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Abstract. Many studies, mostly empirical, have been devoted to finding an optimal shape
parameter for radial basis functions (RBF). When exploring the underlying factors that determine
what is a good such choice, we are led to consider the Runge phenomenon (RP; best known in case of
high order polynomial interpolation) as a key error mechanism. This observation suggests that it can
be advantageous to let the shape parameter vary spatially, rather than assigning a single value to it.
Benefits typically include improvements in both accuracy and numerical conditioning. Still another
benefit arises if one wishes to improve local accuracy by clustering nodes in select areas. This idea
is routinely used when working with splines or finite element methods. However, local refinement
with RBFs may cause RP-type errors unless we use a spatially variable shape paremeter. With
this enhancement, RBF approximations combine freedom from meshes with spectral accuracy on
irregular domains, and furthermore permit local node clustering to improve the resolution wherever
this might be needed.
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1. Introduction. One of the key issues when applying RBF to interpolation or
to numerical solution of PDEs is the choice of a suitable value for the basis function’s
‘shape parameter’, commonly denoted by ε (with ε → 0 corresponding to increasing
flatness). We observe here that the Runge phenomenon (RP), best known in the case
of polynomial interpolation, also plays a major role in determining the error for RBF
interpolation. From the insights this offers, it becomes natural not to search for a
single ‘optimal’ ε but to consider the use of different values εk at different node points
xk, k = 1, 2, . . . , n.

Another issue we will address relates to node clustering as an approach for im-
proving local accuracy. In many numerical methods, such as spline interpolations or
finite element discretizations of PDEs, local mesh refinement in select areas can be
used to great advantage. In contrast, spectrally accurate methods are typically de-
rived from global (rather than from local) 1-D polynomial interpolants, and the grids
that can be used are largely imposed by the method. The need for tensor-type grid
layouts in traditional spectral methods severely limits the ability to work in irregular
multi-dimensional geometries, and this also makes it complicated to selectively refine
grids, as might be desired for the best resolution of local solution features. An RBF
method with spatially variable ε is able to overcome many of these difficulties.

We first briefly introduce, in Section 2, the concepts of RBF and of RP (for
polynomials), and then overview some relevant features of RBF interpolants. In
Section 3, we show how these two concepts of RBF and RP are connected. This
opens up new opportunities for exploring how RBF performance can be enhanced by
means of using spatially variable shape parameters. Different aspects of this theme
are further explored in Sections 4-7. The discussion in Sections 4 and 5 suggests that
even minor spatial variations in ε will improve the RBF conditioning in a fundamental
way. We note in Section 6 how optimization can be used to devise good strategies for
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Type of radial function
Piecewise smooth
MN monomial |r|2m+1
TPS thin plate spline |r|2m ln |r|
Infinitely smooth
MQ multiquadric

p
1 + (εr)2

IQ inverse quadratic
1

1 + (εr)2

IMQ inverse MQ
1p

1 + (εr)2

GA Gaussian e−(εr)
2

Table 2.1
Definitions of some radial functions. The shape parameter ε controls the flatness of the infinitely

smooth radial functions.

spatially variable shape parameters, which are then tested, as described in Section 7.
This is followed by some concluding remarks in Section 8. On most issues discussed
in this paper, additional materials can be found in [1].

2. Introduction to RBF approximations and to the Runge phenom-
enon. The initial theme of this present study is how RBF approximations are related
to the RP. Following a very brief introduction to these two topics (RBF in Section
2.1, and the RP in Section 2.2), it becomes clear why it is important to use RBF in
such a parameter regime that the RP becomes an issue.

2.1. The form of RBF interpolants. The basic RBF interpolant for data
values fk at scattered locations xk, k = 1, 2, . . . n in d dimensions takes the form

s(x) =
nX
k=1

λk φ(kx− xkk), (2.1)

where || · || denotes the standard Euclidean norm. The expansion coefficients λk are
determined by the interpolation conditions s(xk) = fk, i.e. they can be obtained by
solving a linear system A λ = f. Written out in more detail, this system takes the
form⎡⎢⎢⎢⎣

φ(kx1 − x1k) φ(kx1 − x2k) · · · φ(kx1 − xnk)
φ(kx2 − x1k) φ(kx2 − x2k) φ(kx2 − xnk)
...

...
φ(kxn − x1k) φ(kxn − x2k) · · · φ(kxn − xnk)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

λ1
λ2
...
λn

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
f1
f2
...
fn

⎤⎥⎥⎥⎦ . (2.2)

The numerous possibilities for the radial function φ(r) include the cases listed in Table
2.1. For the infinitely smooth cases that are quoted, it can be shown that the system
(2.2) will never be singular, no matter how the data locations are scattered in any
number of dimensions [2]. In the piecewise smooth cases, a slight variation of the
form of (2.1) will again ensure nonsingularity.
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Fig. 2.1. Equispaced polynomial interpolation of f(x) = 1
1+16x2

over [-1,1]. As n increases,
there is spectral convergence for |x| < 0.7942 and exponential divergence otherwise. These transition
points are marked by solid dots.

2.2. The Runge phenomenon. The best-known case of the RP occurs for
increasing order polynomial interpolation on equispaced grids, and is illustrated in
Figure 2.1. Convergence / divergence rates as the number of node points increases
will depend on x-position and node distribution, but only to a limited extent on
properties of the interpolated function (the only relevant quantity being how far away
from [-1,1] the function can be analytically continued in a complex x-plane without
encountering any singularity; for details, see for example [3] or [4]). In the case shown
in Figure 2.1, this theory will tell that the envelope of the oscillatory error varies
proportionally to

E(z, n) = en (ψ(z0)−ψ(z)) (2.3)

(both for z = x real, and for z complex), where the logarithmic potential function

ψ(z) = − 1
2
Re[(1− z) ln(1− z)− (−1− z) ln(−1− z)] (2.4)

holds for all equispaced polynomial interpolation over [-1,1]. The function f(x) that
is interpolated enters only by setting z0 = 0.25i in (2.3); a singularity in the complex
plane of f(z) = 1/(1 + 16z2).

