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1 Fundamental theorems

Theorem 1 (Hahn-Banach). See our text for details. Proof requires Zorn’s lemma/Axiom of choice

A subset Y ⊂ X is nowhere dense if any open set U ⊂ X contains a ball B ⊂ U ⊂ X such that B ∩ Y = ∅. That
is, Y is nowhere dense if the interior of the closure of Y is empty. For example, the Cantor set is a nowhere dense
subset of the unit interval.

Theorem 2 (Baire Category Theorem). A complete metric space cannot be written as the countable union of nowhere
dense sets.

Theorem 3 (Uniform Boundedness Theorem, aka Banach Steinhaus Theorem (Thm. 8.39 in our text)). Let Tn :
X → Y be a sequence of bounded linear operators from a Banach space X into a normed linear space Y . Assume
that for each x ∈ X, there is a real number cx such that

‖Tnx‖ ≤ cx, ∀ n = 1, 2, · · · ,

Then there is a real number c such that ‖Tn‖ ≤ c, ∀ n = 1, 2, · · · ., i.e., supn∈N ‖Tn‖ ≤ c.

This follows from the Baire category theorem.
An open mapping is one that maps open sets to open sets.

Theorem 4 (Open Mapping Theorem). Let X and Y be Banach spaces. Then any bounded linear operator T from
X onto Y (that is, T is surjective) is an open mapping. Consequently, if T is bijective, then T−1 is continuous and
hence bounded (as well as linear).

This follows from the uniform boundedness theorem.

Theorem 5 (Closed Graph Theorem). Let X and Y be Banach spaces and let D ⊂ X be a subspace. Let T : D → Y
be a closed linear operator. If D is closed in X, then T is bounded.

This follows from the uniform boundedness theorem. We can also state it like this:
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Theorem 6 (Closed Graph Theorem, variant). Let X and Y be Banach spaces and let T : X → Y be a linear
operator. The graph of T is a subset of X ⊗ Y defined by

graph(T ) = {(x, T (x)) | x ∈ X}.

Then graph(T ) is a closed subspace iff T is bounded.

Theorem 7 (See Thm. 6.29 in our text). Every Hilbert space has an orthonormal basis. Uses Zorn’s lemma in the
proof.

Theorem 8 (Banach-Alaoglu). See Thm. 5.61, 8.45 in our text. Let X be a normed linear space, then the closed
unit ball B∗ of its dual space X∗ is compact with respect to the weak-∗ topology.

2 Hahn-Banach in more detail

Our book doesn’t have the most general version, so here is a more general version, but we don’t prove it (proof relies
on Zorn’s lemma). Royden and Reed/Simon have proofs, for example.

Theorem 9. (Hahn-Banach Theorem) Let X be a linear space over a field F (= R or C). Let p : X → R be a
real-valued functional on X satisfying

p(x+ y) ≤ p(x) + p(y), ∀ x, y ∈ X “sub-linear”
p(αx) = |α| p(x), ∀ α ∈ F, x ∈ X “positive homogeneous”.

Furthermore, let Z ⊂ X be a subspace of X and let f : Z → F be a linear functional on Z such that

|f(x)| ≤ p(x), ∀ x ∈ Z.

Then f has a linear extension f̃ : X → F with

|f̃(x)| ≤ p(x), ∀ x ∈ X.

Note that sub-linearity implies p(x) = 0, and using this with the positive homogeneous property implies p(x) ≥ 0
for all x ∈ X.

3 Proof of the Baire category theorem

Let X be a metric space and M ⊂ X be a subset. A point x ∈ M is called an interior point of M if there is ε > 0
such that Bε(x) ⊂M . We will begin with the following definition regarding metric spaces.

Definition 10. Let X be a metric space and M ⊂ X be a subset. Then M is said to be

1. rare (or nowhere dense) in X if its closure M has no interior point (e.g., Z in R)

2. meager (or of the first category) in X if M is the union of countably many sets each of which is rare in X.

3. nonmeager (or of the second category) in X if M is not meager in X.

Royden uses the term hollow for a subset with empty interior. A set is hollow iff its complement is dense. A set
is nowhere dense if its closure is hollow.
Now we will state and proof the important Baire’s Category Theorem. The proof can be shortened lightly if we

used the Cantor Intersection Theorem (cf. Royden). The following proof is from Kreyszig.

