# **Computing Fractional Derivatives of Analytic Functions**

# **Bengt Fornberg**

University of Colorado, Boulder, Department of Applied Mathematics

in collaboration with



Cécile Piret Austin Higgins

Michigan Technological University, Houghton, MI Department of Mathematical Sciences



# **Outline of this presentation**

Introduction to Fractional Derivatives

- Background on analytic functions, (5 slides)
   FD formulas in the complex plane for regular derivatives,
   Grid-based contour integration
- Application of contour integration to fractional derivatives (1 slide)
- Illustrations of fractional derivatives (3 slides)
- Conclusions, future opportunities (1 slide)

(5 slides)

## **Regular derivatives**

Origin of Calculus Gregory (1670) Leibniz (1684), Newton (1687)



X

### **Fractional derivatives**

- 1695 I'Hôpital asked Leibnitz about derivatives of order ½ to which Leibniz replied "This is an apparent paradox from which one day, useful consequences will be drawn"
- 1823 Abel presented a complete framework for fractional calculus, and a first application
- From 1832 Major further contributions by Liouville, Riemann, etc.

x+h

#### Some different ways to introduce fractional derivatives

#### Fractional integral :

Let 
$$(Jf)(x) = \int_0^x f(t)dt$$
 Cauchy:  $(J^n f)(x) = \frac{1}{(n-1)!} \int_0^x (x-t)^{n-1} f(f)dt$ 

**Derivatives of** *x<sup>m</sup>*:

Let 
$$f(x) = x^m$$
, then  $f^{(n)}(x) = m \cdot (m-1) \cdot \dots \cdot (m-n+1) x^{m-n} = \frac{m!}{(m-n)!} x^{m-n} = \frac{\Gamma(m+1)}{\Gamma(m-n+1)} x^{m-n}$ 

#### Fourier series :

Let f(x) be a real-valued  $2\pi$  – periodic function. Then

$$f(x) = \sum_{\nu=-\infty}^{\infty} c_{\nu} e^{i\nu x} \text{ with } c_{\nu} = \overline{c_{-\nu}}.$$

$$f^{(n)}(x) = \sum_{\nu=-\infty}^{\infty} c_{\nu} (i\nu)^{n} e^{i\nu x} \text{ One can now make } n \text{ a fractional number. For example, with } n = 1/2$$

$$f^{(1/2)}(x) = \sum_{\nu=-\infty}^{\infty} c_{\nu} (i\nu)^{1/2} e^{i\nu x} \text{ with } (i\nu)^{1/2} = \begin{cases} \frac{1+i}{\sqrt{2}} \sqrt{|\nu|} & ,\nu > 0\\ \frac{1-i}{\sqrt{2}} \sqrt{|\nu|} & ,\nu < 0 \end{cases} \Rightarrow f^{(1/2)}(x) \text{ also real-valued.}$$

#### Fractional derivatives are not unique:

It was recently (2022) discovered that all versions belong to a two-parameter family.

## Two most commonly used types of fractional derivatives

### Riemann-Liouville (1832, 1847):

$$\int_{0}^{RL} D_{t}^{\alpha} f(t) = \frac{1}{\Gamma(n-\alpha)} \frac{d^{n}}{dt^{n}} \int_{0}^{t} \frac{f(\tau)}{(t-\tau)^{\alpha+1-n}} d\tau, \qquad n-1 < \alpha < n$$

- For *m* integer  $D^{\alpha+m}f(t) = D^m D^{\alpha} f(t)$
- Limit  $\alpha \rightarrow$  integer continuous

## Caputo (1967):

$${}_{0}^{C}D_{t}^{\alpha}f(t) = \frac{1}{\Gamma(n-\alpha)}\int_{0}^{t}\frac{\frac{d^{n}}{d\tau^{n}}f(\tau)}{(t-\tau)^{\alpha+1-n}}d\tau, \qquad n-1 < \alpha < n$$

- For *m* integer  $D^{\alpha+m}f(t) = D^{\alpha} D^m f(t)$
- D(constant) = 0
- Solving fract. ODEs by Laplace transform, easy ICs

#### Note also:

- Singularity at *t* = 0 (branch point if *t* complex)

$$- {}_{0}^{RL} D_{t}^{\alpha} f(t) = {}_{0}^{C} D_{t}^{\alpha} f(t) + \sum_{k=0}^{n-1} \frac{t^{k-\alpha}}{\Gamma(k+1-\alpha)} f^{(k)}(0).$$



Slide 5 of 17

## What are fractional derivatives useful for?

Fractional diffusion

Recall heat / diffusion equation  $u_t = u_{xx}$ .