The standard remedy against the RP is Chebyshev-type clustering of nodes to-
wards the end of the interval, e.g. xk = − cos(π(k−1)n−1 ), k = 1, 2, . . . , n. In that
case, one obtains in place of (2.4) ψ(z) = − ln |z + √z2 − 1|, which for z = x real,
−1 ≤ x ≤ 1, evaluates to zero. Because of (2.3), this corresponds to a uniform ac-
curacy across [-1,1] for all functions f(x). While this particular node distribution
resolves one difficulty (the RP), it introduces others. In the context of time stepping
PDEs, the CFL condition can become very severe. In multiple dimensions, domains
essentially have to be rectangular, and the enforced node distributions leave no room
for local mesh refinements (unless domain decomposition approaches are used).

In contrast to the situation with high order polynomials, 1-D cubic spline inter-
polation is entirely RP free. In fact, the natural cubic spline (s00(x) = 0 at both
ends) minimizes

R
(s00(x))2dx over all possible interpolants [5], thereby entirely ruling

out any form of excessive spurious oscillations. Cubic splines arise as a special case
of RBF interpolation if one chooses φ(r) = |r|3. For scattered data interpolation in
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2-D, a corresponding total curvature minimization is achieved by RBF interpolation
using φ(r) = r2 ln |r|, as observed in [2], [6]. As was just noted, attractive features
in one respect often come with a price to be paid in other respects. The orders of
approximation when using φ(r) = |r|3 and φ(r) = r2 ln |r| are low, due to the limited
smoothness of these functions.

2.3. Advantages of using infinitely smooth RBF. Cubic splines in 1-D
are well known to converge (when approximating a smooth function) at a rate of
O(h4), where h is a typical node spacing. The power of four comes from the fact that
φ(r) = |r|3 has a jump in the third derivative at the origin. If we had used φ(r) = |r|5,
the accuracy would have become O(h6), etc. This obviously raises the question: why
use radial functions φ(r) that have jumps in any derivative? It transpires that the
convergence rate for the infinitely smooth radial functions in general will be spectral
(better than any algebraic order), as long as no Runge-type oscillations arise. Precise
statements and proofs in this regard (however, without describing in-between node
point oscillations as a manifestation of a RP) have been given in [7], [8].

Large values of the shape parameter ε correspond to highly peaked basis func-
tions (in the cases of GA, IQ, IMQ) whereas small values make them flat. Both
extremes carry disadvantages, but the case of small ε also presents some remarkable
opportunities.

2.4. Advantages of using near-flat basis functions. It was demonstrated
in [9] that, in the limit of ε→ 0, RBF interpolants in 1-D in general converge to the
Lagrange interpolating polynomial. Since these (lowest degree) interpolating polyno-
mials in turn form the basis for all classical pseudospectral (PS) methods, this implies
that PS methods alternatively can be viewed as special cases of RBF methods [10].
Already in 1-D, this viewpoint can be advantageous in that use of ε > 0 can be both
more accurate and more stable than the polynomial ε = 0 limit. However, the most
striking advantages come in 2-D (and higher) with the possibility of then using scat-
tered node layouts. This allows PS methods to be generalized from very restrictive
domain shapes and tensor-type grids over to fully irregular domains with scattered
nodes.

In the ε → 0 limit, the conditioning of the linear system (2.2) degrades rapidly.
For example, with 41 scattered nodes in 2-D, det(A) is proportional to ε416 as ε→ 0
for all the infinitely smooth radial functions listed in Table 2.1 [11]. The expansion
coefficients λk become oscillatory and grow rapidly in magnitude with decreasing ε
(proportionally to 1/ε16 in this example). The subsequent evaluation of the inter-
polant by means of (2.1) will then involve large amounts of numerical cancellations.
Utilizing contour integration in a complex ε-plane, the Contour-Padé algorithm [11]
is able to bypass this ill-conditioning, and it permits stable computations of RBF
interpolants all the way down to ε = 0. By means of the RBF-QR algorithm [12], [13],
the Contour-Padé limitation on the number of nodes n (to be no more than around
200-300 nodes in 2-D) has essentially been eliminated.

The benefits of computing in a very low ε-range were strikingly illustrated in [14].
One of the test cases considered there was to solve Poisson’s equation ∂2u

∂x2 +
∂2u
∂x2 =

f(x, y) over the unit circle using straightforward RBF collocation, with a right hand
side f(x, y) and Dirichlet boundary conditions chosen so that u(x, y) = 65/(65 +
(x − 0.2)2 + (y + 0.1)2) becomes the solution. With nodes for a second order finite
difference scheme, a Fourier-Chebyshev PS scheme, and RBF laid out as illustrated in
parts a-c respectively of Figure 2.2, the max norm errors become as seen in Figure 2.3
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Fig. 2.2. Three different node distributions, all with 16 nodes on the boundary and 48 nodes
in the interior, used by the FD2, PS, and RBF methods, respectively, in the Poisson equation test
case.

Fig. 2.3. The max norm errors in the Poisson equation test case, as functions of ε when
using MQ, IQ and GA. The errors (not ε-dependent) for standard second order finite differences
(FD2) and Fourier-Chebyshev pseudospectral (PS) method are also included for comparison: (a)
Computation using Contour-Padé method, (b) Direct implementation via Gaussian elimination.

a when calculated with the Contour-Padé algorithm, whereas direct solution of the
collocation equations by Gaussian elimination gives the results shown in Figure 2.3 b.
Large values of ε clearly give large RBF errors, so a decrease in ε is initially beneficial.
At some point, the improvements cease. As a comparison between Figures 2.3 a and
b indicates, there are two entirely different factors behind this reversal in trend. The
first such factor is usually numerical ill conditioning (prominent for small ε in Figure
2.3 b). This factor tends to dominate, unless it has been eliminated (for ex. by the
Contour-Padé algorithm or by the RBF-QR algorithm; certain pre-conditioning-type
methods [15], [16] can alleviate but will not eliminate ill-conditioning). We will find
that the second factor (seen for small ε in Figure 2.3 a as a near-constant error level)
is closely related to the polynomial RP.