Theorem 11. (Baire’s Category Theorem) If a metric space X 6= ∅ is complete, then it is nonmeager in itself.
Consequently, if X 6= ∅ is complete and

X =
∞⋃
k=1

Ak, Ak closed

then at least one Ak contains a nonempty open subset of X.

Royden’s version is that if X is complete, and {On}n∈N is a collection of open dense subsets of X, then the
intersection ∩∞n=1On is also dense; the proof of this is a homework problem for us (so do not use this exact version
of the theorem on the HW, but you can use the other variants of Baire). Most compactly stated, an open subset of
a complete space is of the second category.
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Proof. Assume, on the contrary, that X is meager in itself. By definition,

X =
∞⋃
k=1

Mk,

where each Mk is rare in X. Since M1 is rare in X, we have M1 6= X since X itself is open and therefore contains
interior points. So, the complement (M1)c is nonempty and open. Thus, there is a point p1 ∈ (M1)c and 0 < ε1 <

1
2

such that
B1

def= Bε1 (p1) ⊂ (M1)c.

Note that B1 ∩M1 = ∅ and ε1 < 2−1.
Since M2 is rare, its closure M2 does not contain a nonempty open set. In particular, M2 does not contain

B 1
2 ε1

(p1) (though they could overlap). So, the set (M2)c ∩ B 1
2 ε1

(p1) is nonempty and open. Thus, there is a point1

p2 ∈ (M2)c ∩B 1
2 ε1

(p1) and 0 < ε2 <
1
2 ε1 such that

B2
def= Bε2 (p2) ⊂ (M2)c ∩B 1

2 ε1
(p1).

Note that B2 ∩M2 = ∅, B2 ⊂ B 1
2 ε1

(p1) ⊂ B1 and ε2 < 2−2.
Continuing in this fashion, we obtain a sequence of balls Bk such that

Bk
def= Bεk (pk), Bk ∩Mk = ∅, Bk+1 ⊂ B 1

2 εk
(pk) ⊂ Bk, εk < 2−k.

Now we will show that the sequence {pk} is Cauchy. Given ε > 0, there is N such that 2−N+1 < ε. For any
m,n > N , we have Bm ⊂ BN and Bn ⊂ BN , so

d(pm, pn) ≤ d(pm, pN ) + d(pN , pn) < εN + εN < 2−N + 2−N = 2−N+1 < ε.

This proves {pk} is Cauchy.
Since X is complete, there is p ∈ X such that pk → p. Fixed m. For any n > m, using Bn ⊂ B 1

2 εm
(pm), we have

d(pm, p) ≤ d(pm, pn) + d(pn, p) <
1
2 εm + d(pn, p).

Taking n→∞, we have
d(pm, p) ≤

1
2 εm < εm.

Therefore, p ∈ Bm for all m. Since Bk ∩Mk = ∅, we have p /∈ Mk for all k. Hence p /∈ ∪∞k=1Mk = X. This is a
contradiction.

3.1 Cantor intersection theorem
For reference, here is the Cantor intersection theorem, from Royden.

Theorem 12 (Cantor intersection theorem). Let X be a metric space. Then X is complete if and only if whenever
{Fn}∞n=1 is a contracting (nested) sequence of non-empty closed subsets of X, there is a point x ∈ X for which
∩∞n=1Fn = {x}.

The sequence is nested in the sense that Fn+1 ⊂ Fn. We say a sequence is contracting if the diameter of the
sets goes to zero. From Royden, “a very rough geometric interpretation of the Cantor Intersection Theorem is that a
metric space fails to be complete because it has ’holes’. ” The proof is straightforward: if X is complete, then we can
pick xn ∈ Fn and show (xn) is Cauchy and its limit is in the intersection ∩Fn. Conversely, to prove X is complete,
let (xn) be Cauchy and define Fn = {xk | k ≥ n} and use this to show xn converges to a limit.
The topological Cantor intersection theorem says: if X is a Hausdorff Topological space, and Fn+1 ⊂ Fn, with

each Fn non-empty and compact, then ∩Fn is non-empty. The proof is via open-coverings (see wikipedia).

