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Summary. Almost all the difficulties that arise in finite difference time domain
solutions of Maxwell’s equations are due to material interfaces (to which we include
objects such as antennas, wires, etc.) Different types of difficulties arise if the geo-
metrical features are much larger than or much smaller than a typical wave length.
In the former case, the main difficulty has to do with the spatial discretization,
which needs to combine good geometrical flexibility with a relatively high order of
accuracy. After discussing some options for this situation, we focus on the latter
case. The main problem here is to find a time stepping method which combines a
very low cost per time step with unconditional stability. The first such method was
introduced in 1999 and is based on the ADI principle. We will here discuss that
method and some subsequent developments in this area.
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1 Introduction

The main difficulties that arise when solving Maxwell’s equations with finite
differences usually come from the (often irregular) shapes of material inter-
faces. There are two different length scales present in CEM (computational
electromagnetics) problems:

– the size of geometrical features, and
– a typical wave length.

In many problems the two length scales are of comparable size. The (partly
conflicting) goals that then need to be met by an effective numerical method
include:

– good geometric flexibility (to allow for interfaces with corners or with high
curvatures);

– high order of spatial accuracy (to keep the number of points per wavelength
low);

– guaranteed (conditional) time stepping stability; and
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– low computational cost.

There are also many important applications in which the first length scale
(the size of geometrical features) is far smaller than a typical wave length
– maybe by five orders of magnitude, or more. Examples of such situations
include the interactions between components on an integrated circuit, the
effect of cellular phone signals on brain cells, and those of a lightning strike
on an aircraft. In order to capture the geometry, we then need to use grids
which (at least in some areas) feature an extremely high number of points per
wavelength (PPW). High formal order of accuracy in the spatial discretization
is then less critical. On the other hand, the method to advance in time should
feature:

– explicit (or effectively explicit) time stepping (since grids tend to be ex-
tremely large); and

– the complete absence of any CFL-type stability condition (since such con-
ditions would force time step sizes many orders of magnitude smaller than
what is needed in order to accurately resolve the wave).

The first time stepping method that met both these criteria was intro-
duced in 1999 [46]. Since then, a second (different, but related) method has
been proposed [29]. Furthermore, both of these methods have been enhanced
to feature higher than second order of accuracy in time [30]. As their only
nontrivial step, they both require the solution of tridiagonal linear systems.
One of the approaches is based on the alternating direction implicit method
(ADI), and the other one on a split step (SS) concept.

In this article, we will first state the 3D Maxwell’s equations (formulated
in 1873 by James Clark Maxwell, [32]), and then summarize the classical
Yee scheme [44]. Following that, we will discuss the issues that have been
mentioned above. The main focus of this review will be on fast and uncondi-
tionally stable time stepping procedures.

2 Maxwell’s Equations and the Yee Scheme

Assuming no free charges or currents, the 3D Maxwell’s equations can be
written
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where Ex, Ey, Ez and Hx, Hy, Hz denote the components of the electric and
magnetic fields respectively. The permittivity ε and permeability µ will in
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general depend on the spatial location within the medium. If these electric
and magnetic fields (multiplied by ε and µ respectively) start out divergence
free, they will remain so when advanced forward in time by (1):

∂

∂ t
(div (εE)) =

∂

∂ t

(

∂(εEx)
∂ x

+
∂(εEy)
∂ y

+
∂(εEz)
∂ z

)

=
∂

∂ x

(

∂Hz

∂ y
− ∂Hy

∂ z

)

+
∂

∂ y

(

∂Hx

∂ z
− ∂Hz

∂ x

)

+
∂

∂ z

(

∂Hy

∂ x
− ∂Hx

∂ y

)

(2)

= 0

and similarly for div (µH). This implies that the relations div (εE) = ρ (where
ρ is the local charge density) and div (µH) = 0 need not to be imposed as
additional constraints. Neither of these quantities will change during wave
propagation according to (1).

Arguably, the simplest possible finite difference approximation to (1) is
obtained by approximating each derivative (whether in space or time) by
centered second order accurate finite differences, i.e.
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In the style of (2), we can see that (3) at each grid point exactly preserves
the value of discrete analogs of div (εE) and div (µH).

2.1 Space Staggering

A key to the long-standing popularity of the Yee scheme (3) [44] is the con-
cept of grid staggering. We illustrate this first in a simpler case, viz. for the
scalar one-way wave equation ut+ux = 0. Centered approximations in space
and time, on a Cartesian grid, result in two entirely separate interlaced com-
putations over the grid points marked “x” and over those marked “o” in
Fig. 1. By computing over only one of the sets, say, the point set marked “o”,
we save a factor of two in computational effort. This also avoids trouble with
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high-frequency oscillations, which would otherwise be the apparent manifes-
tation of the two independent solutions over time most likely having drifted
somewhat apart.

Fig. 1. Illustration of grid staggering in the x, t−plane for the one-way wave equa-
tion ut + ux = 0

The same concept of staggering applies also to Maxwell’s equations in
3D, but gives then far larger savings – a factor of 16 rather than of two.
Just like the grid in Fig. 1 is made up of lots of translates of a ‘basic grid
unit’ (as displayed within the dotted frame), the 3D spatial lattice for the
Yee scheme is made up of translates of the block shown in Fig. 2, stacked in
3D as indicated by Fig. 3. These figures show the spatial layout only (due to
the difficulty of simultaneously displaying graphically time and three spatial
dimensions). On alternate time levels, only the three E-components or only
the three H-components are present, respectively, in the positions as shown
in Fig. 2. Considering how data is coupled by (3), this very sparse data layout
suffices for a complete calculation. Each variable appears only at one of eight
corner nodes, and furthermore only at every second time level. Having all
variables present at all nodes at all times would amount to carrying out 16
separate independent Yee calculations.

If there were no concerns about irregular geometries, it would be an easy
matter to greatly improve the computational efficiency of the Yee scheme by
just increasing the order of accuracy in both time and space (while main-
taining the staggering of the variables). With a fixed grid spacing, standard
finite difference approximations for the first derivative (in general for odd
derivatives) are much more accurate half-way between grid points than at
grid points [14] (with the advantage increasing with the order of the approx-
imation). In space, we can therefore employ highly accurate finite difference
(FD) approximations of increasing orders/stencil widths. Extensions to im-
plicit staggered approximations are derived and analyzed in Fornberg and
Ghrist [16]. The limits of increasing accuracy (stencil width) will in all cases
correspond to the pseudospectral (PS) method (see also [11]).
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Fig. 2. Basic computational cell in the Yee scheme for Maxwell’s equations. The
E’s and H’s appear only at alternate time levels

Fig. 3. Stacking of Yee cells of the form shown in the previous figure, in order to
form a complete 3D Cartesian grid

2.2 Time Staggering

The stencils for a few standard classes of linear multistep schemes are shown
in the left part of Fig. 4. Applied to an ODE (or system of ODEs) y′ = f(t, y),
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Fig. 4. Structure of some linear multistep methods for y′ = f(t, y)

these require values of f(t, y) to be available at the same time levels as are
the y-values. Ghrist et al. [22] introduced recently a new class of time stag-
gered ODE solvers. The staggered generalizations of Adams–Bashforth (AB),
Adams–Moulton (AM) and backward differentiation (BD) become the ex-
plicit ABS and BDS schemes shown to the right. In the case of second order,
these agree with the standard leap-frog scheme, but generalize this for higher
orders of accuracy. To be applicable for wave equations (after method-of-
lines discretization), the stability domains of the ODE solvers need to cover
a section of the imaginary axis. Both for the regular AB and staggered ABS
methods this occurs with orders 3,4, 7,8, 11,12, etc. Bounds on the imaginary
axis coverage (which translates directly into CFL stability restrictions) and
the leading truncation error constants are close to a factor of ten more favor-
able for the staggered than for the non-staggered methods. Since the ABS
methods require no more operations or storage than the AB methods, they
are generally much preferable. A possible exception can occur in cases of wave
equations with damping. Like for the leap-frog scheme, all staggered ODE
solvers lack negative real axis coverage in the stability domain. As a rule,
if leap-frog discretization can be applied, so can also these (more effective)
higher order generalizations.