The RBF methods feature much more flexibility than the alternatives (FD2 and
PS) in that the results depend very little on how the nodes are scattered over domains
that need not be circular, but can be arbitrarily shaped. Furthermore, the RBF errors
are seen to be many orders of magnitude smaller than those of FD2 and PS as soon
as ε is chosen sufficiently small.

2.5. Some literature on choosing a good shape parameter value. The
literature on selecting a good (single) value for ε is extensive, e.g. [15], [17], [18], [19],
[20], [21], [22]. Many of these works focus on finding the minimal error in computations
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Fig. 3.1. Growth of RP in MQ RBF interpolation as ε → 0. The three subplots show n = 21
equispaced point interpolants of f(x) = 1

1+16x2
in the cases of (a) ε = 1.5, (b) ε = 0.6, and (c)

ε = 0.1.
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Fig. 3.2. GA interpolants of f(x) = 1
1+16x2

for a wide range of ε-values: ε = 30, 3.5, and 0.5
respectively.

that are conceptually similar to what was shown in Figure 2.3 b, i.e. recommending
computing to be carried out near the range of potentially severe ill-conditioning.

3. The RP for RBF approximations.

3.1. Error trends for low ε. Figure 3.1 illustrates that a RP in RBF in-
terpolation can arise simply as a consequence of RBF interpolants approaching the
polynomial interpolant in the ε → 0 limit (compare Figure 3.1 c with Figure 2.1 a).
Figure 3.2, using GA instead of MQ interpolants, illustrates more clearly the addi-
tional aspect of how the error at first decreases and then, when the RP ‘kicks in’,
again increases.

The six subplots in Figure 3.3 illustrate how the smoothness of the interpolant
influences the point at which the trend reversal occurs, and how strong this reversal
will be. The third case (α = 16) uses the same test function as is shown in Figures
2.1, 3.1, and 3.2. The Runge phenomenon enters in all cases once ε is sufficiently
small, and its level at ε = 0, as obtained from the polynomial RP theory quoted in
Section 2.2, agrees completely with the lowest ε-results in Figure 3.3. Although higher
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Fig. 3.3. Top row: The function fα(x) =
1

1 + αx2
for three values of α. Next two rows of

subplots show how the error varies with ε in the case of GA and MQ RBFs respectively.

accuracy can be reached if the data is smoother, the RP still in all cases breaks a very
favorable improvement trend for when ε is decreased.

We use in this study the concept of RP in a sense which may be somewhat broader
than what is customary, i.e. not only to describe massively large edge errors (such as
seen in parts c of Figures 3.1 and 3.2, leading to divergence as n→∞) but also the
elevated errors at low ε for all the cases illustrated in the subplots of Figure 3.3. The
concept is the same, even if the effect in some cases may amount to slower convergence
rather than to outright divergence at edges, when n→∞.

The discussion above provides an understanding of the trend reversal that was
illustrated earlier in Figure 2.3 a. Although this trend reversal was addressed theo-
retically in [23], the present RP interpretation of it may be more intuitive.

3.2. RP caused by variable node spacings. A second mechanism by which
a RP can arise is illustrated in Figure 3.4. In part a, there is no RP visible, but the
equispaced RBF approximation lacks sufficient resolution near the center, where the
data features a very sharp gradient. In part b, we have inserted two extra nodes in the
critical area and, in part c, still two more nodes are inserted. The most striking result
of this local refinement is a disastrous RP. In contrast to this, Figure 3.5 shows that one
can obtain excellent accuracy if one uses good choices for node point locations and for
εk-values (now taking different values at the different nodes xk ∈ [−1, 1]). Although
the multivariate optimizer used in obtaining Figure 3.5 (discussed later in Section
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and spatially variable ε were chosen to minimize the interpolation error. (a) Node locations and
interpolant, (b) Error across [-1,1], (c) The optimized ε-values.

6.2) appears to have found only a local optimum (in contrast to the global one, for
which the oscillations in the error most likely would all be of the same amplitude), the
error level that is reached is nevertheless spectacular in comparison with what can be
achieved with, say, polynomial interpolation at the Chebyshev nodes (corresponding
to a typical non-periodic PS method). As Figure 3.6 shows, n = 170 nodes are needed
to match the max norm accuracy of 2.5 · 10−5 that RBF achieved using only n = 10
interpolation nodes. Returning to Figure 3.5: the rightmost subplot displays the node
coordinates xk together with the associated shape parameter values εk. The pattern
for the latter is a striking illustration of a principle that we will again arrive at (and
discuss further) in Section 7.1: εk should be increased in areas of higher node density.

So far, there exists no fast algorithm for finding optimal node locations and op-
timal (spatially variable) εk-values for RBF interpolants. However, the example sug-
gests that the topic deserves further study.

3.3. Means to control the RP. With only discrete data utilized for forming
RBF interpolants, it is unreasonable to hope for infinite accuracy. Complete elimina-
tion of all error barriers for small ε is therefore not conceivable. A few approaches that
might succeed in somewhat reducing the RP-type errors have already been suggested
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in the literature:

1. Node clustering at edges (or wherever needed) to improve accuracy,
2. Super Not-a-Knot (SNaK) generalization of cubic spline end conditions,
3. Spatially variable shape parameter; use εk at node location xk.

The discussion in [24] suggested that SNaK may be preferable to node clustering
at edges. The third possibility - spatially variable εk - will be studied further below.
While some potential benefits of this approach have been noted before, as summarized
next in Section 3.4, we will here consider this issue from the perspective offered by
the RP.

3.4. Previous literature on spatially variable shape parameters. The
idea of using a spatially variable shape parameter in the RBF expansion (2.1) has
been proposed numerous times. A limited version of the concept was proposed by
Kansa already in 1990 [25]. The idea was generalized shortly afterwards by him and
Carlson [21], using least squares optimization to find good εk distributions for certain
test functions. More recently, spatially variable εk MQ interpolants in 1-D have
been related to 1-D splines [26]. In [27], an adaptive algorithm is proposed in which
node densities are varied according to a local error criterion, and variable εk-values
are increased wherever the node layout has become denser. Numerical experiments
reported in [28] led to a number of observations, several of which agree well with results
in this study (such as the benefit of reducing εk at boundaries and that introducing
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oscillations in εk might improve both conditioning and accuracy).

