
APPM 5600 Fall 2017 Final Exam

Remember to write your name! You are allowed to use a calculator. You are not allowed to
use the textbook or your notes or your neighbor. To receive full credit on a problem you
must show sufficient justification for your conclusion unless explicitly stated otherwise. You
may cite any theorem from Atkinson or from the lectures unless explicitly stated otherwise.

You must do the first problem. You must pick only two of the remaining problems. Each problem
is 15 points; there are 45 points total.

1. Quadrature

(a) Let p∗(x) be the minimax approximation to f of degree at most n, then the quadrature
integrates this exactly. The quadrature error is thus

|I[f ]− In[f ]| = |I[f ]− In[f ]− In[p∗] + In[p∗]| = |I[f ]− In[f ]− I[p∗] + In[p∗]| ≤ +|In[f − p∗]|

Bound the terms separately:

|I[f − p∗]| = |
∫ b

a
f(x)− p∗(x)dx| ≤

∫ b

a
|f(x)− p∗(x)|dx ≤ ρn(f)(b− a)

|In[f − p∗]| = |
∑
i

wi,n(f(xi,n)− p∗(xi,n))| ≤
∑
i

|wi,n||f(xi,n)− p∗(xi,n)|

≤ ρn(f)
∑
i

|wi,n| = ρn(f)
∑
i

wi,n = ρn(f)(b− a)

where ρn(f) is the minimax error and the last few equalities follow from the fact that wi,n ≥ 0
and the quadrature integrates f(x) = 1 exactly. Since ρn → 0 for continuous functions f , we
have convergence.

(b) The error is

|
∫ b

a
f(x)dx−

∑
i

wi,n(f(xi)+εi,n)| ≤ |I[f ]−In[f ]|+|
∑
i

wi,nεi,n| ≤ |I[f ]−In[f ]|+
∑
i

wi,n|εi,n|

≤ |I[f ]− In[f ]|+ ε
∑
i

wi,n = |I[f ]− In[f ]|+ ε(b− a).

The first term → 0 as n→∞ by (a), which gives the desired result.

Note: there is no guarantee that the errors εi,n are values of some integrable function g(xi,n) =
εi,n, so answers based on that assumption are wrong (but received some partial credit if
otherwise correct).

(c) The error is

|
∫ b

a
f(x)dx− h

2

∑
i

(f(xi) + f(xi+1) + εi,n + εi+1,n)| ≤ |I[f ]− Tn[f ]|+ h

2
|
∑
i

εi,n + εi+1,n| ≤

|I[f ]− Tn[f ]|+ h

2

∑
i

2ε = |I[f ]− Tn[f ]|+ ε(b− a)

where Tn[f ] is the trapezoid rule. The first term → 0 as n → ∞ since the trapezoid rule
converges for twice continuously differentiably functions, leaving the desired result.
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2. Linear Systems

(a) Let Ax = b be the system of equations (square), and let A = D + L + U be the diagonal,
lower-triangular, and upper-triangular parts of A. The Jacobi iteration has the form

xk+1 = D−1b−D−1(L + U)xk.

The error equation is
ek+1 = −D−1(L + U)ek.

If any norm of the iteration matrix is less than 1 then the iteration converges. Now consider
the infinity norm, which is the max absolute row sum. The infinity norm of the iteration
matrix is

max
i

∑
j 6=i

|ai,j |
|ai,i|

.

The fact that the linear system is strictly diagonally dominant implies that the above is less
than 1, so the error converges to 0.

(b) Consider that when you change the order of the inner loop, you are simultaneously permuting
the rows of the system and the columns, i.e. you are applying Gauss-Seidel to the system

PAPTPx = PAPTy = Pb

where P is the permutation matrix that re-orders the rows. The new system is still symmetric
positive definite, so the Gauss-Seidel iteration converges to a re-ordered version of the solution
y = Px.

To be more precise, when you reorder the rows you multiply the system from the left by the
permutation matrix P. This yields the system (e.g. )

an,1x1 + an,2x2 + . . .+ an,nxn = bn

an−1,1x1 + an−1,2x2 + . . .+ an−1,nxn = bn−1

...

a1,1x1 + a1,2x2 + . . .+ a1,nxn = b1.

The first step of the Gauss-Seidel loop would modify xn which is not on the diagonal, so we
should re-order the columns

an,nxn + an,n−1xn−1 + . . .+ an,1x1 = bn

an−1,nxn + an−1,n−1xn−1 + . . .+ an−1,1x1 = bn−1

...

a1,nxn + a1,n−1xn−1 + . . .+ a1,1x1 = b1.

Now we should re-label the unknowns so that the first equation corresponds to the first
unknown, e.g. y1 = xn, y2 = xn−1, etc. So permuting the order is the same as applying
Gauss-Seidel to the equation PAPTy = Pb where y = Px. The system is still SPD so GS
still converges.
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3. Rootfinding/Nonlinear Equations

(a) Any solution is a solution of the fixed-point problem x = h(x) = y + δtf(x). The iteration
function h(x) is globally Lipshitz with constant 2δt

|h(x0)− h(x1)| ≤ 2δt|x0 − x1| ∀x0, x1 ∈ R.

If we take δt < 1/2 then the map is a contraction on R, which means it must have a unique
fixed point. Suppose there are 2 fixed points α0 = h(α0) and α1 = h(α1). Then we must have

|h(α0)− h(α1)| = |α0 − α1| ≤ 2δt|α0 − α1|.

If we choose δt < 1/2 then it is not possible to have α0 6= α1, i.e. there is a unique solution.

Atkinson doesn’t state the theorem for R, just for finite intervals, so grading will be lenient
for existence: show that the map is a contraction for δt < 1/2 and state that this implies
existence and uniqueness.

