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Frequency assortativity can induce chaos in oscillator networks
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We investigate the effect of preferentially connecting oscillators with similar frequency to each other in networks
of coupled phase oscillators (i.e., frequency assortativity). Using the network Kuramoto model as an example,
we find that frequency assortativity can induce chaos in the macroscopic dynamics. By applying a mean-field
approximation in combination with the dimension reduction method of Ott and Antonsen, we show that the
dynamics can be described by a low dimensional system of equations. We use the reduced system to characterize
the macroscopic chaos using Lyapunov exponents, bifurcation diagrams, and time-delay embeddings. Finally,
we show that the emergence of chaos stems from the formation of multiple groups of synchronized oscillators,
i.e., meta-oscillators.
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The synchronization of network-coupled dynamical sys-
tems [1,2] plays a key role in many natural phenomena [3,4]
and engineering applications [5,6]. An important example is
networks of coupled oscillators. Kuramoto showed [7] that
under suitable conditions, the analysis of an ensemble of N

oscillators can be reduced to the dynamics of phase angles
for the oscillators, where oscillator i has phase angle θi for
i = 1, . . . ,N . When the oscillators are coupled by a network,
the corresponding model is given by

θ̇i = ωi + K

N∑
j=1

Aij sin(θj − θi), (1)

where ωi is the natural frequency of oscillator i, K � 0 is the
global coupling strength, and [Aij ] is the network adjacency
matrix that encodes the network structure (Aij = 1 if there is
a network link from node j to node i and Aij = 0 otherwise).

The dynamics of Eq. (1) and its many extensions have been
the subject of a great deal of research (e.g., Refs. [8–12]).
Recently an advance in the analysis of such systems was
obtained [13,14] which posits an ansatz for the long-time
asymptotic form of the solution of such systems and results in a
dimensionality reduction whereby the N -dimensional dynam-
ics of Eq. (1) can be reduced to a much smaller system. This
ansatz was first used on all-to-all coupled phase oscillator sys-
tems [13] (where each entry of the adjacency matrix is Aij =
1), and adapted to obtain analytical results revealing the effects
of various extensions of the original Kuramoto model, includ-
ing chimera states, periodic forcing, bimodal frequency dis-
tributions, time delays, clustering, and communities [15–21].
Recently, the ansatz was extended via a mean-field technique
to allow for the treatment of nontrivial network topologies [22],
importantly shedding light on the effects of correlations
between the degrees of network-connected node pairs, i.e.,
degree assortativity [23].

The formalism of Ref. [22] can in principle be extended to
account for assortativity based on arbitrary nodal properties,
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i.e., for probabilistic network generative models in which the
probability that two nodes are connected is a function of
preassigned nodal properties [24,25]. In particular, referring
to Eq. (1) we note that nodes are characterized not only
by their in and out degrees (kin

i = ∑
j Aij , kout

i = ∑
j Aji),

but also by their natural frequencies ωi . It would seem that
frequency assortativity would be crucial for the dynamics
of the network Kuramoto problem since cooperative inter-
actions between pairs of connected nodes with like (unlike)
frequencies would be stronger (weaker). However, so far there
is no analytical means of investigating the impact of this
basic consideration on network dynamics. It is the purpose
of this Rapid Communication to provide and illustrate such
an analytical technique for investigating this effect. Our
results show that frequency assortativity can play a profound
role in determining dynamical behavior. In particular, we
show that frequency assortativity can induce chaos in the
macroscopic system dynamics. While chaos has previously
been found in the macroscopic dynamics of phase oscillator
models [26–28], we find it remarkable that chaos and complex
dynamics can arise in the simple, basic model given by
Eq. (1) merely from frequency assortativity. In the remainder
of this Rapid Communication we describe a simple model for
generating networks with frequency assortativity, investigate
the emergence of chaotic dynamics in such networks using
numerical simulations, present a dimensionality reduction
method for such networks, and finally close with a brief
discussion of our results.