The weights in the stencils for both the space approximations and the
time stepping methods (implicit or explicit, staggered or not) are most con-
veniently obtained from the two-line symbolic algebra algorithm described in
[12].

The lack of geometrical constraints in the time direction makes it par-
ticularly easy to use high order (big stencil) methods in that direction. The
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main reason this is not routinely utilized has to do with stability. For the Yee
scheme, it can be shown (for example by von Neumann analysis) that compu-
tations will be unstable unless∆t < 1 / (c

√

1/(∆x)2 + 1/(∆y)2 + 1/(∆z)2 ),
where c = 1/

√
εµ is the wave speed. In this case, the actual stability con-

straint agrees exactly with the (often not sharp) upper bound on the time
step imposed by the CFL (Courant–Friedrichs–Levy) condition. This condi-
tion usually makes it pointless to try to use higher order accuracy in time
than what is used in space. Although doing so would increase the temporal
accuracy, stability constraints would prevent this from being utilized to gain
computational efficiency through the use of significantly larger time steps.

3 Situations Where Geometrical Features are Similar in
Size to, or Larger Than a Typical Wave Length

As mentioned above, the choice of spatial discretization method is usually
dictated by the complexity of material interfaces. In this first scenario – with
geometrical features similar to or larger than a typical wave length – the
main problem is one of approximating Maxwell’s equations at curved bound-
aries accurately and economically. Boundary integral-type methods (see for
example [1] and [39]) offer a potentially very powerful approach. Focusing
here on discretizations of Maxwell’s equations in the form (1), we will next
make some very brief comments on four different implementation ideas.

3.1 Yee Scheme

We have already briefly described this scheme; much more detail can be found
e.g. in Taflove and Hagness [42] or Kunz and Luebbers [28]. It can probably be
said, without exaggeration, that this has been the main tool for FDTD (finite
difference time domain) calculations over the last 30 years. Only recently has
it started to give way to higher order methods and, in particular, to methods
that adapt more flexibly to irregular geometries (rather than just relying
on ‘staircasing’ – the approximation of all domains simply as subsets of the
regularly stacked Yee cells). However, thanks to its ease-of-use in cases when
accuracy and computational efficiency are not critical, it will probably remain
of importance for the foreseeable future.

3.2 Finite Elements

Like for the Yee scheme, many books, as well as commercial program pack-
ages, have been entirely devoted to finite element (FE) methods for CEM.
We will here make no attempt to survey this discipline, but refer the readers
to [26] and [27]. In general, FE methods for CEM are particularly well suited
for use in software packages, where high computational efficiency has been



8 Bengt Fornberg

traded for user-friendliness and convenience in applying different geometries,
boundary conditions, etc. FEMLAB and ANSYS are two examples of widely
available FE packages which specialize in structural mechanics, but for which
very capable toolboxes for CEM are available. FE methods which can dynam-
ically alter both gridding and element orders (hp-adaptive methods) can be
very effective, but are very complicated to implement [5].

3.3 Finite Element–Finite Difference Hybrid Methods

Hybrid methods use different numerical methods in different regions of the
computational domain. In one notable such development, Edelvik and Ledfelt
[8] combine a geometrically flexible and unconditionally stable finite element
discretization near boundaries with the much simpler and more cost-effective
Yee scheme throughout the bulk of the domain. In a layer near the boundaries,
the two grids share edges, as is indicated in the 2D illustration in Fig. 5. The
FE part gives rise to a positive definite system that is effectively solved, at
each time step, by pre-conditioned conjugate gradients (typically converging
in around 10–20 iterations). For the region of overlap, a procedure is used
that combines the results from the two domains in a way that ensures both
accuracy and overall stability [38]. Fig. 6 illustrates a very small section of
the 3D grid used in a simulation of electromagnetic fields that would arise
inside the cockpit area of a SAAB 2000 aircraft, if the plane was struck by
lightning. In the cockpit area, a tetrahedral-type FE grid is used for both
the outside skin and for interior structures. Shortly outside the skin, we see a
transition to a box-like Yee grid which continues (not shown) to fill a volume
surrounding the plane. Since, in this particular application, the interest is
confined to the cockpit area, objects further back (like wings, engines, etc.
outside the section displayed in Fig. 6) were all staircased. Computations
with around 106 cells and 7000 time steps take around 2 days on a typical
single processor workstation.

Many variations are possible. For example El Hachemi [9] uses interpo-
lation between the FD and FE areas (as an alternative option to letting the
grids share edges).

3.4 Spectral Elements

Several variations of spectral element-type methods have been proposed, in
particular for computational fluid dynamics, but also for Maxwell’s equations.
The method by Hesthaven and Warburton [25] is notable in several ways:
arbitrary order of accuracy, stability and convergence are strictly proven,
and an element coupling is used which permits very effective distributed
memory parallel implementation. Furthermore, very large-scale computations
have been successfully demonstrated in 3D (in particular for radar scattering
from aircraft). In 3D, the volume of interest is divided up into tetrahedra
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(some of which can be curvilinear for best fit with objects). Within each
such element, the unknowns are represented by a single polynomial in the
three space variables. If the degree is chosen as n, this polynomial will have
1
6 (n+1)(n+2)(n+3) coefficients. That is then also the number of node points
for such a tetrahedron. Their positions have been optimized to provide a par-
ticularly good interpolation capability, resulting in a certain distribution with
1
2 (n+ 1)(n+ 2) node points on each face (including one at each tetrahedral
corner and some along each edge), and the rest inside. While some spectral
element methods couple different elements in ways to achieve a high degree of
overall smoothness, the approach taken here is one of discontinuous Galerkin
form, and with boundary conditions enforced only weakly through a penalty
term. Data exchanges between the elements are based on characteristic infor-
mation at their outer surfaces (a key to effective parallelism based on domain
decomposition). Although a hybrid approach (involving a simpler gridding
and numerical scheme away from interfaces) has not yet been implemented
with this method, the developers are considering such a change (for which
conditional stability will remain assured). For more specific information on
the method, see [25].

A large part of the modeling effort in FDTD is often associated with grid
generation. One of the strengths of this spectral element approach (like for
hp-adaptive FE methods) is that it can utilize even a coarse and skewed grid,
and then reach a required accuracy by means of increasing the order within
each element (rather than requiring a new and better gridding; typically a
more expensive proposition). Fig. 7 is a 2D illustration of this. The starting
point is a deliberately skewed and coarse grid, as shown in the top left subplot

Fig. 5. Schematic illustration of transition between FE and FD areas of the FE-FD
hybrid method
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Fig. 6. Example of FE-FD gridding of the cockpit area of a Saab 2000 aircraft

(with the internal mesh in each triangle, corresponding to order n = 10, also
displayed). The additional three subplots show how bringing up the order
within the spectral elements produces convergence to the vertically symmetric
scattered field that results when plane waves arrive from the left.

3.5 Block-Pseudospectral Method

Of the approaches we are commenting on here, this one is the least well
tested. It was introduced by Driscoll and Fornberg [7], and was shown to
be highly effective in quite simple 2D geometries, such as the one shown in
Fig. 8. The basic idea is somewhat similar to the FE–FD hybrid approach
described above, but pushed a lot further towards high orders of accuracy in
exchange for reduced geometric flexibility and a less clear stability situation.
In the main part of the domain – away from objects – all spatial derivatives are
approximated on an equi-spaced Cartesian grid by the implicit and staggered
formula
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Fig. 7. Intentionally skewed gridding around a cylinder (with internal nodes for
n = 10 shown; top left), and the scattered fields for n = 4, 6, and 10

This approximation (one example of a wide class of similar formulas derived
and analyzed in [16]) features a particularly small constant within the O(h6)
error term, is quite compact, and leads only to tridiagonal systems to solve.
In the circular strips that fit the outer shape of the conductors, Chebyshev-
like pseudospectral discretization was used across the strips (implemented
via a differentiation matrix and not via FFTs, since there are only 6 grid
points in total in that direction), and the Fourier pseudospectral method was
used around the strips. (For an overview of pseudospectral methods, see [11].)
Data were interpolated between the grids in the regions of overlap, and the
standard fourth order Runge–Kutta scheme was used for the time integration.
The simulation shown in Fig. 9 was achieved by putting together these quite
standard numerical ingredients. The grid densities in the different regions
were precisely as shown by dots and lines in Fig. 8. The resolution in this
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example was approximately 3–4 PPW, which can be compared to around the
50–60 PPW that would have been required to reach a similar accuracy with a
Yee scheme. With so many fewer points needed for the higher order method
in each space dimension (together with a low computational cost per grid
point), the savings in both memory and computer time become very large.

