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Solutions to Final Exam Review Problems, 1-19

1.
E[I{X1>3}] = 0 · P (I{X1>3} = 0) + 1 · P (I{X1>3} = 1)

= P (I{X1>3} = 1) = P (X1 > 3) = e−3λ

2. (a) S is sufficient for θ if, given S, the joint distribution of X1, X2, . . . , Xn no longer depends
on θ. Intuitively then, if your goal is to estimate θ or a function of θ, once you have a
sufficient statistic you no longer need the entire sample.

(b) S is complete for θ if, given any function g such that E[g(S)] = 0 for all θ in the parameter
space, we must have that g(S) = 0 with probability 1. We like completeness because it
means that there is only one function of S that is unbiased for what we are estimating.

3. First note that X1, X2, . . . , Xn
iid∼ Poisson(λ) implies that S =

∑
Xi has a negative binomial

distribution. It is the first of the two negative binomial distributions found on your table of
distributions. The r parameter becomes n here. (You can see this using moment generating
functions!)

In order to show that S is sufficient by the definition, we must show that the conditional
distribution

fX1,X2,...,Xn|S(x1, x2, . . . , xn|s)

does not depend on p. Since the random variables involved here are discrete , this is the same
thing as

P (X1 = x1, X2 = x2, . . . , Xn = xn|S = s)

which is
P (X1 = x1, X2 = x2, . . . , Xn = xn, S = s)

P (S = s)
(1)

Now since S =
∑
Xi, if the fixed value s isn’t equal to the sum

∑
xi, the numerator of (1)

(and therefore all of (1)) is zero.

On the other hand, if we assume that s =
∑
xi,

P (X1 = x1, X2 = x2, . . . , Xn = xn, S = s) = P (X1 = x1, X2 = x2, . . . , Xn = xn)

much in the same way that P (X1 = 4, X2 = 1, X1 + X2 = 5) = P (X1 = 4, X2 = 1), for
example.

Therefore,

P (X1 = x1, X2 = x2, . . . , Xn = xn|S = s) =
P (X1 = x1, X2 = x2, . . . , Xn = xn, S = s)

P (S = s)



=
P (X1 = x1, X2 = x2, . . . , Xn = xn)

P (S = s)

indep
=

P (X1 = x1) · P (X2 = x2) · · ·P (Xn = xn)

P (S = s)

=
p(1− p)x1I{0,1,2,...}(x1) · · · p(1− p)x2I{0,1,2,...}(xn)(

n+ s− 1
s

)
pn(1− p)sI{0,1,2,...}(s)

The p’s in the numerator multply together into pn and the (1 − p)xi become (1 − p)
∑

xi =
(1− p)s. Thus, all p’s cancel in the overall expression.

In either case, (s 6=
∑
xi or s =

∑
xi), the conditional desnity for X1, X2, . . . , Xn given S

does not depend on the parameter p. Therefore S =
∑
Xi is sufficient for this geometric

distribution!

4. Suppose that X1, X2, . . . , Xn has joint pdf f(~x; θ) for some parameter (or vector of param-
eters) θ. The statistic S is siad to be “complete” for this distribution if, for any function g
such that E[g(S)] = 0, we must have g(S) = 0 with probability 1.

Complete statistics are important in our search for UMVUEs for some τ(θ) because it gives
us that there is only one function of S that is unbiased for τ(θ). Indeed, if there were two:
g1(S) and g2(S), then we would have

E[g1(S)− g2(S)] = E[g1(S)]− E[g2(S)] = τ(θ)− τ(θ) = 0.

By completeness of S then, we are forced to have g1(S)− g1(S) = 0 with probability 1 which
gives us that g1(S) = g1(S) with probability 1.

5. The pdf is

f(x;β) =
1

2
β3x2e−βx I(0,∞)(x).

The joint pdf is

f(~x;β) = 1
2nβ

3n∏n
i=1 x

2
i e
−β
∑n

i=1
xi
∏n
i=1 I(0,∞)(xi)

= 1
2nβ

3n ·
∏n
i=1 x

2
i I(0,∞)(xi) · exp[β

∑
xi].

By one-parameter exponential family, we have that

S = d( ~X) =
n∑
i=1

Xi



is complete and sufficient for β.