1This is where we use the axiom of choice
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4 Proof of the Uniform Boundedness/Banach-Steinhaus theorem

Theorem 13 (Uniform Boundedness Theorem, aka Banach Steinhaus Theorem). Let Tn : X → Y be a sequence of
bounded linear operators from a Banach space X into a normed linear space Y . Assume that for each x ∈ X, there
is a real number cx such that

‖Tnx‖ ≤ cx, ∀ n = 1, 2, · · · ,
Then there is a real number c such that

‖Tn‖ ≤ c, ∀ n = 1, 2, · · · .

Proof. For each positive integer k, we define Ak as the set of all x such that

‖Tnx‖ ≤ k, ∀ n = 1, 2, · · · .

We will prove that Ak is closed. For each x ∈ Ak, there is a sequence {xj} ⊂ Ak such that xj → x. Since xj ∈ Ak,
we have

‖Tnxj‖ ≤ k, ∀ n = 1, 2, · · · .
Letting j →∞ and using the fact that Tn is continuous, we have ‖Tnx‖ ≤ k for all n. So, x ∈ Ak. This shows that
Ak is closed.
By assumption of the theorem, we have

X =
∞⋃
k=1

Ak.

Since X is complete, by the Baire’s Category Theorem (Theorem 11), there is k0 such that Ak0 contains an open
ball, namely

B0
def= Br(x0) ⊂ Ak0 .

Let x ∈ X be arbitrary with x 6= 0. Define a point z by

z = x0 + r

2‖x‖x. (x = 2‖x‖
r

(z − x0).)

Then ‖z − x0‖ < r. So, we have z ∈ B0. Since B0 ⊂ Ak0 , we have ‖Tnz‖ ≤ k0, ∀ n. In addition, since x0 ∈ B0, we
have ‖Tnx0‖ ≤ k0, ∀ n. Thus, for each n, we have

‖Tnx‖ = 2‖x‖
r
‖Tn(z − x0)‖ ≤ 2‖x‖

r
(‖Tnz‖+ ‖Tnx0‖) ≤

4‖x‖
r

k0.

Hence
‖Tn‖ = sup

x∈X,x6=0

‖Tnx‖
‖x‖ ≤

4
r
k0.

5 Open-mapping theorem in more detail

For references, see Kreyszig, Royden or Reed and Simon. We begin this section with the following notation. Let X
be a linear space and let A ⊂ X be a subset. We use the following notation.

αA = {x ∈ X | x = α a, a ∈ A},
A+ w = {x ∈ X | x = a+ w, a ∈ A},

where α ∈ K and w ∈ X.
First we will prove the following lemma which relies on the Baire category theorem — this lemma is really the

meat of the proof of the main theorem. We will make some use of the translation principle which states, roughly,
that if we can control a linear operator T on a ball, then we can basically translate that ball to the origin due to the
linearity of T . 2

Lemma 14. Let T be a bounded linear operator from a Banach space X onto a Banach space Y . Then the image of
the open ball B0 = B1(0) ⊂ X, that is T (B0), contains an open ball with center 0 in Y .

Proof.
The proof has three steps. We will prove

2Another version of the “translation principle” is that if T : X → Y is linear and X, Y Banach, then T is bounded if and only if the
set T −1(B1(0)) has a non-empty interior, where B1(0) = {y ∈ Y | ‖y‖ ≤ 1} is the unit ball in Y . See Reed and Simon p. 80.
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(a) T (B1), where B1 = B2−1 (0) ⊂ X, contains an open ball B∗.

(b) T (Bn), where Bn = B2−n (0) ⊂ X, contains an open ball Vn with center 0.

(c) T (B0) contains an open ball with center 0.

Proof. (a) Clearly, we have ∪∞k=1kB1 ⊂ X. For any x ∈ X, there is k (k > 2‖x‖) such that x ∈ kB1. So,
X ⊂ ∪∞k=1kB1. Thus we have

X =
∞⋃
k=1

kB1.

Since T is surjective,

Y = T (X) = T (
∞⋃
k=1

kB1) =
∞⋃
k=1

T (kB1).

Since T is linear, we have

Y =
∞⋃
k=1

T (kB1) =
∞⋃
k=1

kT (B1) =
∞⋃
k=1

kT (B1).