In another test, the objects were inclined flat plates (rather than cylin-
ders). The boundary fitting grids then used Chebyshev-type node distribu-
tions in both directions within rectangular patches. By including large num-
bers of such patches – which themselves can overlap – it is anticipated (but
as yet not tested) that generalizations to more complex regions and to 3D
will become possible. Although the 2D test cases were found to be stable,
entirely without the inclusion of any artificial damping, stability has not
been strictly proven. This could possibly become a significant issue in more
complex settings.

Fig. 8. Grids, with actual discretization sizes shown (by dots and by lines) for the
test case of a wave front impinging on two perfect conductors

Concluding this brief discussion of some numerical approaches, we would
like to re-emphasize that efficient computation in free space and in the im-
mediate vicinity of interfaces pose very different numerical challenges. Quite
different numerical methods are usually preferable, suggesting that hybrid
methods are a natural approach to pursue.
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Fig. 9. Simulation of an electromagnetic wave front being scattered from two
perfectly conducting cylinders

4 Situations Where Geometrical Features are Much
Smaller Than a Typical Wave Length

In the cases mentioned in the Introduction (integrated circuits, cellular
phones, and lightning strikes), the spatial scales are about 10−5 wave lengths
in size. The spatial gridding then needs to be correspondingly fine in order



14 Bengt Fornberg

to capture the geometry properly, i.e. we are forced to an extreme over-
sampling in space compared to what would have been needed if the goal was
only to resolve a wave. Such very detailed grids, especially in 3D, will contain
vast numbers of grid points (even if used only in small areas of the overall
computational domain). To keep computational costs manageable, the time
stepping procedure needs to be explicit (or nearly so). The CFL stability con-
dition then tells that the time step also will need to be extremely small. The
dilemma in this situation is that, while the accuracy in time can be met by
using a time step that is some moderate fraction of the wave length, stability
would seem to impose upper time steps bounds of maybe only 10−5 of this
size. In order not to incur the vast expense of using such minute time steps,
some approach needs to be found which essentially bypasses the restriction
that is usually imposed by the CFL condition. In cases when the grids are
refined only in very small areas, it can be very convenient to still be able to
use the same (long) time steps everywhere.

Two discretization methods have very recently been proposed which fea-
ture unconditional stability. Although this property has been strictly proven
mainly for periodic problems in the case of a constant medium, the practical
experience is very favorable also for variable medium initial-boundary value
problems, as well as in combination with PML (perfectly matched layer) far-
field boundary conditions. Compared to the Yee scheme, each of the new
methods costs about four times as much as per time step – a small price
to pay for being able to use a time step many orders of magnitude larger
than would otherwise be possible. We will describe these two methods in the
remainder of this section.

4.1 Alternating Direction Implicit (ADI) Method

The ADI approach has been very successful for parabolic and elliptic PDEs
for the last 50 years. Seminal papers in the area include e.g. [6] and [35].
Similar 3-stage dimensional splittings for the 3D Maxwell’s equations have
been repeatedly tried in various forms since then, but have invariably fallen
short of the goal of unconditional time stability. However, a 2-stage splitting
introduced in 1999 by Zheng et al. [46, 47] does achieve this goal. The original
way to state this scheme includes introducing a half-way time level n + 1/2
between the adjacent time levels n and n + 1. We advance our six variables
as follows.
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=

1

µ

(

Ey|n+1/2
i,j,k+1 − Ey|

n+1/2
i,j,k−1

2∆z
−
Ez|n+1

i,j+1,k − Ez|
n+1
i,j−1,k

2∆y

)

Hy|n+1
i,j,k −Hy|

n+1/2
i,j,k

∆t/2
=

1

µ

(

Ez|n+1/2
i+1,j,k − Ez|

n+1/2
i−1,j,k

2∆x
−
Ex|n+1

i,j,k+1 − Ex|
n+1
i,j,k−1

2∆z

)

Hz|n+1
i,j,k −Hz|

n+1/2
i,j,k

∆t/2
=

1

µ

(

Ex|n+1/2
i,j+1,k − Ex|

n+1/2
i,j−1,k

2∆y
−
Ey|n+1

i+1,j,k − Ey|
n+1
i−1,j,k

2∆x

)

(5)
Several things can be noted.

– The stages differ in that we swap which of the two terms in each right hand
side (RHS) that is discretized on the new and on the old time level.

– On each new time level, we can obtain tridiagonal linear systems for Ex,
Ey, Ez. For example in Stage 1, on the new time level, we can eliminate
Hz between the first and the last equation, giving a tridiagonal system for
Ex. Once we similarly get (and solve) the tridiagonal systems also for Ey
and Ez, the remaining variables Hx, Hy, Hz follow explicitly.

– Yee-type staggering can again be applied, but only in space, giving savings
of a factor of 8 (rather than 16) compared to the case when all variables
are represented at all grid points.
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– The solution at the intermediate time level n + 1/2 is only first order
accurate. However, the accuracy is second order after each completed pair
of stages (i.e. at all integer-numbered time levels).

Shortly after this ADI scheme was first proposed, Namiki [33] demon-
strated its practical advantages for two test problems (a monopole antenna
near a thin dielectric wall, and a stripline with a narrow gap). This scheme
has also, by Liu and Gedney [31], been found to work well together with PML
far field boundary conditions.

Proof of Unconditional Stability The original stability proof (in the case
of a constant medium in a periodic or infinite domain) was first given in [47]
and reproduced in [42]. It uses von Neumann analysis. This leads to the
demanding task of analytically determining the eigenvalues of a certain 6× 6
matrix, whose entries are functions of the grid steps and wave numbers. This
does prove feasible, but only through some quite heavy use of computational
symbolic algebra. It transpires that all the eigenvalues have magnitude one,
which establishes the unconditional stability. The following simpler energy-
based stability proof was given by Fornberg [13]. A third proof, based on the
alternate ADI description in Sect. 4.1, is given in [4].

As we noted above, the ADI scheme is best laid out on a staggered Yee-
type grid in space, but with no staggering in time. However, for the sake of
simplifying the notation, we apply it here on a regular grid in space (i.e. a grid
with every one of the six quantities Ex, Ey, Ez, Hx, Hy, Hz represented at
each grid location, rather than at only one out of eight such locations). If we
can prove unconditional stability in this regular grid case, we have of course
also proven it for the 8 uncoupled sub-problems that it contains. Our energy
method for showing that no Fourier mode can diverge as time increases starts
by considering the ADI scheme over an arbitrary-sized periodic box. We then
demonstrate that the sum of the squares of all the unknowns remain bounded
for all times.