To find the UMVUE for β, we need to find a function of S that is unbiased for β. We start
by considering S itself.

E[S] = E[
∑

Xi] =
∑

E[Xi] =
∑

3/β = 3n/β.

This is no good. We want to see β in the numerator. So, we will try E[1/S]. In order to
compute this, we need to realize that S ∼ Γ(3n, β).

E
[

1
S

]
=

∫∞
0

1
s ·

1
Γ(3n)β

3ns3n−1e−βs ds

=
∫∞

0
1

Γ(3n)β
3ns3n−2e−βs ds

= Γ(3n−1)
Γ(3n) β

∫∞
0

1
Γ(3n−1)β

3n−1s3n−2e−βs ds

= 1
3n−1β.

Therefore, by the Lehmann-Scheffé Theorem,

β̂ =
3n− 1

S
=

3n− 1∑
Xi

is the UMVUE for β.

The variance of this estimator is

V ar[β̂] = E[β̂2]−
(
E[β̂]

)2

= E[β̂2]− β2

since β̂ is an unbiased estimator of β.

Now,

E[β̂2] = (3n− 1)2E
[

1
S2

]
= (3n− 1)2

∫∞
0

1
s2
· 1

Γ(3n)β
3ns3n−1e−βs ds

= (3n− 1)2
∫∞

0
1

Γ(3n)β
3ns3n−3e−βs ds

= (3n− 1)2 Γ(3n−2)
Γ(3n) β2

∫∞
0

1
Γ(3n−2)β

3n−2s3n−3e−βs ds

= (3n− 1)2 Γ(3n−2)
Γ(3n) β2 = 3n−1

3n−2β
2.

So, the variance is

V ar[β̂] =
3n− 1

3n− 2
β2 − β2 =

1

3n− 2
β2



6. The pdf is

f(x;λ) =
e−λλx

x!
I{0,1,2,...}(x)

The joint pdf is

f(~x;λ) = e−nλλ

∑
xi∏

xi!
·
∏
I{0,1,2,...}(xi)

= e−nλ
∏ I{0,1,2,...}(xi)

xi!
· exp[lnλ ·

∑
xi]

By one-parameter exponential family

S = d( ~X) =
∑

Xi

is complete and sufficient for λ.

To find the UMVUE for τ(λ) = λ2, we need to find a function of S that is unbiased for λ2.
We start by considering S itself.

E[S] = E[
∑

Xi] =
∑

E[Xi] = nλ.

Since we really want to see λ2, we’ll now try

E[S2] = V ar[S] + (E[S])2

Since S ∼ Poisson(nλ), this is

E[S2] = nλ+ (nλ)2 = E[S] + n2λ2

and the UMVUE for λ2 is

τ̂(λ) =
S2 − S
n2

=
(
∑
Xi)

2 −
∑
Xi

n2
.

7. We want to find a function of X(n) that is unbiased for θp. Let’s try

E[X(n)] =
∫ θ

0 x ·
n
θnx

n−1 dx

= n
n+1θ

From that integral, we can see that we will get θp if we compute

E[Xp
(n)] =

∫ θ

0
xp · n

θn
xn−1 dx =

n

n+ p
θp.

Therefore, the UMVUE for τ(θ) = θp is

τ̂(θ) =
n+ p

n
Xp

(n).



8. (a) The likelihood ratio based on this sample of size 1 is

λ(x1; 0, θ1) =
f(x1; 0)

f(x1; θ1)
=

1

1− θ2
1(x1 − 1/2)

Setting this less than or equal to k and flipping we get

1− θ2
1(x1 − 1/2) ≥ 1

k

−θ2
1(x1 − 1/2) ≥ 1

k
− 1

x1 − 1/2 ≤ − 1

θ2
1

(
1

k
− 1

)
Note that, if θ1 is negative or positive, θ2

1 is always positive and −θ2
1 is always negative.

So, the inequality direction at this point is independent of the sign of θ1.

x1 ≤ −
1

θ2
1

(
1

k
− 1

)
+

1

2

So, the form of the test is to reject if X1 ≤ k1.

Now to find k1...

α = P (λ(X1; 0, θ1) ≤ k;H0)

= P (X1 ≤ k1;H0) = k1

That last inequality comes from the fact that when H0 is true, X1 ∼ unif(0, 1).