Since Y is complete, by the Baire’s category theorem (Theorem 11), there is k such that kT (B1) contains an
open ball. This implies that T (B1) must also contain an open ball, namely, there is B∗ def= Bε(y0) such that
B∗ ⊂ T (B1).

(b) We will first prove that Bε(0) = B∗ − y0 ⊂ T (B0). Since B∗ ⊂ T (B1) by (a), we have B∗ − y0 ⊂ T (B1) − y0.
It suffices to prove

T (B1)− y0 ⊂ T (B0).

Let y ∈ T (B1) − y0. Then y + y0 ∈ T (B1). Notice that y0 ∈ T (B1) since B∗ ⊂ T (B1). Then there are
sequences un = Twn ∈ T (B1) and vn = Tzn ∈ T (B1) such that

un → y + y0, vn → y0,

where wn, zn ∈ B1. Observing that

‖wn − zn‖ ≤ ‖wn‖+ ‖zn‖ <
1
2 + 1

2 = 1.

So, wn − zn ∈ B0. Also,
T (wn − zn) = Twn − Tzn = un − vn → y.

Hence, y ∈ T (B0). This proves the following

Bε(0) = B∗ − y0 ⊂ T (B0).

Let Bn = B2−n (0). Since T is linear, we have T (Bn) = 2−nT (B0). Let Vn = Bε 2−n (0). Then

Vn = 2−nBε(0) ⊂ 2−nT (B0) = T (Bn).

This proves (b).

(c) Finally, we will prove that
V1 = Bε 2−1 (0) ⊂ T (B0).

Let y ∈ V1. Since V1 ⊂ T (B1), there is x1 ∈ B1 such that

‖y − Tx1‖ <
ε

4 .

Then we have y − Tx1 ∈ V2. Since V2 ⊂ T (B2), there is x2 ∈ B2 such that

‖y − Tx1 − Tx2‖ <
ε

8 .
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Continuing in this fashion, we have, for each n, there are xn ∈ Bn such that

‖y −
n∑
k=1

Txk‖ <
ε

2n+1 .

Let zn = x1 + x2 + · · ·+ xn. The above inequality becomes

‖y − Tzn‖ <
ε

2n+1 , ∀ n.

Namely, Tzn → y. Since xk ∈ Bk, we have ‖xk‖ < 2−k. So, for n > m,

‖zn − zm‖ ≤
n∑

k=m+1

‖xk‖ <
∞∑

k=m+1

1
2k → 0,

as m → ∞. Thus, the sequence {zn} is Cauchy. Since X is complete, there is x ∈ X such that zn → x and
x = x1 + x2 + · · ·. Notice that

‖x‖ ≤
∞∑
k=1

‖xk‖ <
1
2 +

∞∑
k=2

‖xk‖ ≤
1
2 + 1

2 = 1.

So, x ∈ B0. Since T is continuous, we have Tzn → Tx. Hence y = Tx. That is y ∈ T (B0).

We are now in a position to introduce open mapping.

Definition 15. Let X and Y be metric spaces and let D ⊂ X be a subspace. A mapping T : D → Y is called an
open mapping if for every open set in D, the image is an open set in Y .

Theorem 16 (Open Mapping Theorem). Let X and Y be Banach spaces. Then any bounded linear operator T from
X onto Y is an open mapping. Consequently, if T is bijective, then T−1 is continuous and hence bounded.

Proof. Let A ⊂ X be an arbitrary open subset of X. We will show that the image T (A) is open in Y . That is, for
any y = Tx ∈ T (A), the set T (A) contains an open ball centered at y.
Let y ∈ T (A). Then y = Tx with x ∈ A. Since A is open, there is r > 0 such that Br(x) ⊂ A. Thus

B1(0) ⊂ 1
r

(A− x).

By Lemma 14, the image T ( 1
r
(A− x)) contains an open ball with center 0. That is, there is ε > 0, such that

Bε(0) ⊂ T (1
r

(A− x)).

Since T is linear, we have
Bε(0) ⊂ 1

r
(T (A)− Tx).

Since y = Tx, the above relation implies
Brε(y) ⊂ T (A).

Hence T (A) contains an open ball with center y.