4. Flat basis function limit in the case of spatially variable εk.

4.1. Closed-form expression for interpolant. As originally noted in [10],
one can readily write down RBF interpolants in closed form. The formula generalizes
immediately to the case of spatially variable εk as follows: If the data at location xk
is f1 = 1, with fk = 0 otherwise (cardinal data), then the interpolant s(x) becomes

s(x) = N / D ,

where

N =

¯̄̄̄
¯̄̄̄
¯
φ(ε1||x− x1||) φ(ε2||x− x2||) · · · φ(εn||x− xn||)
φ(ε1||x2 − x1||) φ(ε2||x2 − x2||) · · · φ(εn||x2 − xn||)
...

...
...

φ(ε1||xn − x1||) φ(ε2||xn − x2||) · · · φ(εn||xn − xn||)

¯̄̄̄
¯̄̄̄
¯

and

D =

¯̄̄̄
¯̄̄̄
¯
φ(ε1||x1 − x1||) φ(ε2||x1 − x2||) · · · φ(εn||x1 − xn||)
φ(ε1||x2 − x1||) φ(ε2||x2 − x2||) · · · φ(εn||x2 − xn||)
...

...
...

φ(ε1||xn − x1||) φ(ε2||xn − x2||) · · · φ(εn||xn − xn||)

¯̄̄̄
¯̄̄̄
¯ .

To keep the algebra simple, we focus the following discussion on 1-D, believing that
conclusions will be similar in higher-D.

Example 1: With xk = {−1,− 1
2 , 0,

1
2 , 1}, letting the shape parameter ε be the

same at all nodes, and using MQ, one finds by Taylor expanding N and D in powers
of ε

N = 189
8192 x (1− x− 4x2 + 4x3) ε20 +O(ε22)

D = 567
4096 ε

20 +O(ε22)
,

i.e. s(x) → 1
6 x (1 − x− 4x2 + 4x3) when ε → 0. This limit agrees with Lagrange’s

interpolation polynomial, as is required by the theory in [9]. Given that all the entries
in N andD are of size O(1) (since φ(ε||·||) = 1+c1ε2+c2ε4+. . . and ε is assumed to be
small), it is clear that a vast amount of cancellations have occurred when evaluating
these determinants in order to obtain both N and D of size O(ε20). These high
powers of ε reflect the ill-conditioning of direct implementation through (2.2), noting
that D = det(A). ¤

Example 2: With the same xk, but choosing εk = ε · δk (where δk are arbitrary
constants), we get instead

N = 3
8192 x (1− x− 4x2 + 4x3) p(δ1, δ2, . . . , δ5) ε12 +O(ε14)

D = 9
4096 p(δ1, δ2, . . . , δ5) ε

12 +O(ε14)
, (4.1)

where the expression for p(δ1, δ2, . . . , δ5) is quite complex:
10



p = δ41δ
4
2δ
2
3δ
2
4 − 4δ41δ22δ43δ24 + 3δ21δ42δ43δ24 + 3δ41δ22δ23δ44 − 4δ21δ42δ23δ44 + δ21δ

2
2δ
4
3δ
4
4

− 2δ41δ42δ23δ25 + 6δ41δ22δ43δ25 − 4δ21δ42δ43δ25 + δ41δ
4
2δ
2
4δ
2
5 − 2δ41δ43δ24δ25 + δ42δ

4
3δ
2
4δ
2
5

− 9δ41δ22δ44δ25 + 8δ21δ42δ44δ25 + 6δ41δ23δ44δ25 − 4δ42δ23δ44δ25 − 4δ21δ43δ44δ25 + 3δ22δ43δ44δ25
− 4δ41δ22δ23δ45 + 6δ21δ42δ23δ45 − 2δ21δ22δ43δ45 + 8δ41δ22δ24δ45 − 9δ21δ42δ24δ45 − 4δ41δ23δ24δ45
+ 3δ42δ

2
3δ
2
4δ
4
5 + 6δ

2
1δ
4
3δ
2
4δ
4
5 − 4δ22δ43δ24δ45 + δ21δ

2
2δ
4
4δ
4
5 − 2δ21δ23δ44δ45 + δ22δ

2
3δ
4
4δ
4
5 .

If this quantity does not evaluate to exactly zero, we again obtain the limit s(x) →
1
6 x (1 − x − 4x2 + 4x3) as ε → 0. It is easy to verify that p(1, 1, 1, 1, 1) = 0. In
this case, not only do the O(ε12) terms in (4.1) vanish, so do also the terms of size
O(ε14), O(ε16), and O(ε18). As Example 1 showed, the limit for s(x) nevertheless
turned out the same. Since D is the determinant of the coefficient matrix A in (2.2)
(if generalized to spatially variable εk), the size of D in terms of ε reflects the severity
of the conditioning if the RBF interpolant is evaluated via (2.2) and (2.1). ¤

The Examples 1 and 2 can readily (using Mathematica) be repeated for other
similar situations. In all cases we have attempted, the main observations remain the
same:

1. The conditioning of the A-matrix is likely to be greatly improved when using
spatially variable εk,

2. If we use εk = ε · δk, then limε→0 s(x) is independent of the choices of δk,
i.e. varying these constants δk does not appear to be a practical approach for
improving accuracy at ε = 0,

3. Although spatially variable εk does not appear to help the accuracy in the flat
RBF limit (being the same in either case), it might nevertheless be beneficial
for intermediate ε-values (recalling again our choice of εk = ε · δk, where δk
are arbitrary constants).

4.2. Possibility of singularity in the case of spatially variable εk. With
spatially variable εk, the standard proofs for non-singularity of the RBF interpolation
matrix A no longer apply. It is in fact easy to construct examples showing that
singularities indeed can arise. Consider for example GA interpolants and three nodes
in 1-D, located at xk = {−1, 0, 1}. The function f(x) = e−(

1
2 (x+1))

2

+ e−(
1
2 (x−1))2

satisfies f(0) ≈ 1.5576 and f(±1) ≈ 1.3679. It clearly is possible to choose α and β

so that g(x) = α e−(β x)
2

matches these three values. For the interpolation problem
with xk = {−1, 0, 1} and εk = {12 ,β, 12}, the A-matrix will then have [1,−α, 1]T as
eigenvector with eigenvalue zero, implying that it is singular.

