INTRODUCTION
 SETUP
 FOKKER-PLANCK EQ.
 GRADIENT FLOWS
 IMPLICATIONS

 00000
 00000000
 00000000
 00000000
 00000000

Gradient Flows for Unsupervised Learning — with Connections to GANs —

Yu-Jui Huang University of Colorado, Boulder

Joint work with Yuchong Zhang (University of Toronto)

Graduate Institute of Statistics National Central University June 6, 2023

UNSUPERVISED LEARNING

- $\mathcal{P}(\mathbb{R}^d)$: the set of density functions on \mathbb{R}^d .
- $\rho_{d} \in \mathcal{P}(\mathbb{R}^{d})$: the (unknown) data distribution.
- Unsupervised Learning:

 $\inf_{\rho\in\mathcal{P}(\mathbb{R}^d)}d(\rho,\rho_{\rm d}),$

where $d(\cdot, \cdot)$ is a metric on $\mathcal{P}(\mathbb{R}^d)$.

INTRODUCTION	Setup	Fokker-Planck Eq.	Gradient Flows	IMPLICATIONS
00000	00000000	00000000	0000000	0000000

LITERATURE

- Traditional method: Parametrize ρ_d .
 - Parameter fitting by maximum likelihood estimations.
- Generative adversarial network (GAN):

A min-max game between generator & discriminator.

Proposed by Goodfellow et al. (2014), actively studied by Dziugaite, Roy, & Ghahramani (2015), Nowozin, Cseke, & Tomioka (2016), Arjovsky, Chintala, & Bottou (2017), Li, Chang, Cheng, Yang, & Poczos (2017), Farnia & Tse (2019), Feizi, Farnia, Ginart, & Tse (2020), ...

Financial time series, trading strategies:

Wiese, Knobloch, Korn, & Kretschmer (2020), Koshiyama, Firoozye, & Treleaven (2021), Eckerli & Osterrieder (2021),...

INTRODUCTION	Setup	Fokker-Planck Eq.	Gradient Flows	IMPLICATIONS
0000	0000000	00000000	0000000	0000000

Goodfellow et al. (2014):

$$\min_{G} \max_{D} \left\{ \mathbb{E}_{X \sim \rho_{d}} [\ln D(X)] + \mathbb{E}_{z \sim \rho^{Z}} \left[\ln \left(1 - D\left(G(Z) \right) \right) \right] \right\}.$$
(1)

► This is equivalent to

$$\min_{G} \operatorname{JSD}(\rho^{G(Z)}, \rho_{\mathrm{d}}),$$

► JSD is the Jensen-Shannon divergence

$$\mathrm{JSD}(\rho,\rho_{\mathrm{d}}) := \frac{1}{2} D_{\mathrm{KL}} \left(\rho_{\mathrm{d}} \left\| \frac{\rho_{\mathrm{d}} + \rho}{2} \right) + \frac{1}{2} D_{\mathrm{KL}} \left(\rho \left\| \frac{\rho_{\mathrm{d}} + \rho}{2} \right), \right.$$

which involves the Kullback-Leibler divergence

$$D_{\mathrm{KL}}(
ho\|ar
ho):=\int_{\mathbb{R}^d}
ho(x)\ln\left(rac{
ho(x)}{ar
ho(x)}
ight)dx.$$

INTRODUCTION	Setup	Fokker-Planck Eq.	Gradient Flows	IMPLICATIONS
00000	00000000	000000000	00000000	0000000
A 1 1 1	1 TL CAN	A.1 '(1		

Algorithm 1 The GAN Algorithm

- 1: for number of training iterations do
- Sample *m* examples $\{z^{(1)}, ..., z^{(m)}\}$ from ρ^Z .
- 3: Sample *m* examples $\{x^{(1)}, ..., x^{(m)}\}$ from ρ_d .
- 4: Update $D : \mathbb{R}^d \to [0, 1]$ by ascending along

$$\nabla_{\theta_D} \frac{1}{m} \sum_{i=1}^m \left[\ln D(x^{(i)}) + \ln \left(1 - D\left(G(z^{(i)}) \right) \right) \right].$$

- 5: Sample *m* examples $\{z^{(1)}, ..., z^{(m)}\}$ from ρ^Z .
 - Update $G : \mathbb{R}^d \to \mathbb{R}^d$ by descending along

$$-\nabla_{\theta_G} \frac{1}{m} \sum_{i=1}^m \ln\left(1 - D(G(z^{(i)}))\right).$$
 (2)

7: end for

6:

INTRODUCTION 0000	Setup 00000000	Fokker-Planck Eq. 000000000	Gradient Flows 00000000	Implications 0000000

LITERATURE

Drawback of GANs: doesn't converge so easily...

- Salimans et al. (2016): Empirical investigations.
- Zhu, Jiao, & Tse (2020): The two-player game does not have a value:

min-max game \neq max-min game.