Frequency assortativity network model. We begin by briefly
describing a model for generating oscillator networks with
particular frequency-frequency correlation between neighbors,
i.e., frequency assortativity. In other words, this model will
allow for the construction of networks where neighboring
oscillators tend to have similar or dissimilar natural frequen-
cies. Because we wish to focus on the effect of frequency
assortativity in the simplest and cleanest setting, we henceforth
consider the case of an undirected network in which all nodes
have the same degree. Note that, by this choice, issues of
different degree distributions, node degree-frequency correla-
tions, and degree assortativity are, by definition, absent, thus
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FIG. 1. (Color online) Synchronization in nonassortative and as-
sortative networks. Synchronization profiles R (solid blue) and
B (dashed red) vs K for examples of (a) nonassortative and (b)
assortative networks of size N = 1000 with constant degree k = 50.
For the reduced description on which our determination of B is based
we use Ñ = 20 and ωmax, − ωmin = 3.126.

providing an unambiguous testing ground for investigating
frequency assortativity effects with no other complications.
(We note that, although our subsequent theory is for this special
case, it is easily generalized to account for the other effects
mentioned above.) Our model is based on the configuration
model [29] such that to each node i = 1, . . . ,N we assign the
same degree ki = k. Additionally, we assign to each oscillator
a target frequency, ω0,i , which will be used to build network
connections as follows. Choosing a node i that still requires at
least one additional link, another node j which still requires
at least one link is chosen according to a probability pij .
Each pij depends on the target frequencies ω0,i and ω0,j .
In the networks used here, we use pij ∝ 0.5 + c[dγ /(dγ +
|ω0,i − ω0,j |γ ) − 0.5] with d = 0.8 and γ = 5. In essence, the
parameter c tunes the degree of frequency assortativity: c > 0
(c < 0) allows oscillators to more likely make connections to
other oscillators with similar (dissimilar) target frequencies,
resulting in assortative (disassortative) networks. Links are
made until all nodes have degree k. Finally, actual natural
frequencies are assigned to each oscillator i according to a
distribution gω0,i

(ω) that depends on the target frequency ω0,i .
Here we consider the case of Lorentzian distributions

gω0 (ω) = 1

π

�ω0

(ω − ω0)2 + �2
ω0

, (2)

centered at ω0 with spread �ω0 .
We next demonstrate the effect of frequency assortativity

by presenting results from numerical simulations. Considering
a network of size N = 1000 with constant degree k = 50, we
generate a nonassortative network and an assortative network
using c = 0 and c = 1, respectively, and set �ω0 = 0.05. We
next solve Eq. (1) for each network, increasing K from zero by
an increment of 10−6 at each time step �t = 0.002. Defining
the order parameter

R(t) = 1

Nk

∣∣∣∣∣
N∑

i=1

Ri(t)

∣∣∣∣∣, (3)

where Ri(t) = ∑N
j=1 Aij e

iθj (t) describes the local order pa-
rameter for oscillator i, we plot the evolution of R vs K in
Fig. 1 for the nonassortative and assortative networks in panels
(a) and (b), respectively, using a solid blue curve. While the
nonassortative networks display typical behavior, transitioning

from incoherence (R ≈ 0) to coherence (R > 0) at a finite
coupling strength (K ≈ 0.05), the assortative network displays
much more interesting behavior. In particular, in a range of
intermediate coupling strengths (0.04 � K � 0.12) the order
parameter undergoes large, irregular oscillations. We will now
present a dimensionality reduction method which we will use
to show that the dynamics in this interesting regime are in fact
chaotic.

Dimensionality reduction. The analytical technique we
now summarize represents an extension of that described in
Ref. [22]. Here we assume the general structure described
above, i.e., a network described by a single degree and
a collection of target frequencies, the latter specifying the
distributions gω0,i

(ω) from which the natural frequencies are
drawn. The network is therefore characterized by the target
frequency distribution Pω0 , which is normalized such that∑

ω0
Pω0 = N . The frequency assortativity of the network is

captured by the function aω′
0→ω0 , the probability that a link

exists from an oscillator with target frequency ω′
0 to one

with ω0. We note that the assortativity function aω′
0→ω0 is

constrained to satisfy∑
ω0

∑
ω′

0

Pω′
0
aω′

0→ω0Pω0 = Nk. (4)