We again assume that ε and µ are constants, let αx = ∆t
2ε∆x , βx = ∆t

2µ∆x ,
and introduce similarly αy, αz, βy and βz. Separating the terms in (4) ac-
cording to their time level gives

Ex|n+1/2
i,j,k − αy

(

Hz|n+1/2
i,j+1,k −Hz|

n+1/2
i,j−1,k

)

= Ex|ni,j,k − αz
(

Hy|ni,j,k+1 −Hy|ni,j,k−1

)

Ey|n+1/2
i,j,k − αz

(

Hx|n+1/2
i,j,k+1 −Hx|

n+1/2
i,j,k−1

)

= Ey|ni,j,k − αx
(

Hz|ni+1,j,k −Hz|ni−1,j,k

)

Ez|n+1/2
i,j,k − αx

(

Hy|n+1/2
i+1,j,k −Hy|

n+1/2
i−1,j,k

)

= Ez|ni,j,k − αy
(

Hx|ni,j+1,k −Hx|ni,j−1,k

)

Hx|n+1/2
i,j,k − βz

(

Ey|n+1/2
i,j,k+1 − Ey|

n+1/2
i,j,k−1

)

= Hx|ni,j,k − βy
(

Ez|ni,j+1,k − Ez|ni,j−1,k

)

Hy|n+1/2
i,j,k − βx

(

Ez|n+1/2
i+1,j,k − Ez|

n+1/2
i−1,j,k

)

= Hy|ni,j,k − βz
(

Ex|ni,j,k+1 − Ex|ni,j,k−1

)

Hz|n+1/2
i,j,k − βy

(

Ex|n+1/2
i,j+1,k − Ex|

n+1/2
i,j−1,k

)

= Hz|ni,j,k − βx
(

Ey|ni+1,j,k − Ey|ni−1,j,k

)

(6)
We next take the square of both sides of each equation above; then mul-

tiply the first three equations by ε and the next three by µ. For example, in
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the case of the first and the fifth equations of (6), this gives

εα2
y

(

Hz|n+1/2
i,j+1,k −Hz|n+1/2

i,j−1,k

)2

− ∆t

∆y
Ex|n+1/2

i,j,k

(

Hz|n+1/2
i,j+1,k −Hz|n+1/2

i,j−1,k

)

+ε
(

Ex|n+1/2
i,j,k

)2

= ε
(

Ex|ni,j,k
)2 + εα2

z

(

Hy|ni,j,k+1 −Hy|ni,j,k−1

)2

−∆t
∆z

Ex|ni,j,k
(

Hy|ni,j,k+1 −Hy|ni,j,k−1

)

µβ2
x

(

Ez|n+1/2
i+1,j,k − Ez|

n+1/2
i−1,j,k

)2

− ∆t

∆x
Hy|n+1/2

i,j,k

(

Ez|n+1/2
i+1,j,k − Ez|

n+1/2
i−1,j,k

)

+µ
(

Hy|n+1/2
i,j,k

)2

= µ
(

Hy|ni,j,k
)2 + µβ2

z

(

Ex|ni,j,k+1 − Ex|ni,j,k−1

)2

−∆t
∆z

Hy|ni,j,k
(

Ex|ni,j,k+1 − Ex|ni,j,k−1

)

If we add these two equations together, one of the expressions on the right
hand side will become

−∆t
∆z

{

Ex|ni,j,k
(

Hy|ni,j,k+1 −Hy|ni,j,k−1

)

+Hy|ni,j,k
(

Ex|ni,j,k+1 − Ex|ni,j,k−1

)}

.

When summing this expression over the full 3D periodic volume, it cancels
out to become zero (as can be seen directly, or by summation by parts; already
summing in the z -direction makes it zero, and further summation in the x -
and y-directions of zeros remain zero). In the same way, when we add the
squares of all the relations in (6) over the full volume, all the products that
mix E and H -terms will cancel out on both of the time levels n+ 1/2 and n.
Hence, we get

∑n+1/2
(1) =

∑n
(2), where

∑n+1/2
(1) =

∑

i,j,k

{

ε

[

(

Ex|n+1/2
i,j,k

)2

+
(

Ey|n+1/2
i,j,k

)2

+
(

Ez|n+1/2
i,j,k

)2
]

+ µ

[

(

Hx|n+1/2
i,j,k

)2

+
(

Hy|n+1/2
i,j,k

)2

+
(

Hz|n+1/2
i,j,k

)2
]

+ ε

[

α2
y

(

Hx|n+1/2
i,j,k+1 −Hx|n+1/2

i,j,k−1

)2

+ α2
z

(

Hy|n+1/2
i+1,j,k −Hy|n+1/2

i−1,j,k

)2

+ α2
x

(

Hz|n+1/2
i,j+1,k −Hz|n+1/2

i,j−1,k

)2
]

+ µ

[

β2
z

(

Ex|n+1/2
i,j+1,k − Ex|

n+1/2
i,j−1,k

)2

+β2
x

(

Ey|n+1/2
i,j,k+1 − Ey|

n+1/2
i,j,k−1

)2

+ β2
y

(

Ez|n+1/2
i+1,j,k − Ez|

n+1/2
i−1,j,k

)2
]}

and
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∑n
(2) =

∑

i,j,k

{

ε
[

(

Ex|ni,j,k
)2 +

(

Ey|ni,j,k
)2 +

(

Ez|ni,j,k
)2
]

+ µ
[

(

Hx|ni,j,k
)2 +

(

Hy|ni,j,k
)2 +

(

Hz|ni,j,k
)2
]

+ ε
[

α2
z

(

Hx|ni,j+1,k −Hx|ni,j−1,k

)2 + α2
x

(

Hy|ni,j,k+1 −Hy|ni,j,k−1

)2

+ α2
y

(

Hz|ni+1,j,k −Hz|ni−1,j,k

)2
]

+ µ
[

β2
y

(

Ex|ni,j,k+1 − Ex|ni,j,k−1

)2

+ β2
z

(

Ey|ni+1,j,k − Ey|ni−1,j,k

)2 + β2
x

(

Ez|ni,j+1,k − Ez|ni,j−1,k

)2
]}

.

The superscript on each of the each of the sums
∑n+1/2

(1) and
∑n

(2) denotes
the time level, and the subscript indicates that the two sums furthermore
differ a bit subtly in the indices and coefficients for the terms that contain
differences.

Exactly in the same way as we have arrived at
∑n+1/2

(1) =
∑n

(2) starting
from the Stage 1 equations (4), we could instead have started from the Stage
2 equations (5) to obtain

∑n+1
(2) =

∑n+1/2
(1) . This tells that

∑n+1
(2) =

∑n
(2), i.e.

after each completed full time step,
∑

(2) remains unchanged. The expression

∑n =
∑

i,j,k

{

ε
[

(

Ex|ni,j,k
)2 +

(

Ey|ni,j,k
)2 +

(

Ez|ni,j,k
)2
]

+µ
[

(

Hx|ni,j,k
)2 +

(

Hy|ni,j,k
)2 +

(

Hz|ni,j,k
)2
]}

appears in
∑n

(2) together with additional terms that are all squares of differ-
ences, and therefore are guaranteed to be positive. Since

∑n
(2) is preserved

for all times (all integer values of n), the sum
∑n will be uniformly bounded

for all times by the initial value of
∑n

(2). This implies that the ADI method
is unconditionally stable.

A major advantage with ‘energy-type’ proofs, like the present, is that
they can often be extended to hold also in the case of variable coefficients
(i.e. variable media) and for different types of boundary conditions. This has
already been carried out for a box-shaped cavity with perfectly conducting
walls by Gao et al. [20].

Alternative Description of the ADI Method The 3D Maxwell’s equa-
tions (1) can be written

∂

∂ t



















Ex
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Hx

Hy

Hz
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1
ε
∂Hz
∂ y

1
ε
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∂ z
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∂ z

1
µ
∂Ez
∂ x

1
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∂ y
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∂ z
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∂ x
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or, more briefly,
∂ u

∂ t
= A u+B u .

The standard Crank–Nicolson discretisation in time is

un+1 − un

∆t
=

1
2

(Aun+1 +Aun) +
1
2

(Bun+1 +Bun) +O(∆t)2

⇒
(

1− ∆t

2
A− ∆t

2
B

)

un+1 =
(

1 +
∆t

2
A+

∆t

2
B

)

un +O(∆t)3

⇒

(

1− ∆t

2
A

)(

1− ∆t

2
B

)

un+1 =
(

1 +
∆t

2
A

)(

1 +
∆t

2
B

)

un

︸ ︷︷ ︸

+

One-step approximation

+
(∆t)2

4
A B(un+1 − un) +O(∆t)3

︸ ︷︷ ︸

.