4.2.1. Non-singularity when variable εk are large. We first consider for
ex. GA, IQ or IMQ interpolation, with all εk → ∞. The A-matrices will tend to
the identity matrix, and non-singularity is obviously assured. In the case of MQ, we
would likewise have convergence to the non-singular φ(r) = r case. By relating MQ
interpolants with B-splines, non-singularity for sufficiently large εk is demonstrated
for 1-D in [26].

4.2.2. Non-singularity when variable εk are small. The singularity exam-
ple in the introduction to Section 4.2 generalizes immediately to the case of arbitrarily
small εk. For example, when using IQ, the A-matrix in case of xk = {−1, 0, 1} and

11
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Fig. 5.1. Random distribution of n = 51 nodes used in the eigenvalue calculations in Sections
5.1 and 5.2.

εi = {ε, ε
√
1−2ε2√

1+ε2
√
1+2ε2

, ε} is singular whenever ε < 1/√2. Nevertheless, the observa-
tions we make below with regard to the eigenvalues of the A-matrices when ε → 0
(spatially non-varying) and εk → 0 (spatially varying) not only indicate that singular-
ities are unlikely to occur, but also (again) that spatially variable εk will significantly
improve the conditioning of the A-matrix.

5. Eigenvalues of the A-matrix.

5.1. Case of spatially constant ε. Results in [29] (page 308) can be shown
to imply that the eigenvalues of the A-matrix will scale with different powers of ε.
Numerical calculations provide a much more detailed picture. For example, with
n = 51 scattered nodes in 2-D, as shown in Figure 5.1, the eigenvalues vary with ε
as seen in Figure 5.2 (computed using Matlab’s VPA - variable precision arithmetic).
Irrespective of the choice of RBF type (IQ, MQ, or GA), the magnitudes of the
eigenvalues form very clear groups, following the pattern

{O(1)}, {O(ε2), O(ε2)}, {O(ε4), O(ε4), O(ε4)}, {O(ε6), O(ε6), O(ε6), O(ε6)}, . . .
until the last eigenvalue is reached (causing the last group to possibly contain fewer
eigenvalues than the general pattern would suggest). Different choices of scattered
node locations xk make no difference in this regard. More concisely, we can write this
eigenvalue pattern as

1, 2, 3, 4, 5, 6, . . . (5.1)

indicating how many eigenvalues there are of orders ε0, ε2, ε4, ε6, ε8, ε10, etc.
Given such a pattern, one can immediately calculate the orders of both cond(A) and
of det(A) =

Qn
k=1 λk. Doing so confirms the special case noted in Section 2.4 of det(A)

being of size O(ε416) when n = 41 (obtained in [11] by an entirely different approach
involving contour integration) and also shows that in this same case, cond(A) =
O(ε−16). Corresponding results for different dimensions and geometry types are shown
in Table 5.1 on the lines labeled “ε constant”.

12
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Fig. 5.2. Eigenvalues of the MQ RBF A-matrix in the 2-D n = 51 scattered node case, as
functions of ε (spatially constant). The number of eigenvalues in each of the different groups are
also shown (easiest counted when printed numerically rather than when displayed graphically as
here).

5.2. Case of spatially variable εk. Figure 5.3 shows that choosing εk = ε ·
{random numbers on [0,1]} and letting ε→ 0 (for the figure using the same random
nodes in 2-D as seen in Figure 5.1) creates a different but equally distinct and clear
eigenvalue pattern

1, 3, 5, 7, 9, 11, . . . (5.2)

In the n = 41-case discussed above, we get for the spatially variable εk det(A) =
O(ε310) and cond(A) = O(ε−12) (i.e. a clear improvement). These same types of
numerical studies can easily be extended to all the cases shown in Table 5.1 as “εk
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Fig. 5.3. Same as Figure 5.2, but with the shape parameters chosen as εi = ε·{random numbers
on [0,1]}.

variable”. In all cases that are shown, the results are verified for IQ, MQ, and GA
in calculations extending to still higher values of n and also for numerous cases of
different scattered node sets and random εk distributions.

The patterns seen in Table 5.1 show that “εk variable” in all the non-periodic cases
is more favorable than “ε constant”. Because cond(A) = O(1/{smallest eigenvalue})
= O(1/εα(n)), we can readily convert the information

in Table 5.1 to obtain cond(A) as a function of n. For example in the case of
“2-D non-periodic”, we get

cond(A)“ε constant” = O(1 / ε
2[(
√
8n−7−1)/2])

14



Power of ε =
Geometry shape param. 0 2 4 6 8 10 12 14 ...
1-D non-periodic ε constant 1 1 1 1 1 1 1 1 ...

εk variable 1 2 2 2 2 2 2 2 ...
1-D on circle periph. ε constant 1 2 2 2 2 2 2 2 ...
(embedded in 2-D) εk variable 1 2 2 2 2 2 2 2 ...
2-D non-periodic ε constant 1 2 3 4 5 6 7 8 ...

εk variable 1 3 5 7 9 11 13 15 ...
On spherical surface ε constant 1 3 5 7 9 11 13 15 ...
(embedded in 3-D) εk variable 1 3 5 7 9 11 13 15 ...
3-D non-periodic ε constant 1 3 6 10 15 21 28 36 ...

εk variable 1 4 9 16 25 36 49 64 ...
Table 5.1

Numbers of eigenvalues of different sizes (powers of ε) for different geometries and types of
shape parameter.

Number of nodes n =
Geometry shape param. 1 10 100 1000 10000 100000 ...
1-D non-periodic ε constant 0 18 198 1998 19998 199998 ...

εk variable 0 10 100 1000 10000 100000 ...
1-D on circle periph. ε constant 0 10 100 1000 10000 100000 ...
(embedded in 2-D) εk variable 0 10 100 1000 10000 100000 ...
2-D non-periodic ε constant 0 6 26 88 280 892 ...