- Cao & Guo (2020): SDE approximations.
- ► Guo & Mounjid (2021): stochastic control framework.
- ► Cao & Guo (2021): Review of analytical approaches.

Is there alternative (simplified) perspective for GANs?

INTRODUCTION	Setup	Fokker-Planck Eq.	Gradient Flows	IMPLICATIONS
00000	0000000	00000000	0000000	0000000

IN THIS TALK...

► We study:

minimize $J(\rho) := JSD(\rho, \rho_d)$ over $\mathcal{P}(\mathbb{R}^d)$. (3)

► The basics:

▶ $0 \leq \text{JSD}(\cdot, \cdot) \leq \ln(2).$

• Convergence in JSD \iff in total variation \iff in $L^1(\mathbb{R}^d)$

• $\rho \mapsto \text{JSD}(\rho, \bar{\rho})$ is <u>strictly convex</u>:

 $\operatorname{JSD}(\lambda\rho_1 + (1-\lambda)\rho_2, \bar{\rho}) < \lambda \operatorname{JSD}(\rho_1, \bar{\rho}) + (1-\lambda) \operatorname{JSD}(\rho_2, \bar{\rho}),$

for any $\rho_1, \rho_2 \in \mathcal{P}(\mathbb{R}^d)$ and $\lambda \in (0, 1)$.

INTRODUCTION	Setup	Fokker-Planck Eq.	Gradient Flows	IMPLICATIONS
00000	0000000	00000000	0000000	0000000

CONVEX OPTIMIZATION

For a *strictly* convex $f : \mathbb{R}^d \to \mathbb{R}$,

- gradient descent works efficiently.
- ▶ For any $y \in \mathbb{R}^d$, the ODE

$$dY_t = -\nabla f(Y_t)dt, \quad Y_0 = y \in \mathbb{R}^d, \tag{4}$$

converges to global minimizer $y^* \in \mathbb{R}^d$ as $t \to \infty$.

Question: For the <u>strictly convex</u>

$$J(\cdot) = \mathrm{JSD}(\cdot, \rho_{\mathrm{d}}) : \mathcal{P}(\mathbb{R}^d) \to \mathbb{R},$$

can we also do **gradient descent** to find $\rho_{d} \in \mathcal{P}(\mathbb{R}^{d})$?

INTRODUCTION	Setup	Fokker-Planck Eq.	Gradient Flows	IMPLICATIONS
00000	0000000	00000000	0000000	0000000

Given $G : \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}$,

• Gradient descent in $\mathcal{P}(\mathbb{R}^d)$:

 $dY_t = -\partial_{\rho} G(\rho^{Y_t}, Y_t) dt, \quad \rho^{Y_0} = \rho_0 \in \mathcal{P}(\mathbb{R}^d).$ (5)

This is a *distribution-dependent* ODE.

- Y_t is a random variable, with density $\rho^{Y_t} \in \mathcal{P}(\mathbb{R}^d)$.
- $-\partial_{\rho}G(\rho^{\gamma_t}, \cdot) : \mathbb{R}^d \to \mathbb{R}^d$ dictates the direction along which each $y \in \mathbb{R}^d$ moves forward, i.e.,

 $\partial_{\rho}G(\rho, \cdot) : \mathbb{R}^d \to \mathbb{R}^d$ represents "gradient of *G* at $\rho \in \mathcal{P}(\mathbb{R}^d)$ "

• **<u>Challenge</u>**: How do we define $\partial_{\rho}G(\rho, \cdot) : \mathbb{R}^d \to \mathbb{R}^d$?

P(ℝ^d) is not even a vector space

 *Fr*échet or Gateaux derivatives *not* well-defined.

INTRODUCTION	Setup	Fokker-Planck Eq.	Gradient Flows	IMPLICATIONS
00000	0000000	00000000	0000000	0000000

Linear Functional Derivative

A *linear functional derivative* of $G : \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}$ is a function $\frac{\delta G}{\delta \rho} : \mathcal{P}(\mathbb{R}^d) \times \mathbb{R}^d \to \mathbb{R}$ such that for all $\rho, \bar{\rho} \in \mathcal{P}(\mathbb{R}^d)$,

$$\lim_{\varepsilon \downarrow 0} \frac{G\big(\rho + \varepsilon(\bar{\rho} - \rho)\big) - G(\rho)}{\varepsilon} = \int_{\mathbb{R}^d} \frac{\delta G}{\delta \rho}(\rho, y)(\bar{\rho} - \rho)(y) dy.$$

• Relies only on convexity of $\mathcal{P}(\mathbb{R}^d)$.

Challenge remains:

Densities in ODE (5) don't evolve linearly....

INTRODUCTION	Setup	Fokker-Planck Eq.	Gradient Flows	IMPLICATIONS
00000	00000000	00000000	0000000	0000000

► ODE (5) takes the form

 $dY_t = \xi(Y_t)dt$, for some $\xi : \mathbb{R}^d \to \mathbb{R}^d$.