Error = O(∆t)3

(8)

The ‘one–step approximation’
(

1− ∆t

2
A

)(

1− ∆t

2
B

)

un+1 =
(

1 +
∆t

2
A

)(

1 +
∆t

2
B

)

un (9)

can be written in two stages














(

1− ∆t

2
A

)

un+1/2 =
(

1 +
∆t

2
B

)

un

(

1− ∆t

2
B

)

un+1 =
(

1 +
∆t

2
A

)

un+1/2 .
(10)

To verify this, we multiply the first equation of (10) by
(

1 + ∆t
2 A
)

and the
second one by

(

1− ∆t
2 A
)

. The LHS of the first equation then equals the RHS
of the second equation, and (9) follows. It is straightforward to verify that
the two equations in (10) – after space derivatives in A and B have been
replaced by centered finite differences – become equivalent to the two stages
(4) and (5) of the ADI scheme. This way of deriving the ADI method offers
us several advantages.

– We recognize that un+1/2 more naturally can be seen just as an intermedi-
ate computational quantity rather than as some specific intermediate time
level (at which we have reduced accuracy).

– The second order accuracy in time for the overall procedure has become
obvious.

– It becomes easy to determine the precise form of the local temporal error
(which will be of importance to us later for implementing deferred correc-
tion in order to reach higher orders of accuracy in time).
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4.2 Crank–Nicolson Based Split-Step Method (CNS)

We start this subsection by briefly reviewing the general concept and history
of split step methods, and we then note how they can be applied to the
Maxwell’s equations.

Concept In the simplest form of split step, featuring only first order accuracy
in time, one would advance an ODE (or a system of ODEs)

ut = A(u) +B(u) (11)

from time t to time t+∆t by successively solving

ut = 2A(u) from t to t+ 1
2∆t, followed by

ut = 2B(u) from t+ 1
2∆t to t+∆t

Here, A(u) and B(u) can be very general nonlinear operators (in particular,
there is no requirement that A and B commute). The two time increments are
each of length 1

2∆t. We therefore denote this splitting by
{

1
2 ,

1
2

}

. One obtains
second order accuracy in time by instead alternating the two equations in
the pattern A, B, A while using the time increments

{

1
4 ,

1
2 ,

1
4

}

– known as
‘Strang splitting’ [40]. In 1990 Yoshida [45] devised a systematic way to obtain
similar split step methods of still higher orders. From an implementation
standpoint, one simply chooses certain longer time increment sequences, while
again alternating A, B, A, B, . . .. Table 1 shows the coefficients of methods
of orders 1, 2, 4, 6, and 8. The coefficients for the methods of order 6 and
above are not unique.

The split step approach is especially interesting for PDEs. If such an
equation is of the form ut +A(u, ux) +B(u, uy) = 0, immediate dimensional
splitting leads to two 1D problems. Splitting is also of significant interest for
certain nonlinear wave equations (see e.g. [15] for comparisons between split
step and two other approaches). For example, the Korteweg–de Vries (KdV)
equation ut +uux +uxxx = 0 can be split into ut + 2uux = 0 (which features
few numerical difficulties over brief times) and ut+2uxxx = 0 (which is linear,
and can be solved analytically, thereby bypassing otherwise severe stability
restrictions).

It can be shown (Suzuki, [41]) that methods of orders above two will need
to feature at least some negative time increments. Although this is of little
concern in our context of Maxwell’s equations, it does make the splitting
idea problematic in cases when an equation is partly dissipative, such as for
example the Navier-Stokes equations.

To heuristically explain why splitting works, we can for simplicity replace
(11) by ut = Au+B u where A and B are constant matrices (the procedure
allows for more general nonlinear operators, but in our present context of
Maxwell’s equations, A and B will become matrices after we have discretized
in space). In this simplified case we can write the analytic solution of the
system (11) of ODEs as
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Method Time increment sequence

SS1 0.50000 00000 00000 00000 0.50000 00000 00000 00000

SS2 0.25000 00000 00000 00000 0.50000 00000 00000 00000 0.25000 00000 00000 00000

SS4 0.33780 17979 89914 40851 0.67560 35959 79828 81702 -0.08780 17979 89914 40851

-0.85120 71919 59657 63405 -0.08780 17979 89914 40851 0.67560 35959 79828 81702

0.33780 17979 89914 40851

SS6 0.19612 84026 19389 31595 0.39225 68052 38778 63191 0.25502 17059 59228 84938

0.11778 66066 79679 06684 -0.23552 66927 04878 21832 -0.58883 99920 89435 50347

0.03437 65841 26260 05298 0.65759 31603 41955 60944 0.03437 65841 26260 05298

-0.58883 99920 89435 50347 -0.23552 66927 04878 21832 0.11778 66066 79679 06684

0.25502 17059 59228 84938 0.39225 68052 38778 63191 0.19612 84026 19389 31595

SS8 0.22871 10615 57447 89169 0.45742 21231 14895 78337 0.29213 43956 99000 73022

0.12684 66682 83105 67707 -0.29778 97250 73598 45089 -0.72242 61184 30302 57885

-0.40077 32180 57163 83322 -0.07912 03176 84025 08760 0.44497 46255 63618 95284

0.96906 95688 11262 99329 -0.00561 77738 38196 20526 -0.98030 51164 87655 40380

-0.46445 25958 95878 59173 0.05139 99246 95898 22035 0.45281 32300 44769 50634

0.85422 65353 93640 79233 0.45281 32300 44769 50634 0.05139 99246 95898 22035

-0.46445 25958 95878 59173 -0.98030 51164 87655 40380 -0.00561 77738 38196 20526

0.96906 95688 11262 99329 0.44497 46255 63618 95284 -0.07912 03176 84025 08760

-0.40077 32180 57163 83322 -0.72242 61184 30302 57885 -0.29778 97250 73598 45089

0.12684 66682 83105 67707 0.29213 43956 99000 73022 0.45742 21231 14895 78337

0.22871 10615 57447 89169

Table 1. Coefficients of some Split-Step methods

u(t) = e(A+B)t u(0)

where e(A+B)t is to be understood as the matrix

e(A+B)t = I + t(A+B) + t2

2! (A+B)2 + . . .

= I + t(A+B) + t2

2! (A
2 +AB +BA+B2) + . . .

(12)

(taking note of the fact that A and B in general do not commute). The
solution operator using SS1 amounts to replacing the exact operator e(A+B)t

by
e2B t

2 e2A t
2 = (I + tB + t2

2!B
2 + . . .)(I + tA+ t2

2!A
2 + . . .)

= I + t(A+B) + t2

2! (A
2 + 2BA+B2) + . . . .

(13)

The expansion in (13) differs from the one in (12) in the t2−term. This tells
that this particular splitting is only first order accurate. Carrying out the
same expansion for the SS2 scheme gives

e2A t
4 e2B t

2 e2A t
4

= (I + t
2A+ t2

8 A
2 + . . .)(I + tB + t2

2 B
2 + . . .)(I + t

2A+ t2

8 A
2 + . . .)

= I + t(A+B) + t2

2! (A
2 +AB +BA+B2) + . . . .

This agrees with (12) throughout the t2−term, thereby ensuring that SS2
(Strang splitting) indeed is accurate to second order.
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A similar verification in the case of SS4 will produce an expansion that
reproduces (12) also through the next two powers of t (not displayed in (12)).
This SS4 scheme was originally found (via direct algebraic expansions similar
to the ones above) by Neri in 1987 [34]. Closed form expressions are in this
case available for the fractional step lengths ci and di in the expansion

e(A+B)t = ec1Ated1Btec2Ated2Btec3Ated3Btec4At +O(t5) ,

namely

c1 = c4 =
1

2(2− 21/3)
, c2 = c3 = (1−21/3)c1 , d1 = d3 = 2c1 , d2 = −24/3c1 .

The key contributions by Yoshida in 1990 [45] were to

– demonstrate that it is possible to find sequences of time increments that
give time stepping accuracies of any order;

– devise a practical algorithm for computing these sequences of increments;
and

– note that, in order to get a high order in time, special time step sequences
can be applied as an addition to any scheme that is second order accurate
(i.e. if we have any second order scheme for (7) – irrespective of if it is itself
based on splitting or not – we can use certain time stepping sequences to
bring it up to any order in time). This will be discussed later.