So, we take k1 = α and the best (most powerful) test of the given simple versus simple
hypotheses is to reject H0 when X1 ≥ α.

(b) Since the test from part (a) does not depend on the particular value of θ1 (and, in this
problem we specifically did not flip an inequality based on θ1 being greater or less than
0, it is also uniformly most powerful for

H0 : θ = 0 H1 : θ 6= 0.

9. We first consider the simple versus simple hypotheses

H0 : σ2 = σ2
0 H1 : σ2 = σ2

1

for some fixed σ2
1 > σ2

0.

The joint pdf is

f(~x;σ2) = (2πσ2)−n/2e−
1

2σ2

∑
x2i .



The likelihood ratio is

λ(~x;σ2
0, σ

2
1) =

f(~x;σ2
0)

f(~x;σ2
1)

=
(2πσ2

0)−n/2e
− 1

2σ2
0

∑
x2
i

(2πσ2
1)−n/2e

− 1
2σ2

1

∑
x2
i

= (σ2
1/σ

2
0)n/2 · e

− 1
2

(
1

σ2
0

− 1

σ2
1

)∑
x2i

Setting this less than or equal to k and starting to move things, we get

e
− 1

2

(
1

σ2
0

− 1

σ2
1

)∑
x2i ≤ (σ2

0/σ
2
1)n/2k

−1

2

(
1

σ2
0

− 1

σ2
1

)∑
x2
i ≤ ln

[
(σ2

0/σ
2
1)n/2k

]
∑

x2
i ≥

ln
[
(σ2

0/σ
2
1)n/2k

]
−1

2

(
1
σ2
0
− 1

σ2
1

)
since σ2

1 > σ2
0.

So, the best test of
H0 : σ2 = σ2

0 H1 : σ2 = σ2
1

for some fixed σ2
1 > σ2

0 will be to reject H0 if∑
X2
i ≥ k1

where k1 is chosen to give a size α test.

Now let’s find k1.

α = P
(∑

X2
i ≥ k1;H0

)
Since, under H0, Xi ∼ N(0, σ2

0) so Xi/σ
2
0 ∼ N(0, 1). Squaring a N(0, 1) gives a χ2 random

variable. Adding independent χ2-random variables gives another χ2 with all the degrees of
freedom added up.

So, ∑n
i=1X

2
i

σ2
0

=
n∑
i=1

X2
i

σ2
0

=
n∑
i=1

(
Xi

σ0

)2

∼ χ2(n)

So,
α = P

(∑
X2
i ≥ k1;H0

)
= P

(∑
X2
i

σ2
0
≥ k1/σ

2
0;H0

)

= P (W > k1/σ
2
0)



where W ∼ χ2(n).

So, we have that k1/σ
2
0 is the χ2(n) critical value that cuts off area α to the right. Our

notation for this is χ2
α(2n). So

k1 = σ2
0 χ

2
α(2n).

So, the best test of size α of

H0 : σ2 = σ2
0 H1 : σ2 = σ2

1

for some fixed σ2
1 > σ2

0 will be to reject H0 if∑
X2
i ≥ σ2

0 χ
2
α(2n).

This test does not depend on the specific chosen value of σ2
1 (with the exception that the

form of the test depends on the fact that σ2
1 > σ2

0). So, this is a UMP test of size α for

H0 : σ2 = σ2
0 versus H1 : σ2 > σ2

0.

10. The power function is
γ(σ2) = P (Reject H0 ;σ2)

= P (
∑
X2
i ≥ σ2

0 χ
2
α(2n) ;σ2)

We are under the assumption that X1, X2, . . . , Xn
iid∼ N(0, σ2). We don’t know the distribu-

tion of these squared, but we would if they were N(0, 1). (N(0, 1) random variables squared
are χ2(1) random variables.) Note that∑

X2
i

σ2
=
∑(

Xi

σ

)2

∼ χ2(n)

So, back to the power function...

γ(σ2) = P (
∑
X2
i ≥ σ2

0 χ
2
α(2n) ;σ2)

= P

(∑
X2
i

σ2 ≥ σ2
0 χ

2
α(2n)
σ2 ;σ2

)

= P
(
W ≥ σ2

0 χ
2
α(2n)
σ2

)
= 1− FW

(
σ2
0 χ

2
α(2n)
σ2

)
where W ∼ χ2(n).

