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Abstract
A brief summary of the standard fixed point theorems, since the course text does not go into detail;

we unify notation and naming. The names of theorems themselves are confusing since we have both the
“Brouwer” and “Browder” as well as “Schauder” and “Schaefer” theorems). Parts of these notes may be
extremely useful for certain types of research, but it is not a focus of the class or the qualifying exams, so
this is a bit orthogonal to the main thrust of the class. We also touch on some applications to optimization.

1 Basic results from the class textbook and some basic definitions
From Hunter and Nachtergaele [8], modified slightly:

Definition 1.1. Let (X, d) be a metric space. A mapping T : X → X is a contraction if there exists a
constant c with 0 ≤ c ≤ 1 such that

(∀x, y ∈ X) d(T (x), T (y)) ≤ c d(x, y).

It is a strict contraction if c < 1. We will also refer to the case c ≤ 1 as being non-expansive.

Let us introduce some additional notation that is standard but not in the book:

Definition 1.2 (Fixed point set). The set Fix(T ) ⊂ X is the set of fixed points of the operator T : X → X,
that is,

Fix(T ) = {x | x = Tx}.

For example, if T = I is the identity, then Fix(I) = X. If T = −I, then Fix(−I) = {0}. In the above
definition, X is any general space (topological, metric, normed, etc.), but in the theorem below, it must be a
complete metric space.

Theorem 1.3 (Contraction mapping theorem, due to Banach 1922; also known as Banach-Picard). Let T :
X → X and let X be a complete metric space. If T is a strict contraction, then Fix(T ) consists of exactly one
element x?.

The proof is constructive and creates the sequence xn+1 = Txn, which is known as the Picard iteration.
The result is very easy, and there are easy implications, such as d(xn, x

?) ≤ cnd(x0, x
?), which means the

sequence (xn) converges at a linear rate to x? (confusingly, in some fields, this is called exponential convergence).
Note that the theorem applies whenever T is a strict contraction in some metric, so you are free to “search” for
good metrics.

Some definitions In the rest of the notes, we also use the language of Hilbert space to state results in more
generality, though our focus in this section is not on infinite-dimensional spaces, and therefore there is no harm
in thinking of Hilbert space as just Rn. Formally, a Hilbert space is a Banach space with an inner product and
the Banach space norm is the norm induced by the inner product; in particular, a Hilbert space is a normed
vector space, and it is complete. For a Hilbert space H over the real numbers, we define the inner product 〈·, ·〉
as a functional on H × H → R such that it is (1) symmetric, so 〈x, y〉 = 〈y, x〉, (2) linear in each argument
separately, so 〈αx+ y, z〉 = α〈x, z〉+ 〈y, z〉, and (3) positive-definite so that 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 only when
x = 0. The induced norm is defined by ‖x‖ =

√
〈x, x〉. N.B. if H is over C, the inner product takes on complex

values and the definitions change slightly.
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2 Other classical fixed point theorems
Brief mentions of the Brouwer, Kakutani and Schauder fixed point theorems. The reference is “Methods of Math-
ematical Economics: Linear and Nonlinear Programming, Fixed-Point Theorems” by Joel Franklin [6] (1980,
republished by SIAM, available for free online with CU access at http://epubs.siam.org/ebooks/), which is
a readable introduction. The Kakutani theorem in full generality is covered by Royden’s “Real Analysis” [10]
and relies on the Alaoglu Theorem.

The contraction mapping theorem is the simplest fixed point theorem and is unusual because it is
constructive. It is due to Banach, 1922, and implies the implicit function theorem.

The Brouwer fixed-point theorem is one of the most important results in modern mathematics, and is easy
to state but hard to prove. It its most basic form, it is completely topological.

Theorem 2.1 (Brouwer, topological version). Let K be a compact convex set (inside a topological space X),
and f : K → K a continuous function. Then Fix(f) is nonempty.

We’ll pay more attention to this version, which is clearly a corollary of the topological version:

Theorem 2.2 (Brouwer, Euclidean space version). Let X be a Banach space and f be a continuous function
defined on the unit ball B. If f maps B to itself (that is, ‖x‖ ≤ 1 =⇒ ‖f(x)‖ ≤ 1), then some point of the ball
is mapped to itself, i.e., there is a fixed point of f .