We proceed by considering the limit of large networks, i.e.,
N → ∞, such that the state of the network can be described
by the family of distribution functions fω0 (θ,ω,t), where
fω0 (θ,ω,t)dθdω/2π is the fraction of oscillators with target
frequency ω0 with phase in [θ,θ + dθ ] and natural frequency
in [ω,ω + dω] at time t . We emphasize that each natural
frequency depends on the target frequency, and since ω does
not change in time we have∫ 2π

0
fω0 (θ,ω,t)

dθ

2π
= gω0 (ω). (5)

The interaction term in Eq. (1) for an oscillator j can
be expressed in terms of the local order parameters as
K Im(e−iθj Rj ). The mean-field version of the local order
parameter is Ri(t) → Rω0,i

(t) and is given by

Rω0 (t) =
∑
ω′

0

Pω′
0
aω′

0→ω0

∫∫
fω′

0
(θ,ω,t)eiθ dθ

2π
dω. (6)

Finally, by the conservation of the number of oscillators, each
distribution fω0 must satisfy the continuity equation

0 = ∂tfω0 (θ,ω,t) + ∂θ [(ω + K Im[e−iθRω0 (t)])fω0 (θ,ω,t)].

(7)

Together, Eqs. (5) and (7) give a mean-field description for
the macroscopic dynamics of Eq. (1). (We note that in other
contexts the assortativity can be formulated in terms of degrees
by replacing aω′

0→ω0 with ak′→k [22] or, still more generally,
ak′,ω′

0→k,ω0 .)
We now follow Refs. [13,14] where the authors showed that

in the long-time limit each distribution function fω0 approaches
the form

fω0 (θ,ω,t) = gω0 (ω)

[
1 +

∞∑
n=1

bn
ω0

(ω,t)e−inθ + c.c.

]
, (8)
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where c.c. denotes the complex conjugate of the preceding
term. [Note that, since (8) is the time asymptotic form
of the distribution, our use of (8) should yield a good
approximation of all the attractor dynamics, but not necessarily
the transient dynamics that describes the approach to an
attractor.] Substituting Eq. (8) in Eq. (7), we find that each bω0

satisfies

∂tbω0 (ω,t) = iωbω0 (ω,t) + K

2

[
Rω0 (t) − b2

ω0
(ω,t)R∗

ω0
(t)

]
.

(9)

Next, we substitute Eq. (8) into Eq. (6) to obtain

Rω0 (t) =
∑
ω′

0

Pω′
0
aω′

0→ω0

∫
gω′

0
(ω)bω′

0
(ω′,t)dω′. (10)

Assuming that the frequency distributions are Lorentzian as
in Eq. (2), Eq. (10) can be simplified using the Cauchy residue
theorem [30]. In particular, it can be shown that under typical
conditions [13], each bω0 (ω,t) is analytic in the upper-half ω

plane with bω0 → 0 as |ω| → ∞, which allows us to evaluate
Eq. (10) and obtain

Rω0 (t) =
∑
ω′

0

Pω′
0
aω′

0→ω0 b̂ω′
0
(t), (11)

where b̂ω0 (t) = bω0 (ω,t)|ω=ω0+i�ω0
. By setting ω = ω0 +

i�ω0 in Eq. (9), we finally obtain

db̂ω0

dt
= (iω0 − �ω0 )b̂ω0 + K

2

[
Rω0 − b̂2

ω0
R∗

ω0

]
. (12)

Equations (11) and (12) govern the dynamics of a mean-
field version of the full system. Importantly, this formalism
can be used to reduce the dimensionality of the system. For
example, Ref. [22] dealt with the effects of degree assortativity
in the absence of frequency assortativity and used an equation
analogous to (12) to achieve dimensionality reduction (i.e.,
�ω0 → �k, b̂ω0 → b̂k, Pω0 → Pk, and aω′