11. (a) We should reject H0 if the minimum is large. So a test based on X(1) should look like

“Reject H0 if X(1) > c”



Now find c.
α = P ( Reject H0 when true )

= P (X(1) > c; θ0)

= e−nθ0c

since the minimum of exponentials with rate θ0 is exponential with rate nθ0.

So

c = − 1

nθ0
ln(α)

So a test of size α of the given hypotheses and based on X(1) is to reject H0 if

X(1) > −
1

nθ0
ln(α).

(b) To find the UMP test, we first consider the simple versus simple hypotheses H0 : θ = θ0

versus H1 : θ = θ1 for some fixed θ1 < θ0.

The Neyman-Pearson Lemma tells us to consider the likelihood ratio

λ(~x; θ0, θ1) =
f(~x; θ0)

f(~x; θ1)
= · · · =

(
θ0

θ1

)n
e−(θ0−θ1)

∑
xi

and that we should reject H0 when this is less than or equal to some k, to be determined.

Now (
θ0

θ1

)n
e−(θ0−θ1)

∑
xi ≤ k

⇓

e−(θ0−θ1)
∑

xi ≤ k1

⇓

−(θ0 − θ1)
∑

xi ≤ k2

⇓∑
xi ≥ k3

for some k3. Note that the inequality flipped because θ1 < θ0.

To find the k3,
α = P ( Type I Error )

= P ( Reject H0 when true )

= P (
∑
Xi ≥ k3; θ0)

= P (W ≥ k3)

where W ∼ Γ(n, θ0).

Since we can’t get a closed form solution, we will move to express the test in terms of a
χ2 critical value. Note that 2θ0W ∼ Γ(n, 1/2) = χ2(2n). So,

α = P (W ≥ k3) = P ( 2θ0W︸ ︷︷ ︸
∼χ2(2n)

≥ 2θ0k3)



implies that 2θ0k3 = χ2
α,2n.

So, the best size α test of H0 : θ = θ0 versus H1 : θ = θ1 for θ1 < θ0 is to reject H0 in
favor of H1 if

n∑
i=1

Xi ≥ χ2
α(2n)/(2θ0).

Since this test does not depend on the particular value of θ1 used (only on the fact that
it is less than θ0, we have that the test is UMP for H0 : θ = θ0 versus H1 : θ < θ0.

That is, the UMP test is to reject H0 if∑
Xi ≥ χ2

α(2n)/(2θ0).

(c) The power functions...

For the test from part (a):

γ(a)(θ) = P ( reject H0 when the parameter is θ )

= P
(
X(1) < − 1

nθ0
ln(1− α); θ

)
When the parameter is θ, X(1) is exponential with rate nθ. So

γ(a)(θ) = 1− e
nθ

(
− 1
nθ0

ln(1−α)

)
= 1− (1− α)(−θ/θ0)

For the test from part (b):

γ(b)(θ) = P ( reject H0 when the parameter is θ )

= P
(∑

Xi ≥ χ2
α(2n)/(2θ0); θ

)
When the parameter is θ,

∑
Xi ∼ Γ(n, θ). So 2θ

∑
Xi ∼ Γ(n, 1/2) = χ2(2n). Therefore

γ(b)(θ) = P
(
2θ
∑
Xi ≥ 2θχ2

α(2n)/2θ0; θ
)

= P
(
W ≥ θχ2

α(2n)/θ0
)

This function is one minus the cdf of a χ2(2n) random variable evaluated at θχ2
α(2n)/θ0

for a fixed n, a fixed θ0 and regarded as a function of θ. There is no nice closed form
expression for comparison to the other power function. For fixed n and θ0, you could
numerically plot the expression– when plotted along with γ(a)(θ) you should see that
γ(b)(θ) is above γ(a)(θ) for all values of θ.

12. To begin, we need to find any unbiased estimator. Note that, for this Poisson distribution,
P (X = 0) = e−λ. So, an unbiased estimator is I{X1=0}.