A couple of comments regarding the last point above.

– We can use either ADI or CNS (Strang split 3D Maxwell’s equations, using
Crank-Nicolson for the sub-problems – as will be described next) as our
basic scheme, and then use certain time step sequences to enhance it to
higher orders. This will become one of the three enhancement techniques we
will consider later for increasing the time accuracy of the unconditionally
stable ADI and CNS schemes.

– The methods SS4, SS6, SS8 in Table 1 are just special cases of this more
general observation. These schemes arise if we choose, as our basic second
order scheme in this process the CNS scheme (here also denoted SS2).

Application of Split Step to Maxwell’s Equations Immediate di-
mensional splitting of the 3D Maxwell’s equations would lead us to con-
sider a PDE of the form ∂u

∂t = Au + Bu + Cu where u denotes the vector
(Ex, Ey, Ez, Hx, Hy, Hz)

T
. Although 3-way splitting is feasible, the particu-

lar structure of the 3D Maxwell’s equations permits a much more effective
alternative. We start this by writing the Maxwell’s equations as we did earlier
in (7) and, like then, we abbreviate them as

∂u

∂t
= Au+Bu (14)
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The split-step approach leads us to repeatedly advance ∂u
∂t = 2Au and ∂u

∂t =
2Bu by certain time increments. These two subproblems can be written out
explicitly as shown below. As first noted by Lee and Fornberg [29], each of the
two subproblems obtained in this manner amount to three pairs of mutually
entirely uncoupled 1D equations:
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. (15)

Each of the 1D subsystems in (15) can very easily be solved numerically. If we
choose a method which preserves the L2−norm for each 1D sub-problem, the
sum of the squares of all the unknowns will be preserved through each sub-
step, and therefore also throughout the complete computation. Unconditional
numerical stability is then assured. In particular, this will be the case if we
approximate each of the 1D subsystems in (15) with a Crank-Nicolson type
approximation. For example, to advance the first of the six sub-problems a
distance ∆t/4 in time, we would use

Ex|n+1/4
i,j,k −Ex|ni,j,k

∆t/4
=

2
ε

1
2

{

Hz|n+1/4
i,j+1,k−Hz|n+1/4

i,j−1,k

2∆y
+
Hz|ni,j+1,k−Hz|ni,j−1,k

2∆y

}

Hz|n+1/4
i,j,k −Hz|ni,j,k

∆t/4
=

2
µ

1
2

{

Ex|n+1/4
i,j+1,k−Ex|

n+1/4
i,j−1,k

2∆y
+
Ex|ni,j+1,k−Ex|ni,j−1,k

2∆y

}

If we here use the second equation to eliminate Hz on the new time level from
the first equation, we get a tridiagonal system to solve for Ex. Advancing (14)
using Strang splitting together with these Crank-Nicolson approximations
gives the scheme that we denote by CNS, which is second order accurate in
time and space.

Comparison Between Different Split Step Sequences The possibil-
ity of using split step together with (15) for numerical time integration of
Maxwell’s equations was first explored in [29]. In that study, a periodic do-
main was used, and all the 1D subproblems were solved analytically in (dis-
crete) Fourier space. All errors that arose were therefore due to the time
stepping, and it became possible to clearly compare the effectiveness of SS
schemes of different orders. One of the observations that was made there
was that different split step methods of the same order can have very differ-
ent leading error coefficients. Seven different SS8 methods have been found.
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Fig. 10 shows, for a typical test problem, how the accuracy improves with
increased temporal resolution. In this log-log plot, the slopes of the curves
confirm the 8th order of accuracy in all cases, but the errors nevertheless
differ by a full 3 1

2 orders of magnitude (for details about the test, see the
original paper). The scheme that performs the best here – SS8d – is the one
given in Table 1. Simply looking at the coefficients for the different schemes
gives no clear indication of their difference in accuracy.

Fig. 10. Log-log plot comparison of error vs. number of subintervals in time for
seven different SS8 methods

4.3 Enhancements to Reach Higher Orders of Accuracy in Time

We have just described two possible ways to obtain second order accuracy
in time combined with unconditional stability (at least for pure initial value
problems): ADI and CNS. High order methods are usually more effective than
low order ones. In the present case of space being over-resolved (with respect
to the wave length – in order to capture the fine geometrical features), we
are in the (unusual) situation that it is not important to bring up the spatial
order of accuracy. The situation in time is fundamentally different. Only one
scale is present – a large one imposed by the wave length. A high order time
stepping method can give cost savings by means of allowing significantly
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longer time steps than can be used with a second order method – as long as
the unconditional stability is preserved.

Some approaches to reach higher order in time are certain not to work.
For example, explicit Runge–Kutta and linear multistep methods can never
feature unbounded stability domains. Because of the second Dahlquist stabil-
ity barrier [2, 3] there are no prospects either in trying to add more back time
levels to the ADI scheme; no implicit linear multistep method can combine
A-stability with higher than second order accuracy in time. Following the
treatment in Lee and Fornberg [30], we will next discuss three enhancements
to ADI and CNS that will reach higher orders in time without running into
the difficulties just mentioned. As it will transpire, two of them (later to be
denoted EX and DC) will preserve unconditional stability up to all orders,
at least for pure initial value problems in the case of constant media (the
only situation for which stability has been rigorously established for the ADI
and CNS methods). It appears that the third approach (TS) will preserve
stability up to fourth order, but strong evidence for this is still lacking. For
orders higher than four, cases of instability have been found. We will next
introduce the three approaches (in the order TS, EX and DC).

Special Time–Step Sequences The pioneering paper – as well as the
main reference – on this procedure is Yoshida [45]. We start by assuming
that we have some numerical procedure which advances our solution with
second order accuracy in time. Expressed in the form of an operator, we write
the advancement of the solution from time t to the time t+ τ as u(t+ τ) =
S2(τ) u(t). We furthermore assume that the local error in the S2(τ)−operator
is expandable in terms of the time step τ in the form c1τ

3 +c2τ
5 +c3τ

7 + . . . .
It then transpires that the composite operator

S4(τ) = S2(w1τ) S2(w0τ) S2(w1τ) (16)

becomes (globally) fourth order accurate in time if the constants w0 and w1

are chosen as w0 = − 21/3

2−21/3 and w1 = 1
2−21/3 . This idea can be continued

indefinitely, with the general result stating that

S2p(τ) = S2(wkτ) . . . S2(w1τ) S2(w0τ) S2(w1τ) . . . S2(wkτ)

is accurate of order 2p if the constants wk, k = 0, 1, . . . , 2p−1 − 1 satisfy
certain nonlinear systems of algebraic equations. For the p = 2 case the
system becomes

{

w0 + 2w1 = 1
w3

0 + 2w3
1 = 0 (17)

and in case of p = 3
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Order

(2p)
Coefficients w0, w1, . . .wk where k = 2p−1 − 1.

4 - 1.70241 43839 19315 26810 1.35120 71919 59657 63405

6 1.31518 63206 83911 21888 - 1.17767 99841 78871 00695 0.23557 32133 59358 13368

0.78451 36104 77557 26382

8 1.70845 30707 87281 58467 0.10279 98493 91796 44070 - 1.96061 02329 75310 80761

1.93813 91376 22525 98658 -0.15824 06353 68050 17520 -1.44485 22368 60605 15769

0.25369 33365 66211 35415 0.91484 42462 29791 56675

Table 2. Coefficients of some time increment sequencies
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1+w3

2+w3
3) = 0
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3) = 0
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3
1+w0w

4
1−w

4
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3
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2
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2
2+

+w2
0w

3
2+4w0w1w3

2+4w2
1w

3
2+w0w4

2+2w1w4
2−w4

0w3−2w3
0w1w3−2w0w3

1w3−4w4
1w3−

−2w3
0w2w3−4w3

1w2w3−2w0w
3
2w3−4w1w

3
2w3−4w4

2w3−w3
0w

2
3−2w3

1w
2
3−2w3

2w
2
3+w2

0w
3
3+

+4w0w1w3
3+4w2

1w
3
3+4w0w2w3

3+8w1w2w3
3+4w2

2w
3
3+w0w4

3+2w1w4
3+2w2w4

3 = 0

(18)
Convenient recursive expressions to create the algebraic system for the gen-
eral order of accuracy 2p are given in [45]. These are very well suited for
numerical computation of the coefficients. Since the number of steps in these
time-step sequences increase exponentially with the order, fairly low orders
are probably of most interest. Table 2 will therefore suffice for most needs.