εk variable 0 6 18 62 198 632 ...
On spherical surface ε constant 0 6 18 62 198 632 ...
(embedded in 3-D) εk variable 0 6 18 62 198 632 ...
3-D non-periodic ε constant 0 4 14 34 76 166 ...

εk variable 0 4 12 26 60 132 ...
Table 5.2

Condition number cond(A) = 1 / εα(n) with α(n) displayed for various values of n in all the
cases of Table 5.1.

and

cond(A)“εk variable” = O(1 / ε
2[
√
n−1]) .

Here, sharp brackets [·] denote the integer part; for derivations, see [1]. These and
corresponding expressions for the other cases are evaluated for some different values
of n in Table 5.2. For fixed n, conditioning is also seen to improve rapidly with
increasing number of dimensions.

The data in Table 5.1 shows that, even with randomly scattered εk-values (or
when the εk-values are chosen according to the ‘inversely proportional to nearest
neighbor’ strategy arrived at in Section 7.1; found to give exactly the same eigenvalue
results), extremely distinct eigenvalue patterns hold. One might have expected that
completely irregular variations in the shape parameters εk might have led to irregular
variations in the eigenvalues of the A-matrix (compared to the constant ε situation),
and that therefore some of the extremely small eigenvalues might have been perturbed
enough to change sign (with the possibility of becoming zero). The fact that even
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Power of ε =
Geometry shape param. 0 2 4 6 8 10 12 14 16 18 ...
2-D non-per. one εk different 1 3 2 5 4 7 6 9 8 11 ...

εk alternating 1 3 4 5 7 8 9 11 12 13 ...
Table 5.3

Eigenvalue patterns (for IQ, MQ and GA) in two additional cases of scattered points in 2-D

the very smallest eigenvalues show no tendency whatsoever towards any irregularities
suggests that singular systems are not likely to arise (despite the counterexamples in
Section 4.2).

Still other eigenvalue patterns appear in ‘intermediate’ cases, such as all εk but
one taking the same value, or the εk alternating between two values. For example, in
the case “2-D non-periodic” (cf. Table 5.1), the patterns become as seen in Table 5.3.
These two cases are seen to feature conditionings that fall between the most favorable
“εk variable” and least favorable “ε constant” cases shown in Table 5.1.

5.3. Significance of eigenvalue patterns. The very distinct eigenvalue pat-
terns seen in Figures 5.2, 5.3 and summarized in Tables 5.1-5.3 give surprisingly precise
information in situations that are so irregular in terms of both node locations xk and
shape parameter values εk that intuition might have suggested that no exact patterns
could exist. These patterns tell us precisely the degree by which conditioning is im-
proved when utilizing different freedoms that become available by means of locally
variable εk (or when just making one single εk different from the other). Even slight
deviations from the case of all εk being the same lead to significant improvements in
the condition number (and resulting accuracy) in all non-periodic cases. Although it
is still not well understood where these very distinct eigenvalue patterns ‘come from’,
it is nevertheless clear that they are completely well defined and that they likely hold
a key to future understanding of many variable εk issues, in particular with regard to
the conditioning of the RBF equations.

6. Search for variable εk strategies by means of optimization. We il-
lustrated above that RP can be triggered by boundaries (e.g. Figures 2.1 and 3.1
in cases of polynomials and RBF, respectively) and also by refinement at interior
locations (Figure 3.4). The standard way to suppress polynomial RP is to increase
the node density wherever the phenomenon occurs, e.g. to use Chebyshev-type node
clustering at boundaries. Here we will explore if the use of spatially varying RBF
shape parameters εk can also achieve some form of RP control. As an alternative
to proposing and then testing some intuitively motivated variable εk strategies on
a collection of test functions, we will use numerical optimization to try to arrive at
good εk distributions, independently of any specific test function choices. Following a
discussion of what might be suitable functionals to minimize, and of local vs. global
minimization, we apply in Section 7 the obtained ideas to 1-D RBF interpolation.

6.1. Functionals for measuring the RP.

6.1.1. The Lebesgue constant. In case of polynomial interpolation, the level
of the RP is very well measured by the Lebesgue constant. If we write the Lagrange
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interpolation polynomial as

Pn−1(x) =
nX
k=1

f(xk) Fk(x)

where

Fk(x) =
nY

j=1; j 6=k
(x− xj) /

nY
j=1; j 6=k

(xk − xj), k = 1, 2, . . . , n,

are the n− 1 degree polynomials satisfying

Fk(xj) =

½
1 if j = k
0 if j 6= k , (6.1)

then the Lebesgue constant is defined as

Λn = max
x∈[−1,1]

nX
k=1

|Fk(x)| . (6.2)

For any type of node distribution, Λn expresses how the RP can grow as n is increased.
For example, with n nodes equispaced on [-1,1], one finds Λeqn = O

¡
2n

n lnn

¢
(i.e. dis-

astrous growth) vs. for a Chebyshev-type node distribution ΛChebn = O(lnn) comes
very close to the optimal situation for any distribution type (which can be shown to
only improve ΛChebn = 2

π (lnn+γ+ln 8
π )+o(1) to Λ

Optimal
n = 2

π (lnn+γ+ln 4
π )+o(1),

cf. [30]). One of the strengths of the Lebesgue constant as a measure of the quality
of polynomial interpolation with different node distributions is the relation (in max
norm) °°f − P interpn

°°
∞ ≤ (1 + Λn)

°°f − P optimaln

°°
∞ . (6.3)

This single quantity Λn thus expresses how well interpolation with a certain node
distribution works compared to the optimal polynomial approximant P optimaln (which
need not be related to any interpolation method), entirely independently of which
function f we interpolate. It makes no difference for the validity of (6.3) whether f is
infinitely or finitely many times differentiable, or even if it is discontinuous. Exploring
node distributions that make this single quantity Λn small can therefore achieve a
similar goal as can direct testing with a large and diverse set of trial functions f .