By one-parameter exponential family, it is easy to see that S =
∑
Xi is complete and sufficient

for this distribution. By the Rao-Blackwell Theorem, we know that E[I{X1=0}|S] is also an
unbiased estimator for τ(λ) and furthermore that it is a function of S. Since S is complete
and sufficient, we will then have found the UMVUE.



For ease of computation, we will begin by putting in a value for S:

E[I{X1=0}|S = s] = P (X1 = 0|S = s)

= P (X1=0,S=s)
P (S=s)

=
P(X1=0,

∑n

i=1
Xi=s)

P (S=s)

=
P(X1=0,

∑n

i=2
Xi=s)

P (S=s)

indep
=

P (X1=0)·P(
∑n

i=2
Xi=s)

P (S=s)

Since
∑n
i=1Xi ∼ Poisson(nλ) and

∑n
i=2Xi ∼ Poisson((n− 1)λ), this is equal to

e−λ· e
−(n−1)λ[(n−1)λ]s

s!
e−nλ[nλ]s

s!

=
(
n−1
n

)s
.

Removing the specific value of S, we have that

τ̂(λ) =

(
n− 1

n

)S
=

(
n− 1

n

)∑n

i=1
Xi

.

13. (a)

f(x; θ) =
1√
2πθ

e−
1
2θ
x2

⇒ ln f(x; θ) = −1

2
ln(2πθ)− 1

2θ
x2

⇒ ∂

∂θ
ln f(x; θ) = −1

2

1

θ
+

1

2θ2
x2

So,

I1(θ) = E

[(
∂
∂θ ln f(X; θ)

)2
]

= E

[(
1

2θ2
X2 − 1

2θ

)2
]

= 1
4θ4

E
[
(X2 − θ)2

]
Now X ∼ N(0, θ) ⇒ X/

√
θ ∼ N(0, 1) ⇒ X2/θ ∼ χ2(1), so let’s go back to the second

to last inequality above (in computing I1(θ)), and only pull out a single θ:

I1(θ) = E

[(
1

2θ2
X2 − 1

2θ

)2
]

= 1
4θ2

E

[(
1
θX

2 − 1
)2
]

= 1
4θ2
V ar(W )



where W ∼ χ2(1). (Since E[W ] = 1.)

So

I1(θ) =
1

4θ2
· 2 =

1

2θ2

and
In(θ)

iid
= n · I1(θ) =

n

2θ2
.

(b) The MLE of θ is

θ̂ =

∑n
i=1X

2
i

n
.

Hence,

V ar(θ̂) = V ar

(∑n
i=1X

2
i

n

)
=

1

n2
V ar

(
n∑
i=1

X2
i

)
indep
=

1

n2

n∑
i=1

V ar(X2
i )

ident
=

1

n2
·n·V ar(X2

1 )

Now we could go the long way and write V ar(X2
1 ) = E[X4

1 ] −
(
E[X2

1 ]
)2

, or we could go
the short way and observe again that X1/θ ∼ χ2(1). Therefore

V ar(θ̂) =
1

n
V ar(X2

1 ) =
1

n
V ar

(
θ
X2

1

θ

)
=

1

n
θ2V ar

(
X2

1

θ

)
=

1

n
θ2V ar(W ) =

1

n
θ2 · 2

This is exactly the same as the CRLB for θ:

CRLBθ =

[
∂
∂θθ
]2

In(θ)
=

1

n/(2θ2)
=

2θ2

n
.

Hence, the MLE is efficient!

14.

f(x; θ) =
e−λλx

x!
= eλ · 1

x!
· exp [x · lnλ]

implies, by one-parameter exponential family, that d(X) = X is complete and sufficient for
λ. (Note: We have a sample of size 1, so we look at the pdf for X alone as opposed to a joint
pdf of several X’s.)

We are given a function of this complete and sufficient statistic, namely (−1)X which is
supposed to be the UMVUE for e−2µ = e−2λ. (µ denotes the mean of the distribution which
is simply λ for a Poisson rate λ distribution.)

Now,

E
[
(−1)X

]
=

∑∞
x=0(−1)x e

−λλx

x!

=
∑∞
x=0

e−λ(−λ)x

x!

= e−λ
∑∞
x=0

(−λ)x

x!

= e−λ · e−λ = e−2λ

as desired. Hence (−1)X is the UMVUE for e−2λ.