0→ω0 → ak′→k).
Here we use Eq. (12) to investigate the effects of frequency
assortativity in the network model described above, which
has constant node degrees. We then use (12) to achieve
dimensionality reduction from the original N differential
equations [Eq. (1)] to a much smaller number Ñ , by dividing
the interval [ωmin,ωmax] into Ñ bins of width (ωmax − ωmin)/Ñ ,
where the center frequency of the lth bin is ω0 = ωl , and ωmin

and ωmax are chosen so that
∫ ωmax

ωmin
[
∑

ω0
Pω0gω0 (ω − ω0)/N ]dω

is nearly 1. Replacing the quantity b̂ω0 in (12) by b̂l (l =
1, . . . ,Ñ ) and regarding b̂l as representing the collective
dynamics associated with oscillators whose target frequencies
fall in bin l, we achieve our dimensionality reduction. As we
will see, Ñ can be made much smaller than N , thus greatly
reducing the computational complexity. To evaluate the degree
of synchronization in the reduced system, we use the order
parameter

B(t) = 1

Nk

∣∣∣∣∣∣
∑
ω0,ω

′
0

Pω0Pω′
0
aω′

0→ω0 b̂ω′
0
(t)

∣∣∣∣∣∣, (13)

which is the reduced-system analog to the order parameter
defined in Eq. (3). Finally, we note that the distribution

Pω0 and assortativity function aω′
0→ω0 can be either constructed

to represent an ensemble of networks or sampled from a
particular network realization, as we do here.

Returning to the networks obtained by the model described
above, we construct the corresponding reduced systems using
Ñ = 20—a number small enough to significantly reduce the
computational cost, but large enough to retain the dynamical
complexity. Solving Eq. (12) as K is increased from zero as
in the full system, we plot B vs K for the nonassortative and
assortative networks in Figs. 1(a) and 1(b), respectively, using
dashed red curves. We note that there is good agreement with
the full system in both cases, and the reduced dynamics do a
particularly good job of reproducing the irregular oscillations
of the assortative network. Note that for small K the solid blue
curve in Fig. 1(a) undergoes small fluctuations not present
in the reduced mean-field solution (red dashed curve). These
fluctuations become smaller (not shown) as N is increased
keeping k/N fixed and can thus be explained as being due
to finite network size [31]. The irregular oscillations for K �
0.12 in Fig. 1(b) turn out to be indicative of macroscopic chaos,
as we will discuss below.

Numerical investigations of chaos. We begin by construct-
ing bifurcation diagrams of both the full and reduced systems
for the assortative case. To do so, we consider the time-delay
embeddings (x,y) = [R(t),R(t − τ )] and [B(t),B(t − τ )].
For a given value of K , we record all the values of x when the
line x = y is traversed from y > x to y < x after discarding
transients. We use a value of τ = 0.2, which is large enough
to overcome small finite size fluctuations present in the full
system, and small enough to capture the macroscopic features
of the dynamics. We present the results in Fig. 2, plotting the
bifurcation diagram of the full and reduced systems in panels
(a) and (b), respectively. Overall the results agree well, both
indicating complex oscillations and intricate behavior leading
up to transitions to periodic and then stationary behavior.
We note that the reduced model has thin regions of periodic
behavior that we do not observe in the full system. We believe
that this difference between Figs. 2(a) and 2(b) is due to the
finite size induced noiselike fluctuations present in the real
network but not in the reduced network (e.g., as also present
for small K in Fig. 1) and that this noise destroys the windows
of periodicity seen in Fig. 2(b) (see [12] for a related finite
network size noise phenomenon). In order to test this, we first
add noise to the right-hand side of (11), which we then insert
into (12). Simulations of this noisy model (not shown) confirm
that even rather small noise is sufficient to destroy the thin
regions of periodic behavior, while making a negligible effect
on the dynamics for K � 0.12. Next, we take advantage of the
lower complexity of the reduced system to calculate the largest
Lyapunov exponent λLLE [32], and plot the results in Fig. 2(c).
The largest Lyapunov exponent indicates that the system
quickly transitions to chaos at a small coupling strength,
and then intermittently transitions between chaotic (λLLE >

