
APPM 4/5560 Markov Processes

Fall 2019, Final Exam Review Problems Solutions

1. We want to find π0 + π2.
λi = λ, i = 0, 1, 2, . . .

µ1 = µ

µi = 2µ, i = 2, 3, . . .

πn =
λ0λ1 · · ·λn−1

µ1µ2 · · ·µn
π0 =

(
λ

µ

)n (1

2

)n−1

π0

which holds for n = 1, 2, . . ..

To find π0:

1 =
∞∑
n=0

π0

[
1 +

λ

µ

∞∑
n=1

(
λ

2µ

)n−1
]

= π0

[
1 +

λ/µ

1− λ/(2µ)

]
= π0

2µ+ λ

2µ− λ

assuming that λ/(2µ) <∞.

So, we have

π0 =
2µ− λ
2µ+ λ

.

We then have

π1 =
λ

µ
π0 =

λ

µ

2µ− λ
2µ+ λ

.

The probability that at most one server is busy is

π0 + π1 =
2µ− λ
2µ+ λ

[
1 +

λ

µ

]

2. We want

0.95 =
9∑

n=0

πn

where

πn =

(
1− λ

µ

)(
λ

µ

)n
, n = 0, 1, 2, . . .

and λ = 3.
9∑

n=0

πn =

(
1− λ

µ

) 9∑
n=0

(
λ

µ

)n
= 1−

(
λ

µ

)10



So, we need to solve

1−
(

3

µ

)10

= 0.95

for µ. The answer is µ = 3/(0.05)1/10 ≈ 4.048.

3. λ0 = λ1 = λ2 = λ, λ3 = 0, λ4 = 0, . . ., etc...

µ1 = µ2 = µ3 = λ

So the stationary distribution which gives the probability of there being n customers in the
shop is, for n = 0, 1, 2, 3

πn =
λ0 · · ·λn
µ1 · · ·µn

π0 =

(
λ

λ

)n
π0 = π0

So,
1 = π0 + π1 + π2 + π3 = π0 + π0 + π0 + π0 = 4π0

⇒ π0 =
1

4

and hence π0 = π1 = π2 = π3 = 1/4.

So, the expected number of customers in the shop is

3∑
n=0

n · P (n customers in the shop ) =
3∑

n=0

nπn =
1

4

3∑
n=0

n =
1

4
[0 + 1 + 2 + 3]

=
3

2

4. I’m going to interpret the question as the amount of time from the start of one idle period to
the start of the next idle period. In this case, we want to find

E[I] + E[B]

where I is a typical idle period and B is a typical busy period for the server.

We know that E[I] = 1/λ.

As for the busy period, let S be the service time for the customer who starts the busy period.
We have

E[B] =
∫∞

0 E[B|S = s] · f(s) ds

=
∫∞

0 E[B|S = s] · µe−µs ds



The first customer, with service time S = s starts a busy period for the server that is at least
s units of time long. If more customers come in during this service time, the busy period will
increase.

Let N be the number of arrivals during this first customer’s service period. To find E[B|S = s]
we will condition on N . We have

E[B|S = s] =
∞∑
n=0

E[B|S = s,N = n] · P (N = n|S = s).

Due to the Poisson arrival process, P (N = n|S = s) = e−λs(λs)n

n! . Let’s examine the other
part. We have

E[B|S = s,N = 0] = s

since if no other customers arrive while the first customer is served, the server’s busy period
ends when the first customer leaves and the busy period is just that first customer’s service
time.

Now, if exactly 1 customer arrives during the first customer’s service time, the busy period of
the server will be the original s units of time on the first customer plus another busy period
that will consist of the second customer’s service time plus the service times of whoever else
came in during the second customer’s service time. All of this just becomes a new busy period
started by the second customer. We have

E[B|S = s,N = 1] = s+ E[B]

Similarly, we have
E[B|S = s,N = 2] = s+ 2E[B]

...
...

E[B|S = s,N = n] = s+ nE[B]

Thus, we have

E[B|S = s] =
∑∞
n=0 E[B|S = s,N = n] · P (N = n|S = s)

=
∑∞
n=0 [s+ nE[B]] e

−λs(λs)n

n!

= s
∞∑
n=0

e−λs(λs)n

n!︸ ︷︷ ︸
1

+E[B]
∞∑
n=0

n
e−λs(λs)n

n!︸ ︷︷ ︸
E[Poisson(λs)]

= s+ λsE[B]



Finally, going back to the beginning of this solution, we have

E[B] =
∫∞

0 E[B|S = s] · µe−µs ds

=
∫∞

0 [s+ λsE[B]] · µe−µs ds

= [1 + λE[B]]

∫ ∞
0

s µe−µs ds︸ ︷︷ ︸
E[exp(rate=µ)]

= [1 + λE[B]] · 1
µ

We have

E[B] = [1 + λE[B]] · 1

µ
.