15. (a)

f(~x; θ) = (ln θ)

∑
xi

θn
∏

(xi!)
·
∏
I{0,1,...}(x1)

= 1
θn ·

1∏
(xi)!

∏
I{0,1,...}(xi) · exp [(

∑
xi) · ln(ln θ)]

So, by one-parameter exponential family, we see that S =
∑
Xi is complete and sufficient

for θ.

To find the UMVUE for ln θ, we need to find a function of S =
∑
Xi that is unbiased

for ln θ. We start by considering S itself:

E[S] = n · E[X1] = n · ln θ

since X1 ∼ Poisson(ln θ).

Hence,
X

is the UMVUE for ln θ.

(b) To find the UMVUE for (ln θ)2, we need to find a function of S =
∑
Xi that is unbiased

for (ln θ)2. We start by considering S2:

E[S2] = E[(
∑

Xi)
2] = V ar(

∑
Xi) +

(
E[
∑

Xi]
)2

Since the X’s are iid, V ar(
∑
Xi) =

∑
V ar(Xi) = nV ar(X1) = n ln θ and we have that

E[S2] = n · ln θ + n2(ln θ)2

Since E[S] = n ln θ, we have that

S2 − S
n2

=
(
∑
Xi)

2 −
∑
Xi

n2

is an unbiased ()for (ln θ)2 function of the complete and sufficient statistic S and hence
is the UMVUE for (ln θ)2.

16. Consider first the simple versus simple hypotheses:

H0 : θ = θ0 H1 : θ = θ1

for some θ1 < θ0. The ratio for the Neyman-Pearson test is

λ(~x; θ0, θ1) =

1
θn0
I(0,θ0)(x(n)) · I(0,x(n))(x(1))

1
θn1
I(0,θ1)(x(n)) · I(0,x(n))(x(1))

=

(
θ1

θ0

)n I(0,θ0)(x(n))

I(0,θ1)(x(n))

set
≤ k

The k should be something non-negative since λ is a ratio of pdfs and therefore is always
non-negative. Note that if the indicator in the numerator is zero if x(n) > θ0. In this case,



we absolutely know that H0 is not true since it states that all values in the sample will be
between 0 and θ0. This is reflected in the fact that x(n) > θ0 ⇒ λ = 0 which is less than or
equal to any valid k, so we will always reject.

On the other hand, if the indicator in the denominator is zero, this means that x(n) > θ1.
The N-P ratio λ becomes infinite (in a sense) which makes it NOT less than or equal to any
cut-off k, so we would never reject H0. This makes sense because x(n) > θ1 implies that H1

could not possibly be true since it says that all values in the sample are between 0 and θ1.

All of these comments aside, this test is garbage if x(n) is greater than both θ0 and θ1 since,
in hypothesis testing, the assumption is that one of the two hypotheses is true. Since θ1 < θ0,
and the sample came from either the unif(0, θ0) or unif(0, θ1) distribution, we must have
that x(n) < θ0, and so the indicator in the numerator is one. Thus, we have(

θ1

θ0

)n 1

I(0,θ1)(x(n))
≤ k

⇒ 1

I(0,θ1)(x(n))
≤
(
θ0

θ1

)n
k

⇒ I(0,θ1)(x(n)) ≥ k1

Now the indictor will be “large” (ie: 1) if x(n) is small, so this is equivalent to

X(n) ≤ k2

for some k2 such that
P (X(n) ≤ k2; θ0) = α

ie: (
k2

θ0

)n
= α

⇒ k2 = θ0α
1/n

So, the UMP test of
H0 : θ = θ0 versus H1 : θ = θ1

is to reject H0 if X(n) ≤ θ0α
1/n. Since this test does not involve θ1 (only that θ1 < θ0), it is

UMP for
H0 : θ = θ0 versus H1 : θ < θ0

Finally, the composite null hypothesis will only chage the way the level of significance is
defined

α = maxθ≥θ0 P (X(n) ≤ k2; θ)

= maxθ≥θ0

(
k2
θ

)n
=
(
k2
θ0

)n
⇒ k2 = θ0α

1/n

So, a UMP test of size α of

H0 : θ ≤ θ0 versus H1 : θ < θ0

is to reject H0 if X(n) ≤ θ0α
1/n.