5.1 Closed graph theorem
We have some variants below (due to Kreyszig?), but Royden’s version condenses it to its essentials. Both versions
use the open mapping theorem to make for short proofs.
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5.1.1 Royden’s version

First, we use a corollary of the open mapping theorem:

Corollary 17. Let ‖ · ‖1 and ‖ · ‖2 be norms on a linear space X, and assume both (X, ‖ · ‖1) and (X, ‖ · ‖2) are
Banach. Suppose there is a constant c ≥ 0 for which

‖ · ‖2 ≤ c ‖ · ‖1 on X.

Then these two norms are equivalent.

Proof. The identity mapping is bijective, and bounded by the assumption of the corollary, therefore the inverse is
bounded by the open mapping theorem.

Definition 18. A linear operator T : X → Y between normed linear spaces X and Y is said to be closed whenever
for all (xn) ⊂ X,

(xn)→ x AND T (xn)→ y, then T (x) = y.

This is almost the definition of sequential continuity, except we have added the assumption that T (xn) does
converge, so it is weaker. Hence we automatically have that continuous functions are closed (in a metric space).
The graph of a mapping is the set graph(T ) = {(x, T (x))}. Thus an operator is closed (as an operator) if and

only if its graph is closed (as a set) in the product space X × Y (more precisely, the graph is a closed subspace,
since T is linear so its range is always a subspace). Specifically, T closed means that if (xn, T (xn)) → (x, y), then
(x, y) ∈ graph(T ) (i.e., y = T (x)), hence graph(T ) is a closed set. See Thm. 22 below for a more formal statement.

Theorem 19 (Closed Graph Theorem, Royden version/proof). Let T : X → Y be a linear operator and X,Y
Banach. Then T is continuous (i.e., bounded) if and only if it is closed.

Proof. If T is continuous, it is sequentially continuous, and hence closed. Now we suppose the converse, that T is
closed. Introduce a new norm ‖ · ‖∗ on X by

‖x‖∗ = ‖x‖+ ‖T (x)‖ ∀x ∈ X.

Observe that the closedness of the operator T is equivalent to the completeness of the normed linear space (X, ‖ · ‖∗),
therefore we have by assumption that (X, ‖ · ‖∗) is Banach. 3

Now, note that ‖ · ‖ ≤ ‖ · ‖∗ by definition. By the corollary above, that means those norms are equivalent, so there
is some constant c such that ‖x‖∗ ≤ c‖x‖ for all x. But this implies that ‖T (x)‖ ≤ c‖x‖, hence T is bounded, hence
it is continuous since it is linear.

5.1.2 Other versions (with more details filled in)

Let X and Y be normed linear spaces. Then X × Y is a normed linear space with the two operations defined by

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2), α (x, y) = (α x, α y),

and the norm defined by
‖(x, y)‖ = ‖x‖+ ‖y‖.

Lemma 20. If X and Y are Banach spaces, then X × Y is also a Banach space.

Proof. Let {zn} be a Cauchy sequence in X × Y . Here zn = (xn, yn). Let ε > 0 be given. Then there is N such that

‖xn − xm‖+ ‖yn − ym‖ = ‖zn − zm‖ < ε, ∀m,n > N.

So, the sequences {xn} and {yn} are Cauchy in X and Y respectively. Since X and Y are complete, there are x ∈ X
and y ∈ Y such that xn → x and yn → y. Define z = (x, y) ∈ X × Y . Letting m→∞ in the above inequality,

‖xn − x‖+ ‖yn − y‖ < ε, ∀ n > N.

This implies ‖zn − z‖ < ε for all n > N . Hence zn → z.

Now we give the definition of closed linear operator.

3We prove one side of this statement rigorously. Let (xn) ⊂ X be Cauchy with this new norm, which also implies it is Cauchy with
the original norm, and since X is complete in this original norm, there is some x ∈ X with xn → x. Similarly, the sequence (T xn) is
Cauchy in Y with the original norm in Y , and since Y is Banach there is some y ∈ Y with T (xn)→ y. By the assumption that T is
closed, y = T (x), this implies that xn → x in the ‖ · ‖∗ norm since ‖xn−x‖∗ = ‖xn−x‖+ ‖T (xn−x)‖ = ‖xn−x‖+ ‖T (xn)− y‖.
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Definition 21. Let X and Y be normed linear spaces and let D ⊂ X be a subspace. A linear operator T : D → Y is
called closed if its graph

graph(T ) = {(x, y) | x ∈ D, y = Tx}

is closed in X × Y .