• **Discretization:** Given a time step $\varepsilon > 0$, initial points $y \in \mathbb{R}^d$ are transported to

$$\bar{y} := y + \varepsilon \xi(y) = (I + \varepsilon \xi)(y) \in \mathbb{R}^d.$$
(6)

► If
$$y \in \mathbb{R}^d$$
 follows $\rho \in \mathcal{P}(\mathbb{R}^d)$, $\bar{y} \in \mathbb{R}^d$ will follow $\rho_{\varepsilon}^{\xi} \in \mathcal{P}(\mathbb{R}^d)$
with $\rho_{\varepsilon}^{\xi}(y) := \rho((I + \varepsilon\xi)^{-1}(y))/det(\mathrm{Id} + \varepsilon\nabla\xi)$, for $y \in \mathbb{R}^d$.

Proposition

Under suitable regularity of ρ , ξ , and $\frac{\delta G}{\delta \rho}$,

$$\lim_{\varepsilon \downarrow 0} \frac{G(\rho_{\varepsilon}^{\xi}) - G(\rho)}{\varepsilon} = \int_{\mathbb{R}^d} \left(\nabla \frac{\delta G}{\delta \rho}(\rho, y) \cdot \xi(y) \right) \rho(y) dy.$$
(7)

INTRODUCTION	Setup	Fokker-Planck Eq.	Gradient Flows	IMPLICATIONS
00000	00000000	00000000	0000000	0000000

► We will take

$$\partial_{\rho}G(\rho,\cdot) = \nabla \frac{\delta G}{\delta \rho}(\rho,\cdot), \quad \rho \in \mathcal{P}(\mathbb{R}^d).$$

More general than the literature:

Lions and Wasserstein derivatives are well-defined on

$$\mathcal{P}_2(\mathbb{R}^d) := \Big\{
ho \in \mathcal{P}(\mathbb{R}^d) : \int_{\mathbb{R}^d} y^2
ho(y) dy < \infty \Big\},$$

but not on the general space $\mathcal{P}(\mathbb{R}^d)$.

► All three kinds of derivatives coincide in P₂(ℝ^d), under suitable conditions on G. (Carmona & Delarue (2018))

 INTRODUCTION
 Setup
 Fokker-Planck Eq.
 Gradient Flows
 Implications

 00000
 00000000
 00000000
 00000000
 0000000
 0000000

GRADIENT DESCENT IN $\mathcal{P}(\mathbb{R}^d)$

With
$$G(\rho) = [\overline{J(\rho)} := \operatorname{JSD}(\rho, \rho_{\mathrm{d}})],$$

 $dY_t = -\partial_{\rho}J(\rho^{Y_t})(Y_t)dt = -\nabla \frac{\delta J}{\delta \rho}(\rho^{Y_t}, Y_t)dt, \quad \rho^{Y_0} = \rho_0 \in \mathcal{P}(\mathbb{R}^d).$

Lemma

 $J: \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}$ has a linear functional derivative, given by

$$\frac{\delta J}{\delta \rho}(\rho, y) = \frac{1}{2} \ln \left(\frac{2\rho(y)}{\rho_{\rm d}(y) + \rho(y)} \right), \quad \forall \rho \in \mathcal{P}(\mathbb{R}^d), y \in \mathbb{R}^d.$$
(8)

 INTRODUCTION
 Setup
 Fokker-Planck Eq.
 Gradient Flows
 Implications

 00000
 0000000
 0000000
 0000000
 0000000

DENSITY-DEPENDENT ODE

Gradient descent in $\mathcal{P}(\mathbb{R}^d)$:

$$dY_t = -\frac{1}{2} \left(\frac{\nabla \rho^{Y_t}(Y_t)}{\rho^{Y_t}(Y_t)} - \frac{\nabla \rho_{\mathrm{d}}(Y_t) + \nabla \rho^{Y_t}(Y_t)}{\rho_{\mathrm{d}}(Y_t) + \rho^{Y_t}(Y_t)} \right) dt,$$

$$\rho^{Y_0} = \rho_0 \in \mathcal{P}(\mathbb{R}^d). \tag{9}$$

Our Goal

There exists a unique solution Y to ODE (9). Moreover,

 $\rho^{Y_t} \to \rho_d \quad \text{in } L^1(\mathbb{R}^d), \quad \text{as } t \to \infty.$

• If this holds, can find ρ_d by simulating ODE (9)!

INTRODUCTION	Setup	Fokker-Planck Eq.	Gradient Flows	IMPLICATIONS
00000	0000000	●00000000	0000000	0000000

How to find a solution *Y* to ODE (9)?

$$dY_t = -\frac{1}{2} \left(\frac{\nabla \rho^{Y_t}(Y_t)}{\rho^{Y_t}(Y_t)} - \frac{\nabla \rho_{\mathrm{d}}(Y_t) + \nabla \rho^{Y_t}(Y_t)}{\rho_{\mathrm{d}}(Y_t) + \rho^{Y_t}(Y_t)} \right) dt,$$
$$\rho^{Y_0} = \rho_0 \in \mathcal{P}(\mathbb{R}^d).$$

- McKean-Vlasov SDEs typically depend on $\mathcal{L}(Y_t)$.
 - $\mathcal{L}(Y_t)$: the law of Y_t .