Solving for E[B] gives

E[B] =
1

µ− λ

The final answer is

E[I] + E[B] =
1

λ
+

1

µ− λ
=

µ

λ(µ− λ)
.

5. No, {N(t)} does not have a stationary distribution. It is an increasing process, so there is no
way that the distribution of its values at time time t1 could be the same as the distribution
of its values at some later time t2. To express this a bit more formally, one could write down
the generator matrix Q and then it is easy to see that, for λ > 0 the only solution to ~πQ = ~0
is ~π = ~0 which is not a distrbution. (It doesn’t sum to 1.)

6. (a) Birth rates: λ0 = dλ, λ1 = (d− 1)λ, etc... In general,

λi =

{
(d− i)λ , i = 0, 1, . . . , d
0 , otherwise

Death Rates: µ0 = 1, µ1 = µ, µ2 = 2µ, etc... In general,

µi =

{
iµ , i = 0, 1, . . . , d
0 , otherwise



(b) πn = 0 for n > d. For n = 0, 1, 2, . . . , d,

πn = λ0λ1···λn−1

µ1µ2···µn π0

= (dλ)((d−1)λ)···((d−(n−1))λ)
(µ)(2µ)···(nµ) π0

=
(
λ
µ

)n d!/(d−n)!
n! π0

=
(
λ
µ

)n
d!

n!(d−n)! π0

=

(
d
n

)(
λ
µ

)n
π0

To find π0:

1 = π0

d∑
n=0

(
d
n

)(
λ

µ

)n
= π0

d∑
n=0

(
d
n

)(
λ

µ

)n
(1)d−n = π0

(
1 +

λ

µ

)d
where the last equality is by the binomial theorem. Therefore

π0 =

[(
1 +

λ

µ

)d]−1

and, for n = 1, 2, . . . , d,

πn =

(
d
n

)(
λ

µ

)n
π0.

(c)

E[X(t)] =
∑d
n=0 nπn

= π0
∑d
n=0 n

(
d
n

)(
λ
µ

)n
= π0

∑d
n=1 n

(
d
n

)(
λ
µ

)n
= π0 (λ/µ)

∑d
n=1 n

(
d
n

)(
λ
µ

)n−1

= π0 (λ/µ) ddr
∑d
n=1

(
d
n

)
rn

where r = λ/µ.



Now
d∑

n=1

(
d
n

)
rn =

d∑
n=0

(
d
n

)
rn − 1 = (r + 1)d − 1.

So,

d

dr

d∑
n=1

(
d
n

)
rn =

d

dr

[
(r + 1)d − 1

]
= d(r + 1)d−1.

Therefore

E[X(t)] = π0(λ/µ) d
(
λ
µ + 1

)d−1

=

[(
1 + λ

µ

)d]−1

(λ/µ) d
(
λ
µ + 1

)d−1

= d·λ/µ
1+λ/µ

7. (a) Let X = the number of people in the queue in equilibrium. Then

P (X = n) = πn =

(
1− λ

µ

)(
λ

µ

)n
, n = 0, 1, 2, . . .

This is a geometric distribution so you could just quote the mean of the geometric.

Alternatively,
E[X] =

∑∞
n=0 n · P (X = n)

=
(
1− λ

µ

)∑∞
n=0 n

(
λ
µ

)n
=

(
1− λ

µ

)∑∞
n=1 n

(
λ
µ

)n
=

(
1− λ

µ

)
λ
µ

∑∞
n=1 n

(
λ
µ

)n−1

=
(
1− λ

µ

)
λ
µ

∑∞
n=1

d
dq q

n

where q = λ/µ.



So,

E[X] =
(
1− λ

µ

)
λ
µ
d
dq

∑∞
n=1 q

n

=
(
1− λ

µ

)
λ
µ
d
dq

q
1−q

=
(
1− λ

µ

)
λ
µ

1
(1−q)2

=
(
1− λ

µ

)
λ
µ

1
(1−λ/µ)2

= λ
µ−λ

(b) For the M/G/1 queue, the mean queue length in equlibrium to be

L =
2λµ + λ2σ2 − λ2

µ2

2
(
1− λ

µ

)
where σ2 is the variance of the service time distribution.