0) and periodic (λLLE = 0) behavior. We also investigated
the behavior of the Lyapunov dimension DL by computing
the whole Lyapunov spectrum (ordered λLLE = λ1 � λ2 �
· · · ), giving DL = k + (λ1 + · · · + λk)/|λk+1|, where k is
the largest index such that λ1 + · · · + λk > 0 [33]. We find
that DL is large near the middle of the chaotic regime and
significantly decreases as K is increased to approach the
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FIG. 2. (Color online) Bifurcation diagrams and Lyapunov expo-
nent. Bifurcation diagrams of the (a) full and (b) reduced dynamics
calculated by plotting the values of R(t) [for (a)] and B(t) [for (b)]
evaluated at the times of surfaces of section piercing. (c) The largest
Lyapunov exponent λLLE as a function of K calculated using the
reduced system.

periodic regime (e.g., DL ≈ 13.64 and 3.71 at K = 0.05 and
0.095, respectively).

Finally, we investigate the genesis of chaotic dynamics in
assortative networks. To visualize and study the dynamics we
consider time-delay embeddings and frequency correlations
between pairs of oscillators, defined as cω

ij = (1 − |ωeff
i −

ωeff
j |/|ωi − ωj |)2, where we denote the effective frequency of

oscillator i as ωeff
i = T −1

∫ t0+T

t0
θ̇i(t)dt [34] for large enough

t0 and T . In particular, cω
ij quantifies the degree to which

oscillators i and j evolve on their own (cω
ij = 0) or in

unison (cω
ij = 1). We choose examples of chaotic and periodic

dynamics that occur at K = 0.09 and 0.105, respectively, and
plot in Fig. 3 the time-delay embeddings using τ = 1 for the
full system [left column, panels (a) and (b)] and for the reduced
system [middle column, panels (c) and (d)]. Finally, we plot
the frequency correlations calculated from the full systems in
the right column for both K = 0.9 (e) and K = 0.105 (f), with
cω
ij = 0 and 1 corresponding to white and blue, respectively.

The correlations are plotted so that the indices i,j increase
with each oscillator’s target frequency. First, we note that
the time-delay embeddings of the full [Figs. 3(a) and 3(b)]
and reduced [Figs. 3(c) and 3(d)] dynamics match extremely
well for both the chaotic and periodic examples. Second,
using the dynamic correlations we observe the formation
of three [Figs. 3(e)] and two [Figs. 3(f)] large groups. We
view such groups as meta-oscillators, and we interpret the
observed dynamics as resulting from interactions of these
meta-oscillators. When two (one) such meta-oscillators are
present the macroscopic dynamics of the order parameter is
observed to be periodic (steady), while chaos can (and typically
does) occur when there are three or more groups.

Discussion. In this Rapid Communication we have studied
the synchronization of assortative coupled oscillator networks.
Our main results are twofold. First, we have studied frequency
assortativity and found that this effect can induce large and
robust regions of chaotic dynamics. We have supported our
results using numerical simulations of regular graphs with
constant degree in order to emphasize the importance of
frequency assortativity. Second, we showed that the dimen-
sionality reduction method first presented in Ref. [13] can
be extended to study this interesting case. We emphasize the
strong correspondence between the dynamics of the full system
and its low dimensional system reduction. In both contexts we
have investigated the complicated dynamics that emerge using
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a combination of bifurcation diagrams, Lyapunov exponents,
and time-delay embeddings. Finally, we discussed the genesis
of chaos and showed that several locally synchronized groups,
“meta-oscillators,” emerge in assortative networks, allowing
for chaos.

Chaos in the macroscopic dynamics of networks of coupled
phase oscillators has been observed previously, but in different
contexts. These situations include one-way coupling between
two groups of coupled oscillators [26], globally coupled os-
cillators with bimodal frequencies and an oscillating coupling
strength oscillated in time [27], and interacting communities

of oscillators with different natural frequencies [28]. Our
results show that in very simple coupled oscillator networks
with fixed parameters and no external driving, chaos can
be induced merely by frequency assortativity. We attribute
these chaotic dynamics to the formation of three or more
meta-oscillators, which is in contrast to the periodic (often
called standing-wave) behavior that emerges as the result of
two meta-oscillators [22,35].
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