- i. Fractional in time,  $D^{\alpha}_{t} u = u_{xx}$  with  $\alpha \approx 1$ , provides 'memory'
- ii. Fractional in space,  $u_t = D^{\alpha}_{x} u$  with  $\alpha \approx 2$ , often represents better various 'anomalous' diffusion processes (typically with 'base point' on each side).
- Frequency-dependent wave propagation
- Random walks
- Active damping of flexible structures
- Gas/solute transport/reactions in porous media
- Epidemiology (incl. asymptomatic spreading)
- Modeling of bone/tissue growth/healing
- Modeling of shape memory materials
- Economic processes with memory
- Modeling of supercapacitors / advanced batteries using nano-materials

#### How to numerically compute fractional derivatives, t real

Recall Caputo: 
$$D^{\alpha} f(t) = \frac{1}{\Gamma(1-\alpha)} \int_{0}^{t} \frac{\frac{d}{d\tau} f(\tau)}{(t-\tau)^{\alpha}} d\tau, \qquad 0 < \alpha < 1$$

Equispaced grid in t-direction



#### Grünwald-Letnikov formula: (1868)

If 
$$\Sigma_{GL} = \sum_{j=0}^{\lfloor t/h \rfloor} (-1)^j \binom{\alpha}{j} f(t-jh)$$
; then  ${}^{RL}D^{\alpha}f(t) = \lim_{h \to 0} \frac{\Sigma_{GL}}{h^{\alpha}}$ .

Still dominant in computing; only first order accurate – Error  $O(h^1)$ . Improvements available up to around  $O(h^4)$ .

#### Nodes in t-direction at prescribed non-equispaced locations



### **Analytic functions**

Analytic functions form a very important special case of general 2-D functions f(x,y). Definition: With z = x + iy complex, f(z) is *analytic* if  $\frac{df}{dz} = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$ is uniquely defined, no matter from which direction  $\Delta z$  approaches zero.

#### Cauchy-Riemann's equations:

Separating 
$$f(z)$$
 in real and imaginary parts  $f(z) = u(x, y) + i v(x, y)$   
It then holds that  $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$ 

Some consequences of analyticity:

- No distinction between  $\frac{\partial f}{\partial x}$  and  $\frac{\partial f}{\partial y}$ ,
- FD formulas in the complex *x*, *y*-plane, applied to analytic functions become vastly more efficient / accurate than classical FD formulas.
- Cauchy's integral formula  $f^{(k)}(z_0) = \frac{k!}{2\pi i} \oint_{\Gamma} \frac{f(z)}{(z-z_0)^{k+1}} dz$ , k = 0, 1, 2, ...Accuracy does not depend on how close the contour  $\Gamma$  is to  $z_0$ .
- f(z) once differentiable implies f(z) infinitaly many times differentiable
- If *f*(*z*) is known along any curve segment, it is known for all *z*. <sup>Slic</sup>

#### A few examples of complex plane FD formulas

$$f'(0) = \frac{1}{40h} \begin{bmatrix} -1-i & -8i & 1-i \\ -8 & 0 & 8 \\ -1+i & 8i & 1+i \end{bmatrix} f + O(h^8),$$
  

$$f'(0) = \frac{1}{20h^2} \begin{bmatrix} i & -8 & -i \\ 8 & 0 & 8 \\ -i & -8 & i \end{bmatrix} f + O(h^7),$$
  

$$f'(0) = \frac{1}{h} \begin{bmatrix} \frac{1+i}{477360} & \frac{4(1-i)}{29835} & \frac{1}{1326} & \frac{4(1-i)}{29835} & \frac{-1+i}{477360} \\ \frac{4(-1-i)}{29835} & \frac{8(-1-i)}{351} & \frac{-8i}{39} & \frac{8(1-i)}{351} & \frac{4(1-i)}{29835} \\ \frac{1}{1326} & -\frac{8}{39} & 0 & \frac{8}{39} & -\frac{1}{1326} \\ \frac{4(-1+i)}{29835} & \frac{8(-1+i)}{351} & \frac{8i}{39} & \frac{8(1+i)}{351} & \frac{4(1+i)}{29835} \\ \frac{1-i}{477360} & \frac{4(-1+i)}{29835} & \frac{-i}{1326} & \frac{4(1+i)}{29835} & \frac{-1-i}{477360} \end{bmatrix} f + O(h^{24})$$

$$f^{(4)}(0) = \frac{3}{10h^4} \begin{bmatrix} -1 & 16 & -1 \\ 16 & -60 & 16 \\ -1 & 16 & -1 \end{bmatrix} f + O(h^5),$$

.....