In the M/M/1 queue, service times are exponential with rate µ. Hence, they have mean
1/µ and variance 1/µ2. So, L becomes

L =
2λµ + λ2 1

µ2
− λ2

µ2

2
(
1− λ

µ

) =
2λµ

2
(
1− λ

µ

) =

λ
µ(

1− λ
µ

) =
λ

µ− λ

Yeah!

8. Let W be a waiting time of a customer arriving to the M/M/1 queue in equilibrium. Then
E[W |N = 0] = 0, E[W |N = 1] = 1/µ, . . . E[W |N = n] = n/µ.



So,
E[W ] =

∑∞
n=0 E[W |N = n] · πn

=
∑∞
n=0

n
µ ·
(
1− λ

µ

) (
λ
µ

)n
=

∑∞
n=1

n
µ ·
(
1− λ

µ

) (
λ
µ

)n
= 1

µ

(
1− λ

µ

) (
λ
µ

)∑∞
n=1 nq

n−1

= 1
µ

(
1− λ

µ

) (
λ
µ

)∑∞
n=1

d
dq q

n

= 1
µ

(
1− λ

µ

) (
λ
µ

)
= 1

µ
λ
µ

1
1−λ

µ

= λ
µ(µ−λ)

where q = λ/µ.

For the M/M/2 system,
E[W |N = 0] = 0

E[W |N = 1] = 0

E[W |N = 2] =
1

2µ

E[W |N = 3] =
1

2µ
+

1

2µ
=

2

2µ

This last one used the lack of memory of the exponential. In this scenario, there are customers
at both of the two servers and then another customer in line in front of our customer. We
will have an expected wait of 1/2µ for a customer to leave the system and which time the
customer ahead of us in the line steps up for service. The other customer (one of the two
originally being served), still has an exponential amount of time to go, so we will have another
expected wait of 1/2µ until another customer leaves and we can step up to the server.

Continuing in this manner,

E[W |N = 4] =
3

2µ

...

E[W |N = n] =
n− 1

2µ

So,
E[W ] =

∑∞
n=0 E[W |N = n] · πn

E[W ] =
∑∞
n=2 E[W |N = n] · πn.



We know from Problem 1 that, for the M/M/2 queue,

πn =
1

2n−1

(
λ

µ

)n 2µ− λ
2µ+ λ

, n = 1, 2, . . .

So
E[W ] =

∑∞
n=2 E[W |N = n] · πn

=
∑∞
n=2

n−1
2µ

2µ−λ
2µ+λ

1
2n−1

(
λ
µ

)n
= · · ·

= λ2

µ(2µ−λ)(2µ+λ)

For the M/M/2 with λ = 2 and µ = 1.2, the expected waiting time for a customer to get
service is

λ2

µ(2µ− λ)(2µ+ λ)
=

125

66
≈ 1.8939

units of time.

For the M/M/1 with λ = 1 and µ = 1.2, the expected waiting time for a customer to get
service is

λ

µ(µ− λ)
=

25

6
≈ 4.16667

units of time.

Even though the arrival rate per server is the same for both systems, the M/M/2 has two
servers working so people are getting through faster!

9. Recall that for X ∼ Γ(α, β), E[X] = α/β and V ar[X] = α/β2.

In queueing theory, we used µ to denote the lifetime or service rate, not mean. So, in this
case, letting Si denote a service time, we have

1

µ
= E[Si] = 2/ν, σ2 = 2/ν2.

(a)
P (has to wait for service) = P (people in queue)

= 1− P (no one in queue)

= 1− π0

= 1− (1− λ
µ) = λ

µ = 2λ
ν



(b)

L =
2λ
µ

+λ2σ2−λ
2

µ2

2
(
1−λ

µ

)
=

4λ
ν

+ 2λ2

ν2
− 4λ2

ν2

2(1− 2λ
ν )

=
2λ
ν
−λ

2

ν2

1− 2λ
ν

10. Let S be the service time of this typical customer. Let N be the number of customers that
arrive during this service time. If S was fixed as s time units, then N ∼ Poisson(λs). Hence,

P (N = n) =
∫∞
0 P (N = n|S = s)µe−µs ds

=
∫∞
0

e−λs(λs)n

n! µe−µs ds

= λnµ
n!

∫∞
0 sn e−(λ+µ)s ds

The integral is now looking like that of a gamma pdf with α = n + 1 and β = λ + µ. We
make this correspondence exact by putting in the appropriate constants

P (N = n) = λnµ
n!

∫∞
0 sn e−(λ+µ)s ds

= λnµ
n!

