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F.5. Fractional Fouricr transform

The FFT algorithm is extremely effective in calculating the matrix X vector
product (F.1-3), and its inverse, when all input values are given and all
output values are desired. Direct matrix X vector multiplication is nor-
mally much slower, but it does allow cost savings in some frequently oc-
curring situations, as when:

(1) long sections of the input vector contain only zeros;

For example, soliton-type solutions to nonlinear wave equations may be non- -

zero (to machine precision) over only small sections of a long space domain.
(2) only some of the elements of the output vector are needed.

A large DFT matrix can provide a very accurate trapezoidal-rule approxima-

tion of the continuous Fourier integral f(x) = (1/27)[” f(w)e“*dw (or its
inverse). Equation (F.1-3) imposes the same uniform discretization levels for
f(x) and f(w). These two functions can have very different characters. For
example, we may want to evaluate f(x) at a dense set of points over a small
interval in some case where f(w) is best represented by a sparse set of values
over a wide frequency range.

The fractional Fourier transform (FRFT) combines the best of both
worlds. To calculate how any m (equi-spaced, e.g., contiguous) entries
of the output vector depend on m (also equi-spaced) elements of the in-
put vector, the cost becomes approximately four times that of a size-m
FFT (independently of N, the size of the fult DFT matrix).

The key observation (Bluestein 1970) is that any sum of the form

m-—1 . .
Gpolk)= 3 xje 2ritktmia p=0,1,...,m-1,
=0 (F.5-1)
n, o arbitrary constants,

can be reformulated as a (nonperiodic) convolution of size m. As noted
in Section F.4, it can then be evaluated efficiently by a periodic convolu-
tion of twice the size (or larger, shouid that be faster or easier). Equa-

tion (F.5-1) amounts to a major generalization of (F.1-1) - the latter is
recovered as the special caseof n=0and a =1/m. '

Noting that 2(k+n)j = ji+(k+n)2—(k +n—j)?, we obtain.

m=1
G, olk) = e irtktnia 5 (g pmrislay(gritkn=plu),
L} j=0

This sum can be written as T2 2, - ;; i.¢., it takes the form of a convolu-
tion. If several x vectors are to be used, all exponentials and the transform
of the z vector should be precomputed. . Ty

Applications of the FRFT extend well beyond the two exampies listed
at the beginning of this section. Bailey and Swarztrauber (1991, 1994) point

out several more, including:

(3) computing DFTs of sequences with arbitrary length N (e.g. a prime
number, or not a product of small factors - the FFT routines in Sec-
tion F.1 required N to be a power of 2);

(4) numerical computation of Laplace transforms (by selecting o to be
complex);

(5) analyzing sequences with non-integer periodic components (noting
that e nged not be a rational number) - for example, an analysis of
seasonal variations from daily measurements (with a year : day ratio
of 365.2422...); and :

(6) detecting lines in images, and detecting signals with linearly drifting
frequencies.
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