[+]

1 . Panels (a), (b), and (c) provide numerical evidence of this discontinuous transition
on different simplicial network topologies: the NGF with flavor s = −1 and dimension d (panel a),
the configuration model of pure d = 3 simplicial complex with power-law generalized degree dis-
tribution with power-law exponent γ = 2.8 (panel b) and the clique complex of the Caenorhabditis
elegans (C. elegans) connectome coming from Ref. [50] (panel c). Figure adapted from [47]

adaptive coupling among the topological signals of nodes and links, and obeys the
equations

θ̇ = ω − σ R[−]
1 B[1] sin(B.

[1]θ),

φ̇ = ω̂ − σ R0R
[+]
1 B.

[1] sin(B[1]φ) − R[−]
1 σB[2] sin(B.

[2]φ). (11.44)

This model simulated in a wide variety of simplicial complexes including the NGF,
the configuration model of simplicial complexes, and the clique complex of real
connectomes displays a simultaneous explosive (i.e., discontinuous) synchronization
of the topological signals defined on nodes and of the soleinodal and irrotational
component of the topological signals defined on links [47]. Indeed, at a critical
threshold σ = σc we observe a discontinuity in the three order parameters R0, R

[−]
1

and R[+]
1 . In Fig. 11.9 we present numerical evidence of this discontinuous transition

by displaying the corresponding hysteresis loop in the order parameters. In particular,
instead of plotting the order parameters obtained at each value of σ starting from
random initial conditions as in Fig. 11.8 here we display the order parameters along
the forward and backward synchronization transitions obtained by first adiabatically
increasing and then decreasing the coupling constant σ .
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Interestingly, this model (Model 1) admits a variation (Model 2) that describes
the simultaneous synchronization of the topological signals associated to the nodes
and the irrotational component of the topological signal associated to the links. This
simpler version of the explosive higher-order Kuramoto model of coupled topo-
logical signals can be also defined on pairwise networks and is amenable to an
exact analytical treatment on fully connected networks and to an accurate annealed
approximation solution on random networks with given degree distribution. More
specifically, Model 2 only couples the signal of the nodes with the signal of the links
projected to the nodes, as described by the differential equations

θ̇ = ω − σ R[−]
1 B[1] sin(B.

[1]θ), (11.45)

φ̇ = ω̂ − σ R0B.
[1] sin(B[1]φ) − σB[2] sin(B.

[2]φ). (11.46)

Projecting the dynamics of the link phases down to 0-simplices as in the previous
section, we introduce ψ for simplicity of notation with

ψ ≡ φ[−] = B[1]φ. (11.47)

By left multiplying Eq. (11.46) by B[1], we obtain the closed system of equations for
θ and ψ

θ̇ = ω − σ R[−]
1 B[1] sin(B.

[1]θ),

ψ̇ = ω̃ − σ R0L[0] sin(ψ), (11.48)

where ω̃ = B[1]ω̂. Here we assumeω ∼ N (0, 1) and ω̂α ∼ N (-1, 1/τ1). With these
hypotheses the internal frequencies of the links projected on the nodes {ω̃i }i=1,2,...,N[0]
are Gaussian correlated variables with average

〈ω̃i 〉 =




∑

j<i

ai j −
∑

j>i

ai j



-1 (11.49)

and with correlation matrix C of elements Ci j =
〈
ω̃i ω̃ j

〉
− 〈ω̃i 〉

〈
ω̃ j
〉
given by

C = L[0]
1
τ 2
1
. (11.50)

To understand the nature of the synchronization transition analytically whenModel 2
is defined on an uncorrelated random graph, in the following we discuss the solution
of the model in the annealed approximation. The annealed approximation is a widely
used approximation to study dynamical processes on random uncorrelated networks
which consists in substituting the adjacency matrix entries of the network ai j by their
average values in an uncorrelated random network with given degree sequence, i.e.,
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ai j → ki k j

〈k〉N . (11.51)

Using this approximation, Eq. (11.48) can be recast into the differential equations

θ̇ = ω − σ R[−]
1 R̂0k · sin(θ − *̂),

ψ̇ = ω̃ + σ R0 R̂
[−]
1 k sin 0̂ − σ R0k 6 sinψ, (11.52)

where 6 indicates the Hadamard product (element by element multiplication) and
where two auxiliary complex order parameters are defined as