In the case of equispaced interpolation with GA RBF, it was noted in [31] that it
is possible to change variables so that the RBF problem becomes one of polynomial
interpolation, thereby making both logarithmic potential theory (e.g. [3], Section
3.4) and a version of Lebesgue constants available. In a more direct approach to
generalizing Lebesgue constants to non-polynomials, one might consider applying the
definition (6.2) to cardinal RBF interpolants (not only in the case of GA, but for any
type of radial functions). Figure 6.1 compares the cardinal functions Fk(x), obeying
(6.1), in the cases of polynomial and MQ RBF interpolation. While a Chebyshev-
type node distribution is necessary in the polynomial case (top row in Figure 6.1)
to hold down the RP, the RBF interpolant is seen to be increasingly robust in this
regard when ε increases from the polynomial ε = 0 case (thus reducing the need for
node clustering at boundaries). Even with the counterpart of (6.3) not remaining
strictly valid when using RBF as opposed to polynomials, choosing any fixed value of
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Fig. 6.1. Comparison of the cardinal functions Fk(x) for polynomial interpolation and for
MQ RBF interpolation (with ε = 0.4 and ε = 1) in the case of n = 9 equispaced and Chebyshev
distributed node points over [-1,1].

ε and then moving the nodes to minimize Λn offers a plausible approach for designing
effective node layouts for RBF methods. We will next explain why this no longer is
the case if also the shape parameter is spatially variable, and thus be motivated to
introduce a different approach in Section 6.1.2.

Two key reasons why the Lebesgue constant Λn is successful as a quality metric for
polynomial interpolation are (i) the inequality (6.3), and (ii) the fact that smoothness
of the interpolant is guaranteed (since all sufficiently high derivatives of polynomials
are zero). Thus, the quantity Λn measures very well the presence of any type of RP
in polynomials.

If we use RBF and let ε be freely variable (0 < ε <∞), smoothness is no longer
guaranteed and Λn, as defined by (6.2), will approach its theoretical minimum value
of one whenever ε →∞. This corresponds to terrible interpolants; free from the RP
but fitting the data by means of sharp kinks or spikes at each data location (cf. Figure
3.2 a). For the present purpose of finding good spatially variable εk, suitable for all
functions f(x), we therefore need another functional than Λn to minimize.

6.1.2. Spline-related functionals. We have already noted that RBF inter-
polants in 1-D, when ε → 0, will approach the PS interpolant. A second type of
functions which also approach this PS limit is spline interpolants when their approx-
imation order is increased. This connection will suggest functionals that are suitable
for measuring the RP and also for exploring variable εk strategies, avoiding the draw-
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back just noted for the Lebesgue constant.
A well-known feature of natural cubic splines (as noted earlier in Section 2.2) is

that they, of all interpolants s(x) to a data set {xk, fk}, k = 1, 2, . . . , n, minimize

A =

Z xn

x1

(s00(x))2dx. (6.4)

In analogy to (6.2), this would suggest considering (when working on [-1,1]) the func-
tional

An =
1

n

nX
k=1

1Z
−1
(F 00k (x))

2
dx , (6.5)

where Fk(x) are the RBF cardinal functions (as displayed in Figure 6.1). This quantity
An will be large if any of the cardinal RBF interpolants Fk(x) feature any ‘unneces-
sary’ oscillations (like the case for Λn), but it will also grow large if the interpolants
loose their smoothness. The result (6.4) generalizes to natural splines of higher order
in that the natural spline of order 4k − 1 minimizes

B =

Z xn

x1

(s(2k)(x))2dx, (6.6)

k = 1, 2, . . .. ([5], Chapter 23). While the functional (6.5), associated with cubic
splines, might over-emphasize the suppression of oscillations over smoothness (featur-
ing very effective damping of oscillations, but accepting a discontinuity in the third
derivative), higher order functionals will balance the two aspects better. In conse-
quence of this, we will in addition to (6.5) also use

Bn =
1

n

nX
k=1

1Z
−1

³
F
(4)
k (x)

´2
dx . (6.7)

6.2. Strategies for minimization. In the minimization examples in this study,
we will let the shape parameter εk-values be freely variable (0 < εk < ∞), and
then seek to make a quantity, such as An or Bn as small as possible. Although
steepest descent is not very effective in its simplest form, variations of this concept
are implemented effectively in Matlab’s fminsearch routine (in Matlab’s Optimization
Toolbox), allowing us to find a local minimum when a close approximation to it is
provided. The main challenge in global minimization is for the search not to get
attracted to local minima (of which there can be millions or trillions) but to somehow
scan a vast multivariate space and then identify the likely candidates for the global
minimum. In the first test case in Section 7.1, we have 50 free parameters (εk, k =
1, . . . , n with n = 50). Already a sampling with 10 point resolution in each direction
throughout a 50 dimensional space would require 1050 points to be checked. To
appreciate the size of such a task, one can note that the fastest computer system in
the world does not yet reach 1015 operations per second, and that the estimated age
of the universe is around 1017 seconds. In spite of the impossibility of finding global
minima of functions of many variables by a direct search throughout the parameter
space, some algorithms can perform surprisingly well. Simulated annealing [32], [33]
was recognized in [34] as one of the top ten algorithms of the 20th century. Its idea
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Fig. 7.1. (a) The generation of variable nodes tk → xk according to (7.1), with n = 50 and
β = 1, (b) Optimized εk, obtained by minimizing An, (c) Inverse distance from a node xk to its
nearest neighbor.

is to mimic numerically how nature finds a global minimum in a sea of local ones in
the process of crystal formation during slow cooling.

Instead of following one single search path throughout a high-dimensional space,
a genetic algorithm pursues a large number of simultaneous paths, and frequently
re-starts these populations of search trails by ‘mutations’ and by combining charac-
teristics of successful ones.

For the minimization tasks described in the present paper, we have used a com-
bination of the routine ga from Matlab’s Genetic Algorithm Toolbox and the routine
fminsearch mentioned earlier. Although it is uncertain whether we reached the global
minimum in any of the cases that are shown, the results are nevertheless clear enough
to reveal some features of variable εk RBF methods.