17. The pdf is

f(x; θ1, θ2) =
1

θ2 − θ1
I[θ1,θ2](x).

The joint pdf is
f(~x; θ1, θ2) = 1

θ2−θ1
n ∏n

i=1 I[θ1,θ2](xi)

= 1
θ2−θ1

n
I[θ1,θ2](x(1))I[θ1,θ2](x(n))

By the Factorization Criterion for sufficiency, we see that

S = (X(1), X(n))

is sufficient for this distribution.

18. (a) First note that, when the parameter is in the indicator like this, the exponential family
factorization for find a complete and sufficient statistic will never work. That factoriza-
tion is about complete separation of the x’s and θ (a(θ), b(~x), c(θ), d(~x)) but they are
stuck together in the indicator.

First, we need to find a sufficient statistic. We’ll use the Factorization Criterion:

f(~x; θ) =
n∏
i=1

f(xi; θ) = · · · = enθ−
∑

xiI(θ,∞)(x(1)) = e−
∑

xi︸ ︷︷ ︸
h(~x)

enθI(θ,∞)(x(1))︸ ︷︷ ︸
g(s(~x);θ)

Thus, we see that S = X(1) is sufficient for θ.

To show that S is complete, we need to find the pdf for the minimum. I am running out
of time and need to get these solutions posted, so I am omitting the details, but the pdf
for the minimum is

fX(1)
(x) = nen(θ−x)I(θ,∞)(x)

To show completeness, assume that g is any function such that E[g(X(1))] = 0 for all θ.
Then

0 = E[g(X(1))] =
∫∞
θ g(x)n en(θ−x) dx = nenθ

∫∞
θ g(x) e−nx dx

for all θ. This implies that ∫ ∞
θ

g(x) e−nx dx = 0

or, equivalently,

−
∫ θ

∞
g(x) e−nx dx = 0

and thus ∫ θ

∞
g(x) e−nx dx = 0

for all θ.



Taking the derivative of both sides with respect to θ gives

g(θ)e−nθ = 0

for all θ. Since e−nθ 6= 0, we get that g(θ) must be zero for all θ. Thus, g(X(1)) = 0 and
we have that S = X(1) is complete for θ.

(b) We need to find a function of X(1) that is unbiased for θ. We consider X(1) itself.

E[X(1)] =
∫∞
−∞ xfX(1)

(x) dx

=
∫∞
θ xnen(θ−x) dx

= nenθ
∫∞
θ xe−nx dx

= enθ[θe−nθ + 1
ne
−nθ]

= θ + 1
n

So, θ̂ = X(1) − 1/n.

19. The joint pdf is

f(~x; θ) = θn
[
n∏
i=1

(1− xi)
]θ−1 n∏

i=1

I(0,1)(xi).

A likelihood is

L(θ) = θn
[
n∏
i=1

(1− xi)
]θ−1

.

The MLE (work not shown) is

θ̂ =
−n∑

ln(1−Xi)
.

The restricted MLE is θ̂0 = 1.

The GLR is

λ( ~X) =
L(θ̂0)

L(θ̂)
.

Note that L(θ̂0) = L(1) = 1. Thus, the GLR is

λ( ~X) =

(∑
ln(1−Xi)

−n

)n [ n∏
i=1

(1− xi)
] n∑

ln(1−Xi)
+1

.

The form of the GLRT is to reject H0 in favor of H1 if

(∑
ln(1−Xi)

−n

)n [ n∏
i=1

(1− xi)
] n∑

ln(1−Xi)
+1

≤ k

where k is to be determined so that P (λ( ~X) ≤ k; 1) = α.



20. The restricted MLE is µ̂0 = µ0 (Here, µ0 is notation for the constant that is given in the
setup of the hypotheses and µ̂0 is notation for the MLE estimator for µ restricted to when
H0 is true.)

The unrestricted MLE is X.

Therefore, the GLR is

λ( ~X) =
L(µ̂0)

L(µ̂)
=

(2πσ2)−n/2e−
1

2σ2

∑
(Xi−µ0)2

(2πσ2)−n/2e−
1

2σ2

∑
(Xi−X)2

= e−
1

2σ2

∑
[(Xi−µ0)2−(Xi−X)2]

= e−
1

2σ2

∑
[(Xi−µ0)2−(Xi−X)2]

(Note that the σ2’s in the front of the e’s could cancel because, in this problem, σ2 is fixed
and known.)