Franklin introduces a short proof based on Green’s theorem (summarized by the “Stokes’ Theorem proof”
on the Brouwer page at Wikipedia).

A further corollary of the topological Brouwer theorem (and slightly more abstract than our Euclidean space
version) is known as the Schauder fixed point theorem:

Theorem 2.3 (Brouwer, Banach space version, aka Schauder fixed point theorem). Let X be a Banach space
and f be a continuous function defined on a convex subset K such that f(K) is compact. If f maps K to itself,
then some point of K is mapped to itself, i.e., there is a fixed point of f .

Another extension of Brouwer’s theorem is the Kakutani theorem, which concerns more general mappings
that need not be functions. We consider set-valued mappings F (x), e.g., F : X → P(X). A very important
example of such a mapping is the sub-differential of a convex function.

Theorem 2.4 (Kakutani). Let X be a closed, bounded, convex set inside a Euclidean space. For every x ∈ X,
let F (X) equal a non-empty convex subset Y ⊂ X. Assume the graph

{(x, y) | y ∈ F (x)}

is closed. Then there is some x? that solves x? ∈ F (x?).

The graph being closed is similar to a function being lower semicontinuous.
The Kakutani theorem is used to prove the famous Nash equilibrium theorem for n-person games.

3 Fixed point theorems for optimization
The reference for this section is “Convex analysis and monotone operator theory in Hilbert Spaces” by Bauschke
and Combettes, 2011 [1], mainly from chapters 4 and 5. The book is free on the CU campus via SpringerLink; see
http://link.springer.com/book/10.1007%2F978-1-4419-9467-7. A much more concise yet still rigorous
summary is in the book chapter “Proximal Splitting Methods in Signal Processing” by Combettes and Pesquet,
2011 [2], available at http://dx.doi.org/10.1007/978-1-4419-9569-8_10 (and preprints are on the arXiv).

Suppose T is non-expansive but not strictly non-expansive, that is, perhaps Lip(T ) = c = 1. Then
the Banach-Picard iteration may fail. For example, take T = −I and start at any x0 6= 0, then the iteration
never converges (but there is a unique fixed point, which is 0). Franklin describes this case as unimportant
since he uses a limit argument (of cn → 1 with cn < 1) to show that a solution exists, but this is unsatisfactory
because (1) this case is very different, since the fixed points may not be unique, as shown by T = I, and (2) it
is not a constructive proof, so not helpful for numerical methods.

One way to handle this is the following variant on the Banach-Picard iteration, which in turn forms the
basis of many optimization methods.
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Figure 1: POCS algorithm for the case C1 = C and C2 = D with C1 ∩ C2 = ∅, figure from Combettes and Pesquet
2011 [2]

Theorem 3.1 (Krasnosel’skĭi-Mann algorithm (aka KM algorithm)). Let D be a nonempty closed convex
subset of a Hilbert space H, let T : D → D be a non-expansive operator such that Fix(T ) is non-empty, and
pick λ ∈ (0, 1) and x0 ∈ D. Then the sequence defined by

xn+1 = xn + λ(Txn − xn)

is such that (a) (Txn − xn) converges to 0, and (b) (xn) converges weakly to a point in Fix(T ).

This can be used to prove convergence of the classical gradient descent method, as well as generalizations
known as the “proximal gradient method” or “forward-backward” method (not to be confused with various
other “forward-backward” methods in other fields).

Now, we briefly consider projections onto sets. For any set closed set C, define PC(x) the projection of x
onto C; that is, p = PC(x) if ‖p − x‖ ≤ ‖y − x‖ for all y ∈ C. We require the set to be closed so that the
point exists. The projection depends implicitly on the norm. If the projection is always unique, the set is called
a Chebyshev set, and a basic result is that all closed (and non-empty) convex sets are Chebyshev sets. In a
Hilbert space, using the induced norm, we have the further fundamental result:

Proposition 3.2. Let C ⊂ H be a non-empty closed, convex set. Then p = PC(x) if and only if 〈x−p, y−p〉 ≤ 0
for all y ∈ C.