7. Some optimization tests in the case of 1-D interpolation. As we noted
in the introduction, RP can arise from internal node refinements or from boundary
effects. These two cases will be considered further in the next two subsections (using
MQ RBF in all test cases).

7.1. RP due to internal node refinement. The easiest way to eliminate
boundary effects when analyzing a numerical method is to consider a periodic problem.
RBF in a 1-D periodic setting are typically implemented by placing the nodes around
the periphery of a circle rather than along a 1-D interval. For a 2π-periodic node
set xk, k = 1, 2, . . . , n, we instead locate the nodes at ξk = cosxk, ηk = sinxk in a
(ξ, η)-plane, and then find the RBF interpolant in the standard way for a 2-D node
set (i.e. computing distances between nodes as straight line distances through the
circle).

The purpose of the first minimization experiment is to explore how the εk ought
to be selected in order to get the best RBF interpolant (in the sense of minimizing
An and Bn) for a given non-uniform node distribution xk, k = 1, 2, . . . , n. Choosing
for example

xk = tk+β(−0.4+0.3 sin tk+0.2 cos 2tk+0.2 cos 3tk), ti = 2πk

n
, k = 0, 1, . . . , n (7.1)

with n = 50 and β = 1, we get for An the result shown in Figure 7.1 (which is typical
for a number of similar tests). Subplot (b) shows that the optimal εk go up in value
wherever the nodes cluster more densely. A comparison with subplot (c) shows that
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Fig. 7.2. (a) Inverse distance to nearest neighbor in case of β = 0.28 (b) Optimized εk when
using Bn (c) Same as part (b), but with β = 0.29.
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Fig. 7.3. Optimized εk using the functional An in the case of n = 21 equispaced nodes over [-1,1].

simply choosing

εk =
ε

dk
(7.2)

where ε is a single free shape parameter and dk is the distance to the nearest neighbor
of xk would appear to be a good strategy, which furthermore would be very easy to
implement. This result is highly natural: if the x-axis is stretched to make the nodes
equispaced, all the basis functions would become similarly shaped to each other.

For β small, the functional Bn also gives optimized ε-results that vary like the
distance to the nearest neighbor, as seen in Figures 7.2 a, b, but for larger β, the
optimized εk typically also feature a superimposed oscillatory or spiky pattern (cf.
Figure 7.2 c, indicating a transition around β = 0.29). The significance of this is still
unclear, but it could indicate that there is a genuine advantage to εk-patterns that
have a strongly irregular character.

7.2. 1-D interpolation with boundaries. Figure 7.3 shows the result of opti-
mizing An in the case of n = 21 equispaced nodes over [-1,1] (with symmetry imposed).
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Fig. 7.4. Comparison of results when interpolating f(x) = 1
1+x2

on an equispaced grid with
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described in the text; dashed lines) for (a) max norm error and (b) condition number for linear
system.

The primary end correction that appears to be called for is a lowering of εk at some
end points, with oscillations again appearing beneficial (all in good agreement with
observations in [28]). When using Bn, the optimization algorithm had difficulties
in finding the global minimum. Local minima typically were qualitatively similar in
character to those for An, but more prone to asymmetries in case symmetry was not
imposed.

To test if these results are at all meaningful, we have re-run the α = 1 test case
shown as the bottom center subplot in Figure 3.3, comparing the errors in the case
of spatially constant εk = ε against those for

εk = ε · {0.3, 0.3, 0.3, 1, 1, 1, . . . , 1, 1, 1, 0.3, 0.3, 0.3}, (7.3)

with the result shown in Figure 7.4. It is clear that, as was expected, the lowering of
εk at the edges

1. Significantly improves the accuracy in case of relatively large ε-values (recall-
ing how εk are defined in (7.3)),

2. Improves the best accuracy that can be reached,
3. Leads to the same interpolant in the ε→ 0 limit,
4. Features slightly better conditioning when ε→ 0 (in spite of some εk having
been lowered).

The particular numbers used in (7.3) were suggested by the ε ≈ 5 - results seen
in Figure 7.3, so the good accuracy in that ε-regime is not surprising. Although the
benefits in using (7.3) (rather than the same ε at all nodes) extend for quite a wide
range, the precise form of (7.3) is probably far from optimal as ε → 0. However, we
will not here pursue the task of searching for improved variations of (7.3).

8. Conclusions. In the example shown in Figure 7.4 a, using (spatially varying)
ε around the value one gave over four orders of magnitude higher accuracy than letting
ε → 0, whereas in other cases (as seen for example in Figure 2.3 a), any value for ε
below some transition point is equally good. Such examples motivated the present
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work, which is an attempt to gain a better understanding of the accuracy levels that
can be reached by different strategies for RBF interpolation. The key observation
in this study is that the error in RBF interpolation, as ε → 0, is dominated by
two factors. The first one, ill conditioning, has been well recognized in the past,
and it can be eliminated by algorithms such as Contour-Padé and RBF-QR. We
identify here the Runge phenomenon (RP) as another limiting factor where, by the
RP, we do not only mean outright divergence as n → ∞ (as seen in Figure 2.1)
but also the accuracy degradation for small ε as clearly visible in all cases in Figure
3.3, whether causing divergence or merely slowed-up convergence in this n → ∞
limit. It is not clear to what extent the RP can be reduced and, if so, how this
can be best achieved. Not decreasing ε all the way to zero is sometimes beneficial.
Of the three possible approaches mentioned in Section 3.3, we have here presented
some exploratory results only for the third one: the use of a spatially variable shape
parameter εk. Instead of just having one shape parameter ε to optimize, we now
have as many as there are data points. Our exploration of the opportunities all
these freedoms can offer is very preliminary. To some extent, this work re-discovers
earlier observations (although by a different approach: global optimization of certain
functionals). Novel observations include properties in the flat basis function limit, such
as how eigenvalues form different patterns according to the number of dimensions and
whether the shape parameter is fixed or spatially variable. This study confirms that
the latter case can be of significant practical utility, for example in decreasing the
RBF condition number (as seen in Table 5.2) and in improving numerical accuracy
(as seen in Figures 3.5 and 7.4).
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