If we apply these sequences to the SS2 method, we get the methods we
earlier described as SS4, SS6, etc. But the sequences can just as well be ap-
plied to other second order time stepping methods, such as the ADI method.
In the following, we will sometimes denote the original ADI method as ADI2,
and the time sequence enhancements of it as ADI-TS4, ADI-TS6, etc.

Table 2 gives one example of coefficients for each order. The eighth order
scheme that is listed here corresponds to the split step scheme that was most
effective in the comparison shown in Fig. 10. Coefficients for all presently
known schemes up to and including 8th order can be found in [29].

We conclude this section by briefly explaining how the systems (17), (18)
etc. can be obtained. If X and Y are operators (or matrices) that commute,
then eX · eY = eZ with Z = X + Y . If X and Y do not commute, the
expression for Z becomes far more complicated. By the Baker-Campbell-
Hausdorff (BCH) formula [43]

Z = (X + Y ) + [X,Y ]
+ 1

12 ([X,X, Y ] + [Y, Y,X])

+ 1
24 [X,Y, Y,X]

+
{

commutators of successi-
vely increasing orders

}

(19)
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where [X,Y ] = X Y −Y X, [X,Y, V ] = [X, [Y, V ]], etc. Repeated application
of (19) gives eX · eY · eX = eW where

W = (2X + Y ) + 1
6 ([Y, Y,X]− [X,X, Y ])

+
{

commutators of successi-
vely increasing orders

}

(20)

With our assumption that the operator S2(τ) advances the equation u′ = Au
the distance τ in time, with a local error of c1τ3 +c2τ5 + . . . , it can be written
as S2(τ) = eτA+τ3C+O(τ5). The RHS of (16) then becomes

X
︷ ︸︸ ︷

e(w1τ)A+(w1τ)3C+O(τ5)

Y
︷ ︸︸ ︷

e(w0τ)A+(w0τ)3C+O(τ5)

X
︷ ︸︸ ︷

e(w1τ)A+(w1τ)3C+O(τ5)

By (20) this becomes

2X+Y higher terms
︷ ︸︸ ︷ ︷ ︸︸ ︷

e(2w1+w0)τA+(2w3
1+w3

0)τ3C+O(τ5) + O(τ5)

This represents a fourth order method if it is of the form eτA+O(τ5), i.e. if
(17) holds. To reach higher orders, we need to extend (20) to products of still
more exponentials. When the commutators also come into play for some of the
relations that need to be satisfied, the complexity of the resulting algebraic
equations rapidly increases, as is seen in (18). However, as we noted just
above, the original reference [45] shows that the higher order systems can
nevertheless be obtained recursively very conveniently.

For some further developments on ‘composition methods’ for time step-
ping, see Hairer et al. [24].

Richardson Extrapolation The idea, going back to Lewis Fry Richardson
in 1927 [37], has been used since then in many applications, e.g. in extrapola-
tion methods for ODEs and as Romberg’s method for quadrature. If we have
a numerical procedure for which the error of a computed variable u depends
on a step size h in the following way

uh = Exact + c1h
2 + c2h

4 + . . . ,

then repeating this calculation using a step size h/2 will give

uh/2 = Exact + c1
1
4h

2 + c2
1
16h

4 + . . .

These two results can be linearly combined in order to eliminate c1h2, giving
the more accurate result

vh/2 =
4 uh/2 − uh

3
= Exact− c2 1

4h
4 + . . .
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This idea can be continued repeatedly, and the results are conveniently laid
out in triangular form

Directly Extrapolated
computed
order 2 order 4 order 6 order 8
uh
uh/2 vh/2 = 4uh/2−uh

3

uh/4 vh/4 = 4uh/4−uh/2
3 wh/4 = 16vh/4−vh/2

15

uh/8 vh/8 = 4uh/8−uh/4
3 wh/8 = 16vh/8−vh/4

15 xh/8 = 64wh/8−wh/4
63

· · · · · · · · · · · ·

In the context of quadrature, it is common practice to halve the step
between each calculation (in order to be able to re-use as many old function
values as possible). The drawback with that strategy is that the number of
function evaluations then grows exponentially with the order. In the context
of ODEs – which is our situation when time stepping Maxwell’s equations –
it is cheaper to make smaller changes in the time step between the different
computations. The extrapolation procedure will still increase the order by
two for each new original computation, but without the need for each new
computation to be twice as expensive as the previous one.

Deferred Correction This concept of deferred correction was introduced by
Pereyra [36], first in the context of solving 2-point boundary value problems
for ODEs, and subsequently for solving PDEs. Frank and collaborators [17–
19] use the method for increasing the order of accuracy in the time stepping
of ODEs. This was considered again recently by Gustafsson and Kress [23]
who also illustrate the effectiveness of this for a methods-of-lines solution of a
1D heat equation. We will describe it here in the context of the ADI scheme.
The procedure to increase the temporal order of accuracy from 2 to 4 consists
of the following steps.

– Run the ADI2 scheme over some time interval [0, T ].
– From the numerical values of this solution, evaluate an approximation of

the local truncation error En+1/2 at each time level.
– Re-run the ADI2 scheme over the time [0, T ], but this time include En+1/2

as a RHS (a forcing function) to the equation.

The last two steps can be repeated in order to reach still higher orders of
accuracy (6, 8, etc.). Two orders of accuracy will be gained each time the
basic second order scheme is re-run.

To apply this idea to the ADI scheme, we start by noting that the local
error in (9) becomes

En+1/2 =
(

1− ∆t
2 A
) (

1− ∆t
2 B

)

un+1 −
(

1 + ∆t
2 A
) (

1 + ∆t
2 B

)

un

=
(

1 + (∆t)2

4 AB
)

(

un+1 − un
)

− ∆t
2

(

un+1 + un
)
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From the expansions

un+1 − un = ∆t u
n+1/2
t + (∆t)3

24 u
n+1/2
ttt + (∆t)5

1920 u
n+1/2
ttttt + . . .

un+1 + un = 2un+1/2 + (∆t)2

4 u
n+1/2
tt + (∆t)4

192 u
n+1/2
tttt + . . .

follow

En+1/2 = (∆t)
(

u
n+1/2
t − (A+B)un+1/2

)

+
Vanishes
because
of the PDE

+(∆t)3
(

AB
4 u

n+1/2
t − A+B

8 u
n+1/2
tt + 1

24u
n+1/2
ttt

)

+
Use to get
DC of
order 4

+(∆t)5
(

AB
96 u

n+1/2
ttt − A+B

384 u
n+1/2
tttt + 1

1920u
n+1/2
ttttt

)

+
Use to get
DC of
order 6

+ . . . ...

To proceed from ADI2 to ADI-DC4 (deferred correction to 4th order), we
approximate En+1/2 by

En+1/2 ≈ (∆t)2

4 AB(un+1 − un)− ∆t
16 (A+B)(un+2 − un+1 − un + un−1)

+ 1
4 (un+2 − 3un+1 + 3un − un−1) .