Using this, we can prove that PC is a non-expansive (and in fact, firmly non-expansive) operator. However,
if C contains more than one element, it is not strictly contractive, since then there are more than one points
such that x = PC(x). Combining the non-expansive properties with the KM algorithm, we also recover some
classical projection algorithms:

Theorem 3.3 (Projection onto convex sets (POCS)). Let (Ci)m
i=1 be a finite collection of nonempty closed

convex sets inside a Hilbert space H, and let Pi be the projection onto Ci (which exists and is single-valued).
Let T = P1 ◦P2 ◦ . . . ◦Pm and assume Fix(T ) 6= ∅. Then the POCS algorithm xn+1 = Txn will weakly converge
to some point in C1 (for full statement, see Corollary 5.23 in Bauschke and Combettes [1]).

The full POCS algorithm has mild assumptions. If we further assume that C def= ∩Ci 6= ∅, then (xn) converges
weakly to some point in C. See Fig. 1 for an illustration of the algorithm in the case when ∩Ci = ∅. We also
can strengthen the result to strong convergence if the sets are closed affine subspaces; this result is known as
the von Neumann projection theorem (or the von Neumann-Halperin theorem).

We also note that there is a “mixture” of the Banach and Schauder theorems that is known as the Browder
theorem (not to be confused with Brouwer), which we state:

Theorem 3.4 (Browder-Göhde-Kirk). Let D be a nonempty bounded closed convex subset of H and let
T : D → D be a nonexpansive operator. Then the set of fixed points of T is non-empty.

Another other fixed point theorems, related to Ekeland’s variational principle (which is used when level sets
are not compact so that Bolzano-Weierstrass does not apply), is [3]

Theorem 3.5 (Caristi fixed-point theorem). Let (X, d) be a complete metric space and T : X → X, and f :
X → R be a non-negative lower semicontinuous function. If for all x ∈ X we have d(x, T (x)) ≤ f(x)− f(T (x))
then T has a fixed point.
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The choice of f is arbitrary, so one can search for a good f , just as one may search for a good norm, in
order to prove existence of a fixed point of T .

3.1 Specific applications for convex optimization
This section uses more of Bauschke and Combettes’ book [1], as well as Y. Nesterov’s “Introductory Lectures
on Convex Optimization.” [9]

1. Let X = Rn and suppose f : X → R is continuous and also has continuous derivatives ∇f . We denote
this set of functions as C1(X). We let 〈x, y〉 =

∑n
i=1 xiyi be the standard Euclidean inner product, and

‖x‖ =
√
〈x, x〉 the standard Euclidean norm.

2. Suppose additionally ∇f is Lipschitz continuous with constant L; we done such class of functions as C1
L(x).

Then for f ∈ C1
L(X) and all x, y ∈ X,

|f(x)− f(y)− 〈∇f(x), y − x〉| ≤ L

2 ‖y − x‖
2.

The proof is elementary and uses the fundamental theorem of calculus.

3. We can characterize the convex functions in C1(X), denoted F1(X), by those f ∈ C1(X) such that for
all x, y ∈ X,

f(y) ≥ f(x) + 〈∇f(x), y − x〉. (3.1)

This means that at every point x, the tangent line at f(x) is a global lower bound for the function. By
adding two copies of (3.3) but switching the roles of x and y, we have

〈x− y,∇f(x)−∇f(y)〉 ≥ 0. (3.2)

In general, a convex function need not be in C1, so we have not characterized all convex functions. It
turns out we can generalize the notion of a gradient to the notion of a subgradient, and we require exactly
the same property as (3.3). We define a subgradient d to be any vector in X satisfying

f(y) ≥ f(x) + 〈d, y − x〉 ∀x, y ∈ X. (3.3)

The collection of all subgradients is called the subdifferential, denoted ∂f , and when f is convex, this has
exactly one element if and only if f is differentiable. This is extremely useful, since we have Fermat’s rule
which says that the set of minimizers of f is the same as the set of zeros of ∂f ; when f is differentiable
and convex, this just means that ∇f(x) = 0 whenever x is a minimizer. (Note: do not confuse the
subdifferential of a function, ∂f , with the notion of the boundary of a set X, which is written ∂X)

4. Denote the set of C1 convex functions with Lipschitz continuous gradients to be F1
L(X) def= F1(X)∩C1

L(X).
Then f ∈ F1

L(X) implies the following for all x, y ∈ X (see Nesterov Thm. 2.1.5):

(a) 0 ≤ f(y)− f(x)− 〈∇f(x), y − x〉 ≤ L
2 ‖x− y‖

2

(b) f(x) + 〈∇f(x), y − x〉+ 1
2L‖∇f(x)−∇f(y)‖2 ≤ f(y)

(c) 1
L‖∇f(x)−∇f(y)‖2 ≤ 〈∇f(x)−∇f(y), x− y〉

(d) 〈∇f(x)−∇f(y), x− y〉 ≤ L‖x− y‖2

The proof is elementary but some parts are a bit clever.