• An *interacting particle system* can approximate $\mathcal{L}(Y_t)$.

- ODE (9) does *not* depend on $\mathcal{L}(Y_t)$, but on
 - Radon-Nikodym derivative of $\mathcal{L}(Y_t)$ (i.e., ρ^{Y_t}),
 - Euclidean derivative of ρ^{Y_t} (i.e., $\nabla \rho^{Y_t}$).

 \implies "interacting particle system" not so promising...

 INTRODUCTION
 SETUP
 FOKKER-PLANCK EQ.
 GRADIENT FLOWS
 IMPLICATIONS

 000000
 00000000
 00000000
 00000000
 00000000

FOKKER-PLANCK EQUATION

If *Y* is a solution to (9), $u(t, \cdot) := \rho^{Y_t}(\cdot) \in \mathcal{P}(\mathbb{R}^d)$ heuristically satisfies (nonlinear) Fokker-Planck equation

$$\frac{\partial u}{\partial t}(t,y) = \frac{1}{2} \operatorname{Div} \left(\left(\frac{\nabla u}{u} - \frac{\nabla \rho_{\mathrm{d}} + \nabla u}{\rho_{\mathrm{d}} + u} \right) u \right)(t,y),$$

$$= \frac{1}{2} \left(-\operatorname{Div} \left(\frac{\nabla \rho_{\mathrm{d}} + \nabla u}{\rho_{\mathrm{d}} + u} u \right) + \Delta u \right)(t,y), \quad u(0,y) = \rho_0(y).$$
(10)

Definition

 $u : [0, \infty) \to \mathcal{P}(\mathbb{R}^d)$ is a *weak* solution to FP eqn (10), if $u(t, \cdot)$ is weakly differentiable for a.e. $t \ge 0$ s.t. $\forall \varphi \in C_c^{1,2}((0, \infty) \times \mathbb{R}^d)$,

$$\int_0^\infty \int_{\mathbb{R}^d} \left(\varphi_t + \frac{1}{2} \frac{\nabla \rho_{\mathrm{d}} + \nabla u}{\rho_{\mathrm{d}} + u} \cdot \nabla \varphi + \frac{1}{2} \Delta \varphi \right) u(t, y) dy dt = 0.$$

000000 00000000 0000000 0000000 0000000	INTRODUCTION	Setup	Fokker-Planck Eq.	Gradient Flows	IMPLICATIONS
	00000	0000000	0000000	0000000	0000000

OUR PLAN

- ▶ Motivated by Barbu & Röckner (2020), we will
 - 1) Find a solution *u* to Fokker-Planck equation (10).
 - 2) Use *u* to construct a solution *Y* to ODE (9).

INTRODUCTION	Setup	FOKKER-PLANCK EQ.	GRADIENT FLOWS	IMPLICATIONS
00000	0000000	00000000	0000000	0000000

<u>Assume</u>: $\rho_{d} > 0$ on \mathbb{R}^{d} .

• Set $v(t, y) := \frac{u(t, y)}{\rho_d(y)}$ on $[0, \infty) \times \mathbb{R}^d$. Then, (10) becomes

$$v_t = \frac{1}{2} \Delta_{\mu_d} \ln(1+v), \quad v(0) = \rho_0 / \rho_d,$$
 (11)

with $\Delta_{\mu_{d}} := \Delta + \nabla \ln \rho_{d} \cdot \nabla$.

(μ_d : probability measure on \mathbb{R}^d induced by $\rho_d \in \mathcal{P}(\mathbb{R}^d)$)

Definition

 $v : [0, \infty) \to L^1(\mathbb{R}^d, \mu_d)$ is a *weak* solution to (11) *w.r.t.* μ_d , if for any $\varphi \in C_c^{1,2}((0, \infty) \times \mathbb{R}^d)$,

$$\int_0^\infty \int_{\mathbb{R}^d} \left(v\varphi_t + \frac{1}{2} \ln(1+v) \Delta_{\mu_{\mathrm{d}}} \varphi \right) (t,y) d\mu_{\mathrm{d}} dt = 0.$$

Introduction 00000	Setup 00000000	Fokker-Planck Eq. 0000●0000	Gradient Flows 00000000	Implications 0000000
Assume:	$ ho_0$	$\leq eta ho_{ m d}$ for some eta	<i>²</i> > 0.	(12)
► Cons	ider the ope	rator		
	Av :=	$-rac{1}{2}\Delta_{\mu_{ m d}}\ln(1+v)$	for $v \in D(A)$,	(13)
where	e			
	D(A) :=	$egin{aligned} & \{v \in L^1(\mathbb{R}^d,\mu_{\mathrm{d}}) \cap H \ & 0 \leq v \leq eta, \ A v \end{aligned}$	$H_0^1(\mathbb{R}^d, \mu_{\mathrm{d}}):$ $\nu \in L^1(\mathbb{R}^d, \mu_{\mathrm{d}}) \big\}.$	