Theorem 22. Let X and Y be normed linear spaces and let D ⊂ X be a subspace. Then a linear operator T : D → Y
is closed if and only if it has the following property: If xn → x and Txn → y, then x ∈ D and y = Tx.

Proof. By definition, graph(T ) is closed if and only if graph(T ) ⊂ graph(T ). Assume T is closed. If xn → x and
Txn → y, then (x, y) ∈ graph(T ). Thus, (x, y) ∈ graph(T ) since graph(T ) is closed. That is x ∈ D and y = Tx.
Conversely, assume that if xn → x and Txn → y, then x ∈ D and y = Tx. Let z = (x, y) ∈ graph(T ). Then there is
zn = (xn, Txn) such that zn → z. Thus, we have xn → x and Txn → y. By assumption, x ∈ D and y = Tx. Hence
z ∈ graph(T ).

Now we have the following important closed graph theorem, which gives a condition for when a closed linear
operator is bounded.

Theorem 23 (Closed Graph Theorem). Let X and Y be Banach spaces and let D ⊂ X be a subspace. Let T : D → Y
be a closed linear operator. If D is closed in X, then T is bounded.

Proof. Since graph(T ) is closed in X × Y and D is closed in X, then graph(T ) and D are complete since they are
inside complete spaces. Consider the mapping P : graph(T )→ D defined by

P (x, Tx) = x.

Clearly, P is linear. Also P is bounded since

‖P (x, Tx)‖ = ‖x‖ ≤ ‖x‖+ ‖Tx‖ = ‖(x, Tx)‖.

So, P is a bounded linear operator. Moreover, it is clear that P is bijective with the inverse defined by

P−1(x) = (x, Tx).

Then, by the open mapping theorem (16), the inverse operator P−1 is bounded. So, there is a real number b such
that ‖P−1x‖ ≤ b‖x‖. Thus,

‖Tx‖ ≤ ‖Tx‖+ ‖x‖ = ‖(x, Tx)‖ = ‖P−1x‖ ≤ b‖x‖.

Hence T is bounded.

6 Axiom of choice and Zorn’s lemma

The proof of the Hahn-Banach and Baire Category theorem rely on Zorn’s lemma, which is an equivalent version
of the axiom of choice “AC” (note that Hahn-Banach and Baire Category do not imply the AC, so they are not
equivalent to it).
The axiom of choice seems harmless at first. It is an axiom, meaning that we assume it is true (and this is referred

to as ZFC, for Zermelo-Frankel set theory with the axiom of Choice; ZF does not assume the AC). It says that if
we have a collection of sets, X = {Yα | α ∈ A} for some arbitrary (e.g., uncountable) index set A, where each Yα is
itself a set, then there exists some “choice” function that can select a single element from each set Yα. That is, there
is some f such that f(Yα) ∈ Yα.
For most sets, this is dead-obvious. E.g., if each Yα was a collection of integers, we could just select the smallest

integer. Or if it was an interval on the real line, we could select the midpoint of the interval. But in general, we
cannot specify what is selected, we just assume that it can be done.
This has extremely bizarre implications. It implies that the real numbers are well-ordered. We say that a non-

empty set is well-ordered if every subset of it has a least element. For example, the natural numbers are well-ordered.
With the real numbers, using the usual ordering (where 1 < 2 < 2.034 etc., ), this is not true, since an open interval
like (0, 1) has no least element (that is, there is an inf but not a min). Under the AC, it means we believe that there
is some other ordering of the real numbers such that there always is a least element.
It also implies the Banach-Tarksi paradox. Take a 3D solid ball, decompose it into a finite number of disjoint

subsets, then these can be put back (that is, moved and rotated) to form 2 identical copies of the ball. This is done
by making very weird subsets (think of things like several copies of the Cantor set). And of course it is not true in
our usual physical world, hence we call it a paradox.
Despite these oddities, the AC is necessary for most powerful theorems, so we implicitly use it all the time!
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