(b) Notice that since f(α) = 0, α must be a fixed point of

xk+1 = xk + δtf(xk+1)

. In part (a) we showed that this equation implicitly defines an iteration xk+1 = g(xk), and
we now assume that g is smooth. We can obtain conditions for convergence by examining
g′(α). Plugging in our notation

g(xk) = xk + δtf(g(xk)).

Take the derivative, then evaluate at α:

g′(α) = 1 + δtf
′(g(α))g′(α) = 1 + δtf

′(α)g′(α).

g′(α) =
1

1− δtf ′(α)

Theorem 2.7 from Atkinson guarantees that the iteration will converge to α for ‘close enough’
initial conditions provided that |g′(α)| < 1, i.e.

f ′(α) < 0 or f ′(α) >
2

δt

(it is assumed that δt > 0.)

Part (b) is the backwards Euler iteration for the ODE x′(t) = f(x). We have shown that if α
is a stable equilibrium (f ′(α) < 0) then the backwards Euler iteration will converge to it for
any stepsize δt as long as the initial condition is close enough, i.e. backwards Euler behaves
qualitatively like the true system for any δt. Conversely, if α is an unstable equilibrium
f ′(α) > 0, then backwards Euler will still converge to the equilibrium if δt is too large, i.e. if
δt is too large then backwards Euler has the exact opposite behavior from the true system.
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4. Interpolation

(a) The dimension of the space of cubic splines with n+ 1 nodes is n+ 3.

(b) The following are all acceptable

– ‘Natural’ splines set the second derivative to 0 at the endpoints

– ‘Not-a-knot’ splines make the third derivative continuous at the nodes just inside each
boundary

– ‘Complete’ cubic splines have the same first derivative as the function at the endpoints

– If the function is periodic then the spline can also be forced to be periodic

(c) Let φk(x), k = 1, . . . , n+ 3 be any basis, e.g. the monomials plus truncated power functions.
Seek to expand the desired basis ϕj(x) in the available basis φk(x)

ϕj(x) =
∑
i

cj,kφk(x).

Now impose the cardinality conditions on ϕj(x) for j ≤ n+ 1

ϕj(xi) =
∑
i

cj,kφk(xi) = δi,j , i = 0, . . . , n

This linear system has n+ 1 equations and n+ 3 unknowns cj,k where j = 1, . . . , n+ 3. It is
also a spline interpolation problem: find the spline function ϕj(x) that interpolates the data
fj(xi) = δi,j . We know that a particular solution exists, since any of the answers from part
(b) will yield a solution. To be specific, let ϕj(x) be natural splines.

Up to this point we’ve shown the existence of ϕj(x) for j ≤ n+ 1 that satisfy the cardinality
conditions. These functions are certainly linearly independent since ϕj(xi) = δi,j . It remains
to complete the basis by finding ϕj(x) for j > n + 1. Let ϕ̂(x) be the complete spline
that solves the interpolation problem ϕ̂(xi) = δi,0 with Hermite data ϕ̂′(x0) = ϕ′n+1(x0)− 1,
ϕ̂′(xn) = ϕ′1(xn)−1, and let ϕ̃(x) be the complete spline that solves the interpolation problem
ϕ̃(xi) = δi,0 with Hermite data ϕ̃′(x0) = ϕ′1(x0) + 1, ϕ̃′(xn) = ϕ′1(xn) + 1. Define

ϕn+1(x) = ϕ1(x)− ϕ̂(x), ϕn+2(x) = ϕ1(x)− ϕ̃(x).

By construction these satisfy the remaining cardinality condition ϕj(xi) = 0 for j > n + 1.
They are also independent of each other, since ϕ′n+1(x0) = 1 while ϕ′n+2(x0) = −1. This is
clearly just one way to construct such a cardinal spline basis.

Several people mentioned using the Lagrange basis to construct the spline basis. In general
this won’t work because the Lagrange polynomials have degree n, which is too high unless
n = 3.
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5. Approximation The weighted norm of the error is∫ 1

0
xw(x)(f(x)− p(x))2dx =

∫ 1

0
xw(x)(f(x))2dx− 2

∫ 1

0
xw(x)f(x)p(x)dx+

∫ 1

0
xw(x)(p(x))2dx.

Expand p(x) in the basis and insert into the expression above

p(x) =
∑
i

ciφi(x)⇒

∫ 1

0
xw(x)(f(x)− p(x))2dx =∫ 1

0
xw(x)(f(x))2dx− 2

∑
i

ci

∫ 1

0
xw(x)f(x)φi(x)dx+

∑
i

∑
j

cicj

∫ 1

0
xw(x)φi(x)φj(x)dx..

We can write this as ∫ 1

0
xw(x)(f(x)− p(x))2dx = d− 2cTf + cTAc

where c is a vector with entries ci, where d is a constant, and where the matrix A is symmetric
positive definite with entries

(A)i,j =

∫ 1

0
xw(x)φi(x)φj(x)dx.

We know that the φk form an orthogonal basis of increasing degree, so they must satisfy a three-term
recurrence, i.e.

xφi(x) = aiφi+1(x) + biφi(x) + ciφi−1(x).

This shows that the matrix A is tridiagonal since

(A)i,j =

∫ 1

0
w(x)(aiφi+1(x) + biφi(x) + ciφi−1(x))φj(x)dx = aiδi+1,j + biδi,j + ciδi−1,j .

(The above expression also assumes that the φk are orthonormal, without loss of generality.) The
unique minimizer of the quadratic error is obtained by solving for the critical point

Ac = f

which can be accomplished using Gaussian Elimination in O(n) operations.
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