• (11) becomes (nonlinear) Cauchy problem $\underline{in L^1(\mathbb{R}^d, \mu_d)}$:

$$v_t + Av = 0, \quad v(0) = \rho_0 / \rho_d.$$
 (14)

INTRODUCTION	Setup	Fokker-Planck Eq.	Gradient Flows	IMPLICATIONS
00000	0000000	000000000	0000000	0000000

Intuition:

- The solution to $v_t + Av = 0$ should be " $v(0)e^{-At}$ ".
- Interpret " $v(0)e^{-At}$ " as

$$\lim_{n \to \infty} \left(I + \frac{t}{n} A \right)^{-n} v(0).$$
 (15)

Questions:

- How to make sense of $(I + \frac{t}{n}A)^{-n}v(0)$?
- The limit (15) well-defined? Solves $v_t + Av = 0$?

INTRODUCTION	Setup	Fokker-Planck Eq.	Gradient Flows	IMPLICATIONS
00000	0000000	000000000	0000000	0000000

Lemma

For any $\lambda > 0$ and $f \in \overline{D(A)}$, there exists a unique weak solution $w \in D(A)$ w.r.t. μ_d to

$$(I + \lambda A)w = f. \tag{16}$$

Lemma

The operator $A: D(A) \to L^1(\mathbb{R}^d, \mu_d)$ is <u>accretive</u>. That is,

$$\|v_1 - v_2\|_{L^1(\mathbb{R}^d, \mu_{\mathrm{d}})} \le \|(I + \lambda A)v_1 - (I + \lambda A)v_2\|_{L^1(\mathbb{R}^d, \mu_{\mathrm{d}})},$$

for all $v_1, v_2 \in D(A)$ and $\lambda > 0$.

• "Accretive" \implies (15) exists and solves $v_t + Av = 0$ (based on Crandall-Liggett's theory; see Barbu (2010)).

INTRODUCTION	Setup	Fokker-Planck Eq.	Gradient Flows	IMPLICATIONS
00000	0000000	000000000	0000000	0000000

Corollary

Assume
$$\rho_0 \leq \beta \rho_d$$
 for some $\beta > 0$.

(i) There is a weak solution $v \in C([0,\infty); L^1(\mathbb{R}^d, \mu_d))$ to (11) w.r.t. μ_d s.t. $0 \le v \le \beta$ and

$$v(t) = \lim_{n \to \infty} \left(I + \frac{t}{n} A \right)^{-n} v(0) \quad in \quad L^1(\mathbb{R}^d, \mu_d), \qquad (17)$$

uniformly in $t \ge 0$ on compact intervals. (ii) There is a weak solution $u : [0, \infty) \to \mathcal{P}(\mathbb{R}^d)$ to (10) given by

 $u(t) := \rho_{d}v(t) \quad \forall t \ge 0, \quad with \ v \ from \ (i).$ (18)

Moreover, $u \in C([0,\infty); L^1(\mathbb{R}^d))$.

INTRODUCTION	Setup	Fokker-Planck Eq.	Gradient Flows	IMPLICATIONS
00000	0000000	00000000	0000000	0000000

Theorem

Assume $\rho_0 \leq \beta \rho_d$ for some $\beta > 0$. Then, $u : [0, \infty) \to \mathcal{P}(\mathbb{R}^d)$ in (18) is the unique weak solution to FP eqn (10) among

 $\mathcal{C} := \left\{ \eta \in C([0,\infty); L^1(\mathbb{R}^d)) : \eta/\rho_{\mathrm{d}} \in L^\infty_+([0,\infty) \times \mathbb{R}^d) \right\}.$ (19)

► Relying on (i) uniqueness of solutions to (11), generalized from Brézis & Crandall (1979), and (ii) $\ln \rho_d \in H^1(\mathbb{R}^d, \mu_d)$.

INTRODUCTION	Setup	Fokker-Planck Eq.	GRADIENT FLOWS	IMPLICATIONS
00000	0000000	00000000	●0000000	0000000

To construct a solution Y to ODE (9),

1) Replace $\rho^{Y_t}(Y_t)$ in ODE (9) by $u(t, Y_t)$, with *u* the unique weak solution to FP eqn. (10):

$$dY_t = -\frac{1}{2} \left(\frac{\nabla u(t, Y_t)}{u(t, Y_t)} - \frac{\nabla \rho_{\mathrm{d}}(Y_t) + \nabla u(t, Y_t)}{\rho_{\mathrm{d}}(Y_t) + u(t, Y_t)} \right) dt,$$
$$\rho^{Y_0} = \rho_0 \in \mathcal{P}(\mathbb{R}^d).$$
(20)

2) Find a solution *Y* to (20) such that

$$\rho^{Y_t} = u(t, \cdot) \in \mathcal{P}(\mathbb{R}^d) \quad \forall t \ge 0.$$

Challenge: What is a "solution" to ODE (20)?