After a bit of simplification, this can be expressed as

λ(~x) = exp[−n(x− µ0)2/2σ2]

We reject H0 if λ(~x) ≤ k which is equivalent to

−n(x− µ0)2

2σ2
≤ k1

⇒ n(x− µ0)2

σ2
≥ k2

⇒
(
x− µ0

σ/
√
n

)2

≥ k2 (2)

We now could choose to take the square root of both sides which would give us

x− µ0

σ/
√
n
≥ k3 or

x− µ0

σ/
√
n
≤ −k3, (3)

(where k3 =
√
k2) or we could leave things in the form of (2). Either answer would be correct.

Case 1: Leave things in the form of (2).

Here, we choose k2 such that

P

(X − µ0

σ/
√
n

)2

≥ k2;µ0

 = α

When µ = µ0, X ∼ N(µ0, σ
2/n) ⇒ (X − µ0)/(σ/

√
n) ∼ N(0, 1) Rightarrow

[(X − µ0)/(σ/
√
n)]2 ∼ χ2(1) ⇒ k2 = χ2

α(1).

So, the GLRT of size α is to reject H0 if(
X − µ0

σ/
√
n

)2

≥ χ2
α(1).



Alternatively, we have....

Case 2: Leave things in the form of (3).

Here we find k3 such that

P

(
x− µ0

σ/
√
n
≥ k3 or

x− µ0

σ/
√
n
≤ −k3;µ0

)
= α

Since µ = µ0, this is equivalent to

P (Z ≥ k3 or Z ≤ −k3) = α

⇒ k3 = zα/2.

So, the GLRT of size α is to reject H0 if

x− µ0

σ/
√
n
≥ zα/2 or

x− µ0

σ/
√
n
≤ −zα/2

If you used “Case 2”, the GLRT is exactly the “common sense” two-tailed test from an earlier
part of the course. Using “Case 1”, we get the chi-squared test exactly without having to
resort to asymptotics.

21. The joint pdf for X and Y is

fX,Y (x, y) =

(
n1

x

)
px1(1− p1)n1−x ·

(
n2

y

)
py2(1− p2)n2−y

(a) The resctricted MLE:

We assume that p1 = p2 and denote the common value denoted simply by p. Then

fX,Y (x, y) =

(
n1

x

)(
n2

y

)
px+y(1− p)n1+n2−(x+y)

⇒ L(p) = px+y(1− p)n1+n2−(x+y)

lnL(p) = (x+ y) ln p+ (n1 + n2 − (x+ y)) ln(1− p)

∂

∂p
lnL(p) =

x+ y

p
− n1 + n2 − (x+ y)

1− p
set
= 0

⇒ p̂0 =
x+ y

n1 + n2

where p̂0 denotes the restricted MLE for p.

The unrestricted MLE’s for p1 and p2:

Recall that the joint pdf for X and Y is

fX,Y (x, y) =

(
n1

x

)
px1(1− p1)n1−x ·

(
n2

y

)
py2(1− p2)n2−y



So, a likelihood function is

L(p1, p2) = px1(1− p1)n1−x · py2(1− p2)n2−y

and the log is

lnL(p1, p2) = x ln p1 + (n1 − x) ln(1− p1) + y · ln p2 + (n2 − y) ln(1− p2)

∂
∂p1

lnL(p1, p2) = x
p1
− n1−x

1−p1
set
= 0

∂
∂p2

lnL(p1, p2) = y
p2
− n2−y

1−p2
set
= 0

⇒ p̂1 =
x

n1
, p̂2 =

y

n2

So, the GLR is

λ(~x) =

(
x+y
n1+n2

)x+y (
1− x+y

n1+n2

)n1+n2−(x+y)(
x
n1

)x
(1−

(
x
n1

)
)n1−x ·

(
y
n2

)y
(1−

(
y
n2

)
)n2−y

(b) The approximate large sample GLRT of size α is to reject H0 if

−2 lnλ( ~X) ≥ χ2
α(2)

(2 is the number of parameters restricted in the null hypothesis.)