....

$$f^{(8)}(0) = \frac{504}{h^8} \begin{bmatrix} 1 & 4 & 1 \\ 4 & -20 & 4 \\ 1 & 4 & 1 \end{bmatrix} f + O(h^1),$$

For  $p^{\text{th}}$  derivative, the accuracy is  $O(h^{\{\text{number of stencil points\}} - p\})$ 

. . . . . .

The weights at location  $\mu + iv$ ,  $\mu$ ,  $\nu$  integers, decay to zero like  $O(e^{-\frac{\pi}{2}(\mu^2 + \nu^2)})$ 

Extremely high accuracies already for very small stencils

#### **The Euler-Maclaurin formula**

$$\int_{x_0}^{\infty} f(x)dx = h \sum_{k=0}^{\infty} f(x_k) - \frac{h}{2} f(x_0) + \frac{h^2}{12} f^{(1)}(x_0) - \frac{h^4}{720} f^{(3)}(x_0) + \frac{h^6}{30240} f^{(5)}(x_0) - \frac{h^8}{1209600} f^{(7)}(x_0) + \dots$$

Trapezoidal rule (TR) approximation:

$$\int_0^\infty f(x)dx = h \begin{cases} \frac{1}{2} & 1 & 1 & 1 & 1 & 1 & 1 \end{cases} f + O(h^2)$$

With 3x3 stencils, one can approximate odd derivatives up through  $f^{(7)}(0)$ . Doing this gives

$$\int_{0}^{\infty} f(x)dx = h \left\{ \begin{bmatrix} \frac{-821 - 779i}{403200} & -\frac{1889i}{100800} & \frac{821 - 779i}{403200} \\ -\frac{1511}{100800} & \left\{ \frac{1}{2} & 1 + \frac{1511}{100800} \\ \frac{-821 + 779i}{403200} & \frac{1889i}{100800} & \frac{821 + 779i}{403200} \end{bmatrix} 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad \dots \right\} \right\} f + O(h^{10})$$

- Magnitude of correction weights extremely small also in 5x5 stencil case  $\rightarrow \rightarrow \rightarrow \rightarrow$
- Accuracy order one above the number of stencil points (in the 5x5 case *O*(*h*<sup>24</sup>))

- For finite interval, matching expansion at the opposite end



#### Easier method to calculate the correction stencil weights

In the case of correcting the trapezoidal rule at the left end z = 0:

Consider 
$$\int_0^\infty f(z)dz - \left(\frac{1}{2}f(0) + \sum_{k=1}^\infty f(k)\right)$$
 and apply to  $f(z) = e^{z\xi}$ . This gives

$$\int_{0}^{\infty} e^{z\xi} dz - \left(\frac{1}{2} + \sum_{k=1}^{\infty} e^{k\xi}\right) = \frac{1}{2} \coth \frac{\xi}{2} - \frac{1}{\xi} = -\sum_{k=1}^{\infty} \frac{\zeta(-k)}{k!} \xi^{k}$$
(1)

Consider a correction stencil with weights  $w_k$  at N given nodes  $z_k$ , also applied to  $f(z) = e^{z\xi}$ 

$$\sum_{k=1}^{N} w_k e^{z_k \xi} = \{ \text{Taylor expansion in } \xi \}$$
(2)

Equate coefficients for the leading *N* terms in the expansions (1), (2). This gives a linear system with a Vandermonde coefficient matrix for the weights  $w_k$ .

The order of accuracy of the resulting quadrature approach will match the number of equated coefficients.