Introduction	Setup	Fokker-Planck Eq.	Gradient Flows	Implications
00000	00000000	000000000	0●000000	0000000

Two levels of randomness at time 0:

- ► *Randomness* of initial point $y \in \mathbb{R}^d$ (through $\rho_0 \in \mathcal{P}(\mathbb{R}^d)$).
- Once initial point $y \in \mathbb{R}^d$ is sampled, there can be multiple solutions $t \mapsto Y_t$ to ODE (20) (with $Y_0 = y$ fixed).
 - \implies *Randomness* of which continuous path $t \mapsto Y_t$ to pick, among those that solve ODE (20) (with $Y_0 = y$ fixed).

Idea: Use a probability measure \mathbb{P} on the path space

 $(\Omega,\mathcal{F}):=(C([0,\infty);\mathbb{R}^d),\mathcal{B}(C([0,\infty);\mathbb{R}^d)))$

to express the joint randomness!

INTRODUCTION	Setup	Fokker-Planck Eq.	GRADIENT FLOWS	IMPLICATIONS
00000	0000000	00000000	0000000	0000000

Definition

A process $Y : [0, \infty) \times \Omega \to \mathbb{R}^d$ is a <u>solution to ODE (9)</u> if

$$Y_t(\omega) := \omega(t) \quad \forall (t,\omega) \in [0,\infty) \times \Omega,$$

and there is a probability measure $\mathbb P$ on $(\Omega,\mathcal F)$ under which

- (i) the density $\eta_t \in \mathcal{P}(\mathbb{R}^d)$ of $Y_t : \Omega \to \mathbb{R}^d$ exists and is weakly differentiable $\forall t \ge 0$, and $\eta_0 = \rho_0$ Leb-a.e.;
- (ii) $\mathbb{P}(\Gamma) = 1$, with $\Gamma \subseteq \Omega$ defined as

$$\left\{\omega\in\Omega:\omega(t)=\omega(0)-\frac{1}{2}\int_0^t\big(\frac{\nabla\eta_s}{\eta_s}-\frac{\nabla\rho_{\rm d}+\nabla\eta_s}{\rho_{\rm d}+\eta_s}\big)(\omega(s))ds,\ t\geq 0\right\}$$

• \mathbb{P} samples continuous paths $\omega : [0, \infty) \to \mathbb{R}^d$ from Γ , in a way that $\omega(0)$ has density ρ_0 .

INTRODUCTION	Setup	Fokker-Planck Eq.	GRADIENT FLOWS	IMPLICATIONS
00000	0000000	00000000	0000000	0000000

Consider an SDE

$$dX_t = b(t, X_t)dt + \sigma(t, X_t)dW_t.$$
(21)

Superposition Principle [Trevisan (2016)]:

• If $\{\nu_t\}_{t\geq 0}$ is a weak solution to Fokker-Planck eqn. associated with (21) s.t.

$$\int_0^T \int_{\mathbb{R}^d} (|b(t,x)| + |\sigma\sigma^T(t,x)|) d\nu_t dt < \infty \quad T > 0,$$
 (22)

there exists \mathbb{P} on $(\Omega, \mathcal{F}) = (C([0, \infty); \mathbb{R}^d), \mathcal{B}(C([0, \infty); \mathbb{R}^d)))$ such that

(i) \mathbb{P} is a solution to local martingale problem for (21)

(i.e.,
$$X_t(\omega) := \omega(t), t \ge 0$$
, satisfies (21) under \mathbb{P});

(ii) $\mathbb{P} \circ (X_t)^{-1} = \nu_t$ for all $t \ge 0$.

Introduction	Setup	Fokker-Planck Eq.	GRADIENT FLOWS	Implications
00000	00000000	000000000		0000000

In our case, condition (22) becomes

$$\begin{split} \int_0^T \int_{\mathbb{R}^d} \left| \frac{\nabla u}{u} - \frac{\nabla \rho_{\mathrm{d}} + \nabla u}{\rho_{\mathrm{d}} + u} \right| u \, dy dt &= \int_0^T \int_{\mathbb{R}^d} \left| \frac{\nabla v}{1 + v} \right| d\mu_{\mathrm{d}} dt \\ &\leq \int_0^T \int_{\mathbb{R}^d} |\nabla v| \, d\mu_{\mathrm{d}} dt \leq \int_0^T ||\nabla v(t)||^2_{L^2(\mathbb{R}^d, \mu_{\mathrm{d}})} dt. \end{split}$$

Lemma

Assume $\rho_0 \leq \beta \rho_d$ for some $\beta > 0$. Then, the unique weak solution $v \in C([0,\infty); L^1(\mathbb{R}^d, \mu_d))$ to (11) w.r.t. μ_d satisfies

$$\int_{0}^{\infty} \|\nabla v\|_{L^{2}(\mathbb{R}^{d},\mu_{\mathrm{d}})}^{2} dt \le (1+\beta)\beta^{2}.$$
(23)

• Relying on approximation of v in (17).