R̂0ei*̂ =
N[0]∑

i=1

ki
〈k〉N[0]

eiθi , R̂[−]
1 ei0̂ =

N[0]∑

i=1

ki
〈k〉N[0]

eiψi , (11.53)

with R̂0, *̂, R̂[−]
1 and 0̂ being real. Let us indicate with g(ω) the probability distri-

bution of the internal frequencies of the nodes and with Gi (ω̃) the marginal prob-
ability distribution of the internal frequencies of the links projected on node i , i.e.,
the marginal probability that ω̃i = ω̃. With this notation it is possible to derive the
analytic solution of Eq. (11.52) which gives the following expression for the order
parameters

R0 =
1
N[0]

N[0]∑

i=1

r0(i), R̂n =
N[0]∑

i=1

ki
〈k〉N[0]

r0(i),

R[−]
1 = 1

N[0]

N[0]∑

i=1

r [−]
1 (i), R̂[−]

1 =
N[0]∑

i=1

ki
〈k〉N[0]

r [−]
1 (i), (11.54)

with r0(i) and r
[−]
1 (i) given by

r0(i) =
∫

|ĉi |<1

dωg(ω)

√√√√1 −
(

ω − -0

σki R̂0R
[−]
1

)2

,

r [−]
1 (i) =

∫

|d̂i |<1

dω̃Gi (ω̃)

√

1 −
(

ω̃

σki R̂0

)2

, (11.55)

and ĉi and d̂i indicating

ĉi =
ω − -0

σki R̂0R
[−]
1

, d̂i =
ω̃

σki R̂0
. (11.56)
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Fig. 11.10 Theoretical prediction for Model 2 of explosive higher-order Kuramoto model of
coupled dynamical signals applied to random and fully connected networks. The hysteresis
loop for Model 2 is shown for different types of networks. The backward transition is fully captured
by the theoretical expectations (solid black lines). Panels (a), (b) and (c) show the order parameters
R1 and R[−]

1 versus the coupling constant σ for: A Poisson network with average degree c = 12
and N[0] = 1600 nodes (panel a), a scale-free network with minimum degree m = 6, power-law
exponent γ = 2.5 and N[0] = 1600 nodes (panel b) and a fully connected network of different
network sizes N[0] = 500 (cyan symbols), N[0] = 1000 (green symbols)and N[0] = 2000 (purple
symbols) (panel c). From panel (c) it is evident that the forward transition occurs at higher values
of σ for larger network size, confirming the theoretical prediction indicating that the transition is
driven by finite size effects and it is absent in the infinite network limit. Figures adapted from[47]

Figure11.10 shows excellent agreement between the simulation results of Model 2
and the analytical prediction obtained in the annealed approximation for a Poisson
network with average degree c = 12 (panel (a)) and for an uncorrelated scale-free
network with minimum degree m = 6 and power-law exponent γ = 2.5 (panel b).

Model 2 of explosive higher-order synchronization of coupled topological signals
of nodes and links can be also solved exactly on a fully connected network. Before
discussing these theoretical results let us highlight that when treating Model 2 on a
fully connected network the model parameters need to be rescaled appropriately to
give a well defined transition in the large network limit. In particular the coupling
constant σ and τ1 are rescaled to

σ → σ

N
,

τ1 → τ1
√
N . (11.57)

Moreover, for simplicity we set -1 = 0. With these hypotheses the marginal distri-
bution Gi (ω̃) = G(ω̃) for every node i of the network can be derived to be equal to

G(ω̃) = τ1√
2π/c̄

exp
[
−τ 2

1 c̄
ω̃2

2

]
, (11.58)
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with c̄ = N/(N − 1). The self-consistent equations for the order parameters R0 =
R̂0 and R[−]

1 = R̂[−]
1 are given by

1 = σ R[−]
1 h

(
σ 2R2

0(R
[−]
1 )2

)
,

R[−]
1 = σ R0τ1

√
c̄h
(
σ 2τ 2

1 R
2
0

)
, (11.59)

where the scaling function h(x) is given by

h(x) =
√

π

2
e−x/4

[
I0
( x
4

)
+ I1

( x
4

)]
, (11.60)

with I0 and I1 indicating the modified Bessel functions.
These equations agree perfectly well with direct simulation ofModel 2 dynamical

Eq. (11.46) on a fully connected network as it can be appreciated from Fig.11.10c.
Moreover a closer look to these equations reveals an important aspect of these transi-
tions.While the backward transition has a well defined limit as N → ∞, the forward
transition occurs at larger value of the coupling constant for large network size N , and
is only determined by finite size fluctuations, therefore the transition disappears in
the limit N → ∞. Interestingly, this lack of a proper hysteresis loop can be also pre-
dicted forModel 2 defined on uncorrelated randomgraphswith finite secondmoment
of the degree distribution, starting from their annealed approximation solution.

