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Outline of this presentation

- Introduction to Fractional Derivatives           (5 slides)

- Background on analytic functions, (5 slides)
FD formulas in the complex plane for regular derivatives,
Grid-based contour integration

- Application of contour integration to fractional derivatives (1 slide)

- Illustrations of fractional derivatives (3 slides)

- Conclusions, future opportunities (1 slide)
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Regular derivatives
First derivative

Origin of Calculus
Gregory (1670)
Leibniz   (1684),   Newton (1687)

Fractional derivatives

1695 l’Hôpital asked Leibnitz about derivatives of order ½ to which Leibniz replied
“This is an apparent paradox from which one day, useful consequences will be drawn”

1823 Abel presented a complete framework for fractional calculus, and a first application

From 1832 Major further contributions by Liouville, Riemann, etc. 
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Some different ways to introduce fractional derivatives
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Fractional derivatives are not unique: 
It was recently (2022) discovered that all versions belong to a two-parameter family. 
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Two most commonly used types of fractional derivatives

Riemann-Liouville (1832, 1847):

Caputo (1967):

Derivative of  e t
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- For m integer  Dα+mf(t) = Dm Dα f(t)
- Limit α → integer continuous

- For m integer  Dα+mf(t) = Dα Dm f(t)
- D(constant) = 0
- Solving fract. ODEs by Laplace transform, easy ICs

- Singularity at t = 0 (branch point if t complex)

-

Note also:
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What are fractional derivatives useful for? 

- Fractional diffusion
Recall heat / diffusion equation ut = uxx. 

i.  Fractional in time,    Dα
t u = uxx with α ≈ 1, provides ‘memory’

ii.  Fractional in space,  ut = Dα
x u with α ≈ 2, often represents better various

‘anomalous’ diffusion processes (typically with ‘base point’ on each side).

- Frequency-dependent wave propagation
- Random walks
- Active damping of flexible structures
- Gas/solute transport/reactions in porous media
- Epidemiology (incl. asymptomatic spreading)
- Modeling of bone/tissue growth/healing
- Modeling of shape memory materials
- Economic processes with memory
- Modeling of supercapacitors / advanced batteries using nano-materials
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How to numerically compute fractional derivatives,  t real   

Recall Caputo:

Equispaced grid in t-direction

0  t

Grünwald-Letnikov formula: (1868)

Still dominant in computing; only first order accurate – Error O(h1).
Improvements available up to around O(h4). 

Nodes in t-direction at prescribed non-equispaced locations

0  t
Spectral methods reminiscent of Gaussian quadrature possible. 
This type of node sets are  impractible in time for fractional order ODEs / PDEs.
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Analytic functions
Analytic functions form a very important special case of general 2-D functions  f(x,y).

Definition: With  z = x + iy complex,  f(z) is  analytic if 

is uniquely defined, no matter from which direction Dz approaches zero.

Cauchy-Riemann’s equations:

Separating f(z) in real and imaginary parts

It then holds that

Some consequences of analyticity:

- No distinction between          and         ,

- FD formulas in the complex x,y-plane, applied to analytic functions
become vastly more efficient / accurate than classical FD formulas.

- Cauchy’s integral formula
Accuracy does  not depend on how close the contour Γ is to z0.

- f(z) once differentiable implies f(z) infinitaly many times differentiable

- If  f(z) is known along any curve segment, it is known for all z. 
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A few examples of complex plane FD formulas          
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For  pth derivative, the accuracy 
is      O( h { {number of stencil points} – p}  )
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The weights at location μ + iν,   μ,ν integers,
decay to zero like

Extremely high accuracies already for very 
small stencils
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The Euler-Maclaurin formula

- Magnitude of correction weights extremely
small also in 5x5 stencil case                    → → →

- Accuracy order one above the number of 
stencil points (in the 5x5 case O(h24))

- For finite interval, matching expansion at 
the opposite end

Trapezoidal rule (TR) approximation:
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With 3x3 stencils, one can approximate odd derivatives up through f (7) (0). Doing this gives
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Easier method to calculate the correction stencil weights

In the case of correcting the trapezoidal rule at the left end   z = 0:

Consider                 and apply to                      . This gives

(1)

Consider a correction stencil with weights wk at N given nodes zk, also applied to 

(2)

Equate coefficients for the leading N terms in the expansions (1), (2). 
This gives a linear system with a Vandermonde coefficient matrix for the weights wk.

The order of accuracy of the resulting quadrature approach will match the number of equated 
coefficients.

For this method, we don’t even need to know that the Euler-Maclaurin formula exists
(will be utilized for fractional derivative generlizations)
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Contour integration in the complex plane          

Log-log plot of error
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- The accuracy needed for a reasonably resolved functional display (above, left) is about
the same as needed for typical double precision O(10-16) contour integral accuracy
(i.e., no additional function evaluations are needed beyond what the grid already contains).

- No apparent ill effect of singularities very near to a FD stencils.

- Loss of accuracy seen for 5x5, large h, comes from TR and can be corrected for.
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Apply this integration approach to fractional derivative calculations

Recall again Caputo derivative: 

Theorem: If f(z) is analytic, so is Dαf(z)   (typically with branch point at z = 0).

Preliminary step for numerics: Integrate by parts once, to get f(τ) instead of f’(τ).

Key result: One can obtain equally high order accurate TR correction stencils also 
for the singular end point  τ = z of the integrand.

An additional technicality is needed when the evaluation point  z is close to the base point 0.

Procedure: Follow grid lines with TR and end correct wit 5x5 stencils at base point,
evaluation point, and at any path corner.

0

1 '( )( ) , 0 1
(1 ) ( )

z fD f z d
z




  
 

  
  



Slide 14 of 17 

Fractional derivative illustrations:
Displayed grid densities sufficient for machine precision 10-16 accuracy 

Exact: , shown in the case of α = 5/7. 
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where S(z) and C(z) are the Fresnel sine and cosine functions 
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Main conclusion
- Fractional derivatives can be computed to machine precision accuracy using grids with 

density comparable to what is needed for typical functional displays

Future opportunities (currently being pursued)

- Some special functions are the fractional derivative of elementary functions. This can be 
utilized this to simplify their numerical evaluation in the complex plane

- Develop a similar end-correction algorithm that uses data only
along  the real axis, within (or also outside) the interval [0,t].
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