For this method, we don't even need to know that the Euler-Maclaurin formula exists (will be utilized for fractional derivative generlizations) Slide 11 of 17

### **Contour integration in the complex plane**



- The accuracy needed for a reasonably resolved functional display (above, left) is about the same as needed for typical double precision *O*(10<sup>-16</sup>) contour integral accuracy (i.e., no additional function evaluations are needed beyond what the grid already contains).
- No apparent ill effect of singularities very near to a FD stencils.
- Loss of accuracy seen for 5x5, large *h*, comes from TR and can be corrected for. Slide 12 of 17

#### Apply this integration approach to fractional derivative calculations

Recall again Caputo derivative: 
$$D^{\alpha}f(z) = \frac{1}{\Gamma(1-\alpha)} \int_{0}^{z} \frac{f'(\tau)}{(z-\tau)^{\alpha}} d\tau, \qquad 0 < \alpha < 1$$

<u>Theorem</u>: If f(z) is analytic, so is  $D^{\alpha}f(z)$  (typically with branch point at z = 0).

Preliminary step for numerics: Integrate by parts once, to get  $f(\tau)$  instead of  $f'(\tau)$ .

Key result: One can obtain equally high order accurate TR correction stencils also for the singular end point  $\tau = z$  of the integrand.

An additional technicality is needed when the evaluation point z is close to the base point 0.

<u>Procedure:</u> Follow grid lines with TR and end correct wit 5x5 stencils at base point, evaluation point, and at any path corner.



<u>Exact:</u>  $D^{\alpha}e^{z} = e^{z}\left(1 - \frac{\Gamma(1-\alpha, z)}{\Gamma(1-\alpha)}\right)$ , shown in the case of  $\alpha = 5/7$ .

Slide 14 of 17





 $D^{1/3}e^{-z^2} = -\frac{9z^{5/3}}{5\Gamma(2/3)} {}_2F_2\left(1,\frac{3}{2};\frac{4}{3},\frac{11}{6};-z^2\right)$ 







 $D^{\pi/8}\sin\pi z = \frac{\pi z^{1-\pi/8}}{\Gamma(1-\frac{\pi}{8})} {}_{1}F_{2}(1;1-\frac{\pi}{8},\frac{3}{2}-\frac{\pi}{16};-\frac{\pi^{2}z^{2}}{4})$ 



 $D^{1/2}\cos\left(\frac{\pi}{2}z\right) = \sqrt{\pi}\left(\cos\left(\frac{\pi}{2}z\right)S(\sqrt{z}) - \sin\left(\frac{\pi}{2}z\right)C(\sqrt{z})\right)$ where *S*(*z*) and *C*(*z*) are the Fresnel sine and cosine functions

 $f(z) = \sqrt{1+z^2}$ 

 $Re(D^{lpha}f)$ 

 $Im(D^{\alpha}f)$ 



Slide 16 of 17

#### Main conclusion

 Fractional derivatives can be computed to machine precision accuracy using grids with density comparable to what is needed for typical functional displays

#### Future opportunities (currently being pursued)

 Some special functions are the fractional derivative of elementary functions. This can be utilized this to simplify their numerical evaluation in the complex plane

 ${}_{1}F_{1}(a;c;z) = \frac{\Gamma(c)}{\Gamma(b)} z^{1-c} D_{z}^{a-c} [e^{z} z^{a-1}]$   ${}_{2}F_{1}(a,b;c;z) = \frac{\Gamma(c)}{\Gamma(a)} z^{1-c} D_{z}^{b-c} [z^{b-1} (1-z)^{a}]$   ${}_{p+1}F_{q+1}(\ldots;\ldots;z) = \begin{cases} \text{simple} \\ \text{function} \end{cases} \times \begin{cases} \text{fractional} \\ \text{deriv. of} \end{cases} (z^{c} {}_{p}F_{q}(\ldots;\ldots;z))$ 

- Develop a similar end-correction algorithm that uses data only along the real axis, within (or also outside) the interval [0, *t*].

#### **References:**

- B.F., *Contour integrals of analytic functions given on a grid in the complex plane*, IMA J. Num. Anal. (2021).
- B.F., Complex plane finite difference formulas, Numerical Algorithms (2022).
- B.F. and C. Piret, Complex Variables and Analytic functions: An Illustrated Introduction, SIAM (2020)  $\rightarrow \rightarrow \rightarrow \rightarrow$
- B.F. and C. Piret, Computation of fractional derivatives of analytic functions, submitted
- A. Higgins, Numerical computations of fractional derivatives of analytic functions, submitted.



Slide 17 of 17