INTRODUCTION	Setup	Fokker-Planck Eq.	GRADIENT FLOWS	IMPLICATIONS
00000	0000000	00000000	00000000	0000000

Proposition

Assume $\rho_0 \leq \beta \rho_d$ for some $\beta > 0$. Then, there exists a solution *Y* to ODE (9).

Theorem

Let Y be a solution to ODE (9) *s.t.* $\eta(t, y) := \rho^{Y_t}(y)$ *satisfies*

 $\eta \in \mathcal{C}$ and $\nabla \eta \in L^1_{\text{loc}}([0,\infty) \times \mathbb{R}^d).$

Then, $\eta(t, \cdot) = u(t, \cdot) \in \mathcal{P}(\mathbb{R}^d)$ for all $t \ge 0$, where u(t, x) is the unique weak solution to FP eqn. (10).

► Weaker than standard "weak uniqueness" of SDEs.

Introduction 00000	Setup 0000000	Fokker-Planck Eq. 000000000	Gradient Flows 000000●0	Implications 0000000

- Want: minimize $J(\rho) := \text{JSD}(\rho, \rho_d)$.
- Hope: *Gradient flow* in $\mathcal{P}(\mathbb{R}^d)$ converges to ρ_d , i.e.,

 $\rho^{Y_t} \to \rho_d \quad \text{as } t \to \infty,$

where Y is the solution to ODE (9).

Proposition

Let *Y* be the unique solution to ODE (9). For any $0 \le t_1 < t_2$,

$$J(\rho^{Y_{t_2}}) - J(\rho^{Y_{t_1}}) \leq -\int_{t_1}^{t_2} \int_{\mathbb{R}^d} \left| \nabla \frac{\delta J}{\delta \rho}(\rho^{Y_t}, y) \right|^2 \rho^{Y_t}(y) dy dt \leq 0.$$

- Relying on approximation of v in (17).
- Gradient descent works!

INTRODUCTION	Setup	Fokker-Planck Eq.	GRADIENT FLOWS	Implications
00000	00000000	000000000	0000000●	0000000

Lemma

Let Y be the unique solution to ODE (9). There exist $\{t_n\}_{n\in\mathbb{N}}$ in $[0,\infty)$ with $t_n \uparrow \infty$ s.t. $\rho^{Y_{t_n}} \to \rho_d$ in $L^1(\mathbb{R}^d)$.

Proof ideas:

- By (23), $\|\nabla v(t_n)\|_{L^2(\mathbb{R}^d,\mu_d)} \to 0.$
- So, $\nabla v(t_n) \to 0$ and thus $v(t_n) \to v_{\infty} \equiv \text{constant.}$
- As $\int_{\mathbb{R}^d} v(t_n) d\mu_d = \int_{\mathbb{R}^d} u(t_n) dy = 1$, we have $\int_{\mathbb{R}^d} v_\infty d\mu_d = 1$.
- So, $v_{\infty} \equiv 1$. Then, $\rho^{Y_{t_n}} = u(t_n) = \rho_{\mathrm{d}} v(t_n) \rightarrow \rho_{\mathrm{d}}$.

Theorem

Let Y be the unique solution to ODE (9). Then,

$$\|
ho^{Y_t}-
ho_{\mathrm{d}}\|_{L^1(\mathbb{R}^d)}\downarrow 0, \quad as \ t
ightarrow\infty.$$

• Established under $\rho_d > 0$ and $\ln \rho_d \in H^1(\mathbb{R}^d, \mu_d)$.

 INTRODUCTION
 SETUP
 FOKKER-PLANCK EQ.
 GRADIENT FLOWS
 IMPLICATIONS

 00000
 00000000
 00000000
 00000000
 00000000
 00000000

SIMULATION OF ODE (9)

Now, we set out to simulate

$$dY_t = -\frac{1}{2} \left(\frac{\nabla \rho^{Y_t}(Y_t)}{\rho^{Y_t}(Y_t)} - \frac{\nabla \rho_{\mathrm{d}}(Y_t) + \nabla \rho^{Y_t}(Y_t)}{\rho_{\mathrm{d}}(Y_t) + \rho^{Y_t}(Y_t)} \right) dt,$$
$$\rho^{Y_0} = \rho_0 \in \mathcal{P}(\mathbb{R}^d).$$

<u>Challenge</u>: The dynamics involves *unknown* ρ_d !