Γ(n+1)
(λ+µ)n+1

∫∞
0

1
Γ(n+1)(λ+ µ)n+1sn e−(λ+µ)s ds

= λnµ
n!

Γ(n+1)
(λ+µ)n+1 · 1

= λnµ
n!

n!
(λ+µ)n+1 = λnµ

(λ+µ)n+1

for n = 0, 1, 2, . . . .

11. This is a Little’s Law problem with all of the weird notation that goes with it.

Recall Little’s Law:
L = λW

where L is the expected number of customers in the system and W is the expected sojourn
time of a typical customer. (Note that these are not random variables– they are expectations
of random variables. Also note that W is being used for an expected sojourn time and not a
waiting time.)



To do this problem, let W0 be the expected waiting time for a person in the system. Since
W is the expected sojourn time, we have

W = W0 +
1

µ
.

(i.e. We add on the customer’s expected service time.)

We then need to show a variant of Little’s Law L0 = λW0 for the M/M/s queue. (This is
true for all stable queueing models but the general proof is not easy and I would probably
stick to verifing it for the M/M/s queue.)

(This is too much work... don’t worry about this problem for the final!)

Finally, we have

L = λW = λ

(
W0 +

1

µ

)
= λW0 +

λ

µ
= L0 +

λ

µ
.

So, the “question mark” is λ/µ.

12. Suppose we wish to simulate values from a distribution with pdf f . To run the accept-reject
algorithm, one must find a function g such that g(x) ≥ f(x) for all x in the support of f .
One must be able to integrate g to get

c :=

∫
g(x) dx <∞.

(The integral is over the support of f .)

Define h(x) = g(x)/c. Note that h is a pdf.

The accept-reject algorithm is then run as follows.

1 Simulate Y from the distribution with pdf h.

2 Simulate U ∼ unif(0, 1).

3 If

U ≤ f(Y )

g(Y )

accept Y as a draw from f . Otherwise, discard Y and U and start over with Step 1.

13. The Metropolis-Hastings algorithm is used to simulate values with a given pdf f . Because it
involves creating a Markov chain with stationary distribution f , we usually call the “target
pdf” π instead of f .



We need to choose a candidiate transition density q(x, y). (The choice is arbitrary though
some choices are better than others!)

Start a Makov chain {Xn} at some arbitrary value at time 0. The evolution of the chain is
as follows.

Suppose that Xn = x.

1 Draw a value Y from the density q(x, y). Suppose that Y = y.

2 Draw a value U ∼ unif(0, 1).

3 Accept a move from x to y, and set Xn+1 = y, if

U ≤ α(x, y) := min

{
1,
π(y)q(y, x)

π(x)q(x, y)

}
.

Otherwise, set Xn+1 = x.

Return to Step 1.

14. (a) π has detailed balance with respect to Q if

πiqij = πjqji

for all i, j in the state space.

(b) Suppose that
πiqij = πjqji for all i, j

Sum both sides over i to get∑
i

πiqij =
∑
i

πjqji = πj
∑
i

qji = 0

since the last sum is the sum of the elements of the jth row of a generator matrix.

So, we have shown that ∑
i

πiqij = 0 for all j

The left hand side is the jth entry of the vector-matrix equation

πQ = 0.

So, we have verified that πQ = 0 which is a condition for stationarity for π.



15. Um, I left out the rates. It should have said that the operating time is exponential with rate
λ and the repair time is exponential with rate µ. The generator matrix is

Q =

[
−λ λ
µ −µ

]

The Kolmogorov forward equation is P ′(t) = P (t)Q. The ijth entry is

p′ij(t) =
∑
k

pik(t)qkj .

We wish to find p00(t). The Kolmogorov forward equation gives us that

p′00(t) = −λp00(t) + µp01(t).

Note that p01(t) = 1− p00(t). Thus, we have

p′00(t) + (λ+ µ)p00(t) = µ

To solve this (undergrads will not have to solve differential equations on the final), multiply
both sides by the integrating factor e(λ+µ)t. We then get

d

dt

[
e(λ+µ)tp00(t)

]
= µe(λ+µ)t.

Integrate both sides with respect to t to get

e(λ+µ)tp00(t) =
µ

λ+ µ
e(λ+µ)t + c.

So, we have

p00(t) =
µ

λ+ µ
+ ce−(λ+µ)t

Using the initial condition p00(0) = 1 gives us that

c = 1− µ

λ+ µ
=

λ

λ+ µ
.

So, the final answer is

p00(t) =
µ

λ+ µ
+

λ

λ+ µ
e−(λ+µ)t