5. Consider the problem of minimizing f over X, assuming f ∈ F1
L(X). As we’ll prove in the homework, this

is equivalent to finding a point x such that 0 = ∇f(x), which can be thought of as a fixed point equation
to find x such that x = (I − T )︸ ︷︷ ︸

T ′

(x), i.e., x ∈ Fix(T ′).
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6. The operator T ′is generally not strictly non-expansive, even if we tried to scale T . The homework asks
you to provide such an example. In a simpler case when we works with quadratic functions, so that T is a
matrix, our condition is that the maximum eigenvalue in absolute value of (I − T ) is bounded by 1. If we
do convex optimization, that means the smallest eigenvalue of T is at least 0. If it is 0, then the maximum
eigenvalue (in absolute value) of (I − T ) is at least 1, so there is no chance of being strictly nonexpansive.

7. The notion of firmly non-expansive, introduced in the homework, is stronger than being non-expansive,
and it rules out the “nasty”’ non-expansive operators like −I. See Fig. 2. To summarize the homework:
let D ⊂ H for a Hilbert space H, and consider a function T : D → H. We say T is firmly non expansive
if for all x, y ∈ D, ‖T (x)− T (y)‖2 + ‖(I − T )(x)− (I − T )(y)‖2 ≤ ‖x− y‖2. Here, we use I to denote the
identity mapping. Then the following are equivalent:

(a) T is firmly nonexpansive
(b) I − T is firmly nonexpansive
(c) 2T − I is nonexpansive
(d) For all x, y ∈ D, ‖Tx− Ty‖2 ≤ 〈x− y, T (x)− T (y)〉.

8. Working with minimizing quadratic functions, or equivalently, assuming that the derivatives are linear,
and working in finite dimensional space, we encroach on the territory of linear system solving. There are
many classical results here, such as Jacobi’s method, Gauss-Seidel, SOR, etc. The relevant quantity is the
spectral radius ρ(A) of a matrix A, defined as the maximum eigenvalue of A in absolute value. That is,
if A has eigenvalues (λi), then ρ(A) = maxi |λi|. We collect a few facts below. For more reference on the
spectral radius, see §5.6 in Horn and Johnson’s classic “Matrix Analysis” book (1985) [7].

(a) The spectral radius is not a norm because (1) ρ(A) = 0 is possible for nonzero A, and (2) it does not
satisfy the triangle inequality (unless both matrices are normal). To prove these results, consider the
matrices (0 1

0 0

)
,

(
0 0
1 0

)
,

(
0 1
1 0

) and (1 1
0 1

).
(b) In some special cases, the spectral radius is particularly simple: suppose each entry of the matrix A

is non-negative, and if the columns or rows all have constant sum, then spectral radius is just the
column or row sum.

(c) For any sub-multiplicative norm (sometimes called a matrix norm; this means that ‖AB‖ ≤ ‖A‖‖B‖)
‖ ·‖, then ρ(A) ≤ ‖A‖. Furthermore, for any fixed A and fixed ε > 0, there is some sub-multiplicative
norm such that ρ(A) ≤ ‖A‖ ≤ ρ(A) + ε. The connection with Picard iterations is the following:
limn→∞An = 0 if and only if ρ(A) < 1. The “if” part of the theorem is obvious, but the “only if”
is surprisingly strong, and we do not have equivalent results for non-linear operators or for infinite
dimensional spaces.