11.7 Conclusions

In this chapter our goal has been to provide evidence that the interplay between
simplicial complex structure and dynamics is mediated by simplicial geometry and
topology. The spectral properties of the graph Laplacian and the higher-order Lapla-
cian have been used here to reveal how simplicial synchronization is shaped by
topological and geometry of the simplicial complex. In particular, we investigated
how simplicial network geometry changes the phase diagram of the Kuramotomodel
defined on the network skeleton of simplicial complexes with notable geometrical
properties and characterized by a finite spectral dimension. We have shown that a
spectral dimension smaller or equal than four but larger than two can lead to a regime
of frustrated synchronization characterized by large spatio-temporal fluctuations of
the order parameter, while a spectral dimension smaller or equal than two leads to a
Kuramoto model in the incoherent state for every finite value of the coupling con-
stant. These theoretical results have been shown to apply to the simplicial complexes
generated by the modelling framework called Network Geometry with Flavor (NGF)
that is able to generate simplicial complexes with tunable spectral dimension of the
graph Laplacian. Interestingly, the NGF are characterized also by displaying higher-
order spectral dimension of the higher-order up Laplacian that describe higher-order
diffusion processes.
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This chapter introduces also a set of models for capturing synchronization of
topological signals, i.e., phases not only associated to the nodes of a simplicial
complex but also to the higher-order simplices such as links, triangles, and so on.
This higher-order synchronization reveals itself in the order parameter of the irrota-
tional and solenoidal projection of the topological signals. In the simple higher-order
Kuramoto model the irrotational and solenoidal projection of the topological signal
are uncoupled and undergo a sychronization transition at σc = 0. However, when
these two projections are coupled to each other by an adaptive global coupling the
synchronization becomes explosive, i.e., discontinuous, and occurs at a non-zero
value of coupling constant.

The higher-order Kuramoto model can be further extended to capture coupled
topological signals of different dimension, for instance coupling phases associated
to nodes and to links of a network or of a simplicial complex. This generalized higher-
order Kuramoto model can lead to an explosive phase transition affecting simultane-
ously the phases associated to the nodes and the irrotational and solenoidal projection
of the phases associated to the links. Interestingly, the higher-order Kuramoto model
of coupled topological signals defined on nodes and links can be treated analytically
using the annealed approximation when it is defined on a random uncorrelated net-
work and can be solved exactly on a fully connected network. This solution confirms
the discontinuous nature of the transition of the explosive higher-order Kuramoto
model and sheds light on the stability of the hysteresis loop associated to the tran-
sition on finite networks. The mathematical framework that we have proposed here
can be explored and modified in different directions and we believe that an in-depth
analysis of the model and its variations will provide important insights on the inter-
play between topology and dynamics. For instance, we note that the higher-order
Kuramoto model has been recently modified [51] to investigate also the properties
of a consensus model finding interesting results.

In conclusion, this chapter aims to provide an overview of the relation between
network geometry topology and dynamics. We believe this topic will flourish in
the incoming years and will transform our understanding of the relation between
structure and dynamics of higher-order networks. Therefore our expectation is that
this research line will play a relevant role for providing new insights in a variety of
applications including brain dynamics and biological transportation networks.

Appendix: Kuramoto dynamics expressed in terms
of the incidence matrix

In this Appendix our aim is to show that Eq. (11.25) that we rewrite here for conve-
nience,

θ̇i = ωi + σ

N[0]∑

j=1

ai j sin
(
θ j − θi

)
, (11.61)
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is equivalent to Eq. (11.32) given by

θ̇ = ω − σ B[1] sin BT
[1]θ . (11.62)

In order to show this let us observe that the incidence matrix B[1] has elements given
by

[B[1]]i, =






−1 if , = [i, j],
1 if , = [ j, i],
0 otherwise.

(11.63)

To show the equivalence between Eq. (11.61) and Eq. (11.62) let us start by rewriting
Eq. (11.62) element by element, getting

θ̇i = ωi − σ
∑

,∈S1
[B[1]]i, sin




∑

j∈S0
[B.

[1]],jθ j



 , (11.64)

where we indicate with S1 the set of all links present in the simplicial complex or
network under consideration.

Let us consider the particular link , = [i, j] in this case we have

[B[1]]i, sin




∑

j∈S0
[B.

[1]],jθ j



 = −ai j sin(θ j − θi ). (11.65)

Equivalently, if we consider the same link with opposite orientation , = [ j, i] we
get

[B[1]]i, sin




∑

j∈S0
[B.

[1]],jθ j



 = ai j sin(θi − θ j ) = −ai j sin(θ j − θi ). (11.66)

Since the incidence matrix B[1] has non-zero elements only among nodes and links
incident to each other, it follows that Eq. (11.61) is equivalent to Eq. (11.62).
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