In the same manner as we showed that (9) was equivalent to (10), we can
show that

(

1− ∆t
2 A
) (

1− ∆t
2 B

)

un+1 =
(

1 + ∆t
2 A
) (

1 + ∆t
2 B

)

un + En+1/2 (21)

is equivalent to














(

1− ∆t

2
A

)

un+1/2 =
(

1 +
∆t

2
B

)

un + 1
2E

n+1/2

(

1− ∆t

2
B

)

un+1 =
(

1 +
∆t

2
A

)

un+1/2 + 1
2E

n+1/2 .
(22)

Multiplying the second equation in (22) by
(

1− ∆t
2 A
)

and then using the
first equation in (22) leads in a few steps to (21)
(

1− ∆t
2 A
) (

1− ∆t
2 B

)

un+1

=
(

1− ∆t
2 A
) (

1 + ∆t
2 A
)

un+1/2 + 1
2

(

1− ∆t
2 A
)

En+1/2

=
(

1 + ∆t
2 A
) (

1− ∆t
2 A
)

un+1/2 + 1
2

(

1− ∆t
2 A
)

En+1/2

=
(

1 + ∆t
2 A
)

{

(

1 + ∆t
2 B

)

un + 1
2E

n+1/2
}

+ 1
2

(

1− ∆t
2 A
)

En+1/2

=
(

1 + ∆t
2 A
) (

1 + ∆t
2 B

)

un + En+1/2 .
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The corrections in this deferred correction procedure can therefore be very
conveniently implemented by applying half the amount of the approximative
local error to each of the two ADI stages.

Enhancements by Re-starts During computations over long times, re-
starts can improve the accuracy of both Richardson extrapolation and de-
ferred correction calculations. Instead of running the calculations over [0, T ],
we run at first over [0, T/2] to obtain an accurate value at T/2. Then, re-
starting from that point, we compute up to time T . This amounts to a ‘2
subinterval’ calculation. A ‘4 subinterval’ calculation would similarly split
[0, T ] into [0, T/4], [T/4, T/2], [T/2, 3T/4], [3T/4, T ], etc. The idea is to
avoid ever running the underlying low-order method across a long time inter-
val, as it would then accumulate very large errors. Subsequent extrapolation
or deferred correction would then have little chance of working well. With the
re-start approach, the low-order computations will never be given the time
to drift too far off course, and the subsequent corrections will therefore be
correspondingly more effective. For additional discussion and test results, see
[30].

Abbreviations for the Time Stepping Methods The time stepping
methods we have just introduced and which we next will compare are

ADI Alternating Direction Implicit FDTD method
CNS Split step method of order 2 using Crank-Nicolson
ADI-TS Time sequence enhanced ADI
CNS-TS Time sequence enhanced CNS
ADI-EX Richardson extrapolation enhanced ADI
ADI-DC Deferred correction enhanced ADI
ADI-REX The ADI-EX method further enhanced by restarts
ADI-RDC The ADI-DC method further enhanced by restarts

Since it was found in [30] that the ADI-based methods might be marginally
more effective than the CNS-based ones, we will here not include CNS-EX,
CNS-DC, CNS-REX and CNS-RDC. At the end of each of the abbreviations,
we also add a number specifying the order in time.

Test Problem We consider the following exact periodic solution to (1) over
the unit cube with ε = µ = 1 :

Ex = cos(2π(x+ y + z)− 2
√

3πt) Hx =
√

3Ex
Ey = −2Ex Hy = 0
Ez = Ex Hz = −

√
3Ex .

(23)

We discretize all spatial derivatives by centered second order finite differ-
ences. Instead of quoting the size of the time and space steps explicitly, we
instead give points per time interval (PPT, number of time steps / total time
T for test problem) and points per wave length (PPW, with the wave length
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here equal to
√

3). By converting the spatial variables over to the Fourier
domain, the system to be solved can be written as ût = Aû where A is a 6×6
matrix (independently of how fine we choose our spatial discretization). On
this new system of ODEs, we then carry out all our different time stepping
procedures. This conversion over to the Fourier domain allows us to observe
the influence of the PPW quantity also for very high values without this
leading to any increased computational cost per time step.

Computational Cost Comparisons Fig. 11 illustrates how the L2 error
at a final time t = 1 varies with PPW and PPT. The value of PPW deter-
mines the spatial discretization error level. If PPW is held fixed and PPT
is increased without bound, time stepping errors will decrease to zero, and
the total error will come down to the level that is set by the spatial errors
for the particular value of PPW. In the limit of PPW= ∞ we will only see
time stepping errors. The errors for the different methods will then decrease
indefinitely, as is indicated by the dotted extrapolations in Fig. 12 (near to
where we have labeled the different methods).

Fig. 11. L2 error at time t = 1 as function of PPW and PPT in the case of the
ADI method and time-sequence enhanced versions of it

In Fig. 12 we have fixed PPW to 105, but have also indicated in the right
margin what the asymptotic error levels becomes for other PPW choices.
Again, extrapolations corresponding to PPW= ∞ are also shown. When
comparing the relative computational cost between different time stepping
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Fig. 12. L2 error at time T = 100 as function of PPW and of relative computational
cost for time stepping methods of different orders

methods, we need to consider not only the number of time steps but also
the number of operations per time step. The three subplots show the errors
for our time stepping methods of orders 2, 4, and 6 respectively, when this
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cost has been factored in – thus with relative cost replacing PPT along the
horizontal axis. We can make a number of observations from Fig. 12.

– Unless PPW is quite large, there is little reason to increase the order in
time beyond what ADI2 offers.

– For very high PPW (the situation in the class of problems we are consid-
ering; with geometrical features much smaller than a typical wave length),
the benefits of higher order time stepping can be substantial.

– Of the three different enhancement approaches, DC (deferred correction)
appears the least effective and EX (Richardson extrapolation) the most
effective.

The situation with regard to unconditional stability is somewhat unclear
in the case of the TS methods. It appears to hold for TS4 but, in certain
cases, does not hold for TS6. For the DC and EX methods, it will hold
for all orders as long as the number of restarts are held finite (rather than
being increased with PPT). Re-started, high order extrapolations of the ADI
approach (ADI-REX) appears to be particularly attractive for high PPW
calculations.

For more details on these higher order enhancements (such as how the
number of re-starts influence the resulting accuracy), see Lee and Fornberg
[30]. In conclusion, regarding this class of time stepping methods, it needs
to be added that they so far have been applied only to very simple periodic
problems. Tests with variable media and irregular interfaces should be carried
out before any firm recommendations can be made.

4.4 Conclusions

Problems in CEM feature two length scales: the size of geometric features, and
a typical wave length. The first part of this article focused on the case when
the length scales are similar. Thanks to its simplicity, the Yee scheme has
been popular in many applications. Its drawbacks are its low (second order)
accuracy and lack of geometric flexibility. We noted that it can be enhanced
to high orders in both space and time by using wider FD stencils and by incor-
porating more back levels respectively. The novel, high-order time-staggered
linear multistep methods that were briefly described have better stability and
accuracy properties than their classical Adams-type non-staggered counter-
parts. The difficulty with geometric flexibility can be met by taking a hybrid
approach, such as switching to a FE scheme near interfaces or to a FD
scheme on ‘patches’ that are mapped to follow curved interfaces. Boundary
integral methods can in some cases give very high efficiency, not only for time
harmonic cases but also for fully time dependent ones.

After mentioning a few implementations, we turned our attention to cases
where the geometrical features are many orders of magnitude smaller than a
typical wave length. The primary issue then becomes how to effectively by-
pass the CFL stability condition. Two second order accurate methods with
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unconditional stability have recently been found, ADI and CNS. The remain-
der of the paper has been devoted to a description of these and a discussion
about how they can be enhanced to feature higher order accuracies in time
(without losing their unconditional stability). Mixed with reports of success-
ful implementations and insights are also some tentative concerns, e.g. the

– significance of the lack of exact pointwise conservation of div (εE) and
div (µH) is unclear;

– possibility of large errors arising from the (∆t)2

4 A B(un+1 − un) term in
(8) in cases of variable coefficients (and which constant media dispersion
analysis does not seem to reveal [21]);

– stability situation with regard to ADI-type methods in combination with
certain boundary conditions;

– accuracy of some of the high order time stepping approaches in cases when
the equations have explicit time dependence due to the boundary condi-
tions or to forcing.

All these issues are at present under study by different research groups.
These open questions notwithstanding, ADI-type methods form an exciting
new direction in CEM, now on the verge of moving from test problems to
production applications.
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