(d) As a corollary, for any sub-multiplicative norm, we have ρ(A) = limn→∞ ‖An‖1/n.
(e) Another consequence is the Neumann series: a matrix A is invertible if there is some sub-multiplicative

norm such that ‖I − A‖ < 1, and if so, then A−1 =
∑∞

k=0(I − A)k. Likewise, ρ(A) < 1 implies
(I − A)−1 =

∑∞
k=0 A

k. (side note: the Neumann series is named for Carl Neumann, not the more
famous John von Neumann)

5



I0 x− y

T (x)− T (y)

(I − T )(x)− (I − T )(y)

Figure 2: Figure and text from Eckstein and Bertsekas [4]. Illustration of the action of firmly non expansive operators
in Hilbert space. If T is non expansive, then T (x) − T (y) must lie in the larger sphere, which has radius ‖x − y‖ and
is centered at 0. If T is also firmly non expansive, then T (x) − T (y) must lie in the smaller sphere, which has radius
1
2‖x− y‖ and is centered at 1

2 (x− y). This characterization follows directly from T being of the form 1
2 + 1

2 C where C is
nonexpansive (point (c)). Note that if T (x)− T (y) lies inside the smaller sphere, then so does (I − T )(x)− (I − T )(y),
as we already saw (point (b)).

4 Fixed point theorems for Differential Equations
We follow L. C. Evans’ classic “Partial Differential Equations.” [5] The reference to section and theorem numbers
comes from Evan’s first edition, but we note that his second edition is now available. The appendices of his
book are a very concise summary of analysis, and are a good review. His book is a rigorous approach to proving
the existence and smoothness of solutions to PDE.

Banach’s fixed point theorem, on Banach spaces, is Theorem 1 in §9.2.1; see Example 1 in that section for
an application used to prove existence of a weak solution to a reaction-diffusion system of PDE. Brouwer’s fixed
point theorem is Theorem 3 in §8.1.4. It is extended to Schauder’s fixed point theorem as Theorem 3 in §9.2.2
(with the variant that K is both convex and compact, hence f(K) is necessarily compact). Below we present
an alternative form of Schauder’s theorem, known as Schaefer’s fixed point theorem, which is more useful
in applications to nonlinear PDE.

First, define a function f : X → Y to be compact if f(B) is precompact in Y whenever B is a bounded
subset of X (see definition 5.42 in Hunter and Nachtergaele). Equivalently, it means for every bounded sequence
(xn), then f(xn) contains a convergent subsequence (which converges in f(B), not necessarily f(B)).

Theorem 4.1 (Schaefer, Thm. 4 in §9.2.2 of Evans). Suppose f : X → X is continuous and compact, where
X is a Banach space over the reals, and also assume the set

B
def= {x ∈ X | x = λf(x), for some λ ∈ [0, 1]}

is bounded. Then f has a fixed point.

Unlike Schauder’s theorem, we don’t need to explicitly identify an explicit convex, compact set.
Note that the theorem sounds a bit bizarre. The set B actually contains any possible fixed points, since if

we take λ = 1 we include the points x = f(x), so we are somewhat saying that if such a set is bounded, then
the set exists. This is the method of a priori estimates, and for the subject of PDE, the general method is “if
we can prove appropriate estimates for solutions of a nonlinear PDE, under the assumptions that such solutions
exist, then in fact these solutions do exist.” (Evans, §9.2.2).

Proof of Schaefer’s theorem. We use Schauder’s theorem. First, let M be a strict bound on all elements x ∈ B,
which exists by assumption, so ‖x‖ < M for all x ∈ B (note that we are using whatever norm is associated with
the generic Banach space X). Now define another function

f̃(x) def=
{
f(x) ‖f(x)‖ ≤M

M
‖f(x)‖f(x) ‖f(x)‖ ≥M

.

Thus f̃ maps the ball BM (0) to itself. Define K to be the closed convex hull of f̃(BM (0)). The function f is
compact by assumption, and so is f̃ , and we can consider f̃ : K → K.
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Now we are in position to invoke Schauer’s fixed point theorem, so there is some x such that x = f̃(x).
If this x is not also a fixed point of f , then it means that ‖f(x)‖ > M otherwise f and f̃ coincide. Thus by
definition of f̃ and the fact x is a fixed point, we have

x = f̃(x) = M

‖f(x)‖f(x) = λf(x)

for λ = M
‖f(x)‖ < 1, hence x ∈ B. On the other hand, ‖x‖ = ‖f̃(x)‖ = M

‖f(x)‖‖f(x)‖ = M , so this contradicts
our assumption that ‖x‖ < M for all x ∈ B.
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