SIMULATION OF ODE (9)

- 1. Approximate Y_t by G(Z)
 - ► *Z* is a simple r.v. (e.g., Gaussian), *fixed* over time.
 - $G : \mathbb{R}^d \to \mathbb{R}^d$ is complicated and <u>updated</u> over time.
- 2. Substituting $\rho^{G(Z)}$ for ρ^{Y_t} in ODE (9) \Longrightarrow

$$dY_t = \frac{\nabla D(Y_t)}{2(1 - D(Y_t))} dt, \quad \text{with} \quad D(\cdot) := \frac{\rho_{\rm d}(\cdot)}{\rho_{\rm d}(\cdot) + \rho^{G(Z)}(\cdot)}$$

- ► Goodfellow et al. (2014):
 - With *G* given, $D : \mathbb{R}^d \to [0, 1]$ is the unique maximizer of

 $\max_{D: \mathbb{R}^{d} \to [0,1]} \left\{ \mathbb{E}_{y \sim \rho_{d}} [\ln D(y)] + \mathbb{E}_{z \sim \rho_{Z}} \left[\ln \left(1 - D \left(G(z) \right) \right) \right] \right\}.$

• <u>Note:</u> 1st half of **GAN algorithm** (i.e, Algorithm 1) estimates *D* without knowledge ρ_d or $\rho^{G(Z)}$!

INTRODUCTION 00000	Setup 00000000	Fokker-Planck Eq. 000000000	Gradient Flows 00000000	IMPLICATIONS 000000
Algorith	nm 2 Simulat	ing ODE (9)		
1: for n 2: • 3: • 4: •	umber of train Sample m exa Sample m exa Update D : \mathbb{R}	ning iterations do mples { $z^{(1)},, z^{(m)}$ } mples { $x^{(1)},, x^{(m)}$ } $^{d} \rightarrow [0, 1]$ by ascendin	from $ ho^Z$. from $ ho_d$. g along	
	$ abla_{ heta_D} rac{1}{m} \sum_{i=1,\dots}$	$\sum_{\dots,m} \left[\ln D(x^{(i)}) + \ln \left(1 \right. \right. \right]$	$-D\left(G(z^{(i)})\right)\right].$	
5: • 6: •	Sample <i>m</i> example $X = \{y^{(1)}, y^{(1)}\}$	mples $\{z^{(1)},, z^{(m)}\}$ is $, y^{(m)}\}$ by	from ρ^{Z} .	
	$y^{(i)} := G(z^{(i)})$	$+ \frac{\nabla D(G(z^{(i)}))}{2(1 - D(G(z^{(i)})))}\varepsilon,$	$\forall i=1,2,,m.$	(24)
7: •	Update $G: \mathbb{R}^d$	${}^{d} ightarrow \mathbb{R}^{d}$ by descending	g along	
	-	$-\nabla_{\theta_G} \frac{1}{m} \sum_{i=1,\dots,m} G(z^{(i)}) $	$-y^{(i)} ^2.$	(25)
8: end	for			

Introduction	Setup	Fokker-Planck Eq.	Gradient Flows	Implications 0000000
00000	00000000	000000000	00000000	

Proposition

Algorithm 2 is equivalent to GAN algorithm (i.e, Algorithm 1), up to adjustment of learning rates.

This is because

$$\begin{split} \nabla_{\theta_G} \frac{1}{m} \sum_{i=1}^m |G(z^{(i)}) - y^{(i)}|^2 &= \frac{2}{m} \sum_{i=1}^m (G(z^{(i)}) - y^{(i)}) \cdot \nabla_{\theta_G} G(z^{(i)}) \\ &= \frac{2}{m} \sum_{i=1}^m \left(\frac{-\nabla D(G(z^{(i)}))}{2(1 - D(G(z^{(i)})))} \varepsilon \right) \cdot \nabla_{\theta_G} G(z^{(i)}) \\ &= \varepsilon \nabla_{\theta_G} \frac{1}{m} \sum_{i=1}^m \ln\left(1 - D(G(z^{(i)}))\right). \end{split}$$

GAN algorithm performs simulation of ODE (9)!

Theoretic convergence to ρ_d established rigorously (complements Section 4.2 of Goodfellow et al. (2014)).

IMPLICATIONS

A New Cause for GANs to Diverge:

- ► We've shown the equivalence between
 - ▶ updating *G* in GAN algorithm (i.e., (2))
 - ► moving along ODE + MSE fitting (i.e., (24)-(25))
- ► MSE fitting is too strong a criterion!
 - MSE demands point-wise similarity :

 $G(z^{(i)})$ close to $y^{(i)}$ for all i = 1, 2, ..., m.

► What's needed is only **set-wise similarity** :

distribution of $\{G(z^{(i)})\}_{i=1}^m$ close to that of $\{y^{(i)}\}_{i=1}^m$.

• Work in progress: algorithms based on a set-wise criterion.

INTRODUCTION	Setup	Fokker-Planck Eq.	Gradient Flows	IMPLICATIONS
00000	0000000	00000000	0000000	000000

THANK YOU!!

Q & A Preprint available @ arXiv: 2205.02910 "GANs as Gradient Flows that Converge"