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Solutions to Final Exam Review Problems

1. The likelihood is

f(~x|λ) =
e−nλλ

∑
xi∏n

i=1(xi!)

n∏
i=1

I{0,1,2,...}(xi).

The prior is

f(λ) =
1

Γ(α)
βαλα−1e−βλ I(0,∞)(λ).

The posterior is
f(λ|~x) ∝ f(~x|λ) · f(λ)

∝ e−nλλ
∑

xi · λα−1e−βλ I(0,∞)(λ)

= λ
∑

xi+α−1e−(n+β)λ I(0,∞)(λ)

⇒ λ|~x ∼ Γ
(∑

xi + α, n+ β
)

2. (a) The likelihood is

f(~x|θ) = θ
∑

xi(1− θ)n−
∑

xi
n∏
i=1

I{0,1}(xi.)

The prior is

f(θ) =
1

B(a, b)
θa−1(1− θ)b−1 I(0,1)(θ).

The posterior is

f(θ|~x) ∝ f(~x|θ) · f(θ)

∝ θ
∑

xi(1− θ)n−
∑

xi · θa−1(1− θ)b−1 I(0,1)(θ)

= θ
∑

xi+a−1(1− θ)n−
∑

xi+b−1 I(0,1)(theta)

⇒ θ|~x ∼ Beta
(∑

xi + a, n−
∑

xi + b
)

The posterior Bayes estimator is

θ̂PBE = E[Θ| ~X] =
∑

Xi+a∑
Xi+a+n−

∑
Xi+b

=
∑

Xi+a

a+b+n

=
∑

Xi

a+b+n + a
a+b+n

= n
a+b+n X︸︷︷︸

sample
mean

+ a+b
a+b+n

a

a+ b︸ ︷︷ ︸
prior
mean



(b) Let ~x = (x1, x2, . . . , xn). Let a∗ =
∑n
i=1 xi + a and b∗ = n−

∑n
i=1 xi + b.

The predictive distribution is given by

f(xn+1|~x) =
∫ 1

0 f(xn+1|θ, ~x) · f(θ|~x) dθ

=
∫ 1

0 f(xn+1|θ) · f(θ|~x) dθ

=
∫ 1

0 θ
xn+1(1− θ)1−xn+1 1

B(a∗,b∗)θ
a∗−1(1− θ)b∗−1 dθ

= 1
B(a∗,b∗)

∫ 1
0 θ

a∗+xn+1−1(1− θ)b∗−xn+1 dθ

= B(a∗+xn+1,b∗−xn+1+1)
B(a∗,b∗)

Plugging in our expressions for a∗ and b∗, this becomes

f(xn+1|~x) =

B
(
n+1∑
i=1

xi + a, n−
n+1∑
i=1

xi + b+ 1

)

B
(

n∑
i=1

xi + a, n−
n∑
i=1

xi + b

)

for xn+1 ∈ {0, 1}.
Note that this discrete pdf represents the probability P (Xn+1 = xn+1| ~X = ~x). A point
estimate for Xn+1 is given by

X̂n+1 = E[Xn+1| ~X = ~x] = 0 · P (Xn+1 = 0| ~X = ~x) + 1 · P (Xn+1 = 1| ~X = ~x)

= P (Xn+1 = 1| ~X = ~x)

=

B

( n∑
i=1

xi + 1 + a, n−
n∑
i=1

xi − 1 + b+ 1

)

B

( n∑
i=1

xi + a, n−
n∑
i=1

xi + b

)

While you can stop there, this simplifies to

X̂n+1 =

∑n
i=1 xi + a

a+ b+ n

3. (a) Let ~X1, ~X2, . . . , ~Xn
iid∼ MVNp(~0, V ) for n ≥ p and V positive deinite.

Define the p× n matrix X so that its ith column is ~Xi.

Define the p
timesp matrix A as

A := XXt.

Then A is a random matrix that has a Wishart distribution with parameters n, p, and
V .

n is called the “degrees of freedom” of the distribution.

V is a variance/covariance parameter but is not the variance/covariance matrix for A.
(In fact, we have not even defined the variance for matrix random variables.)



(b) The Wishart distribution is a conjugate prior for the inverse of the variance/covariance
matrix of the multivariate normal distribution.

4. (a) The likelihood is

f(~x|λ) = λ5e−λ
∑5

i=1
xi

5∏
i=1

I(0,∞)(xi).

The prior is
f(λ) = 2e−2λ I(0,∞)(λ).

The posterior is
f(λ|~x) ∝ f(~x|λ) · f(λ)

∝ λ5e−λ
∑5

i=1
xi · e−2λ I(0,∞)(λ)

= λ5e(
∑

xi+2)λ I(0,∞)(λ)

⇒ λ|~x ∼ Γ

(
6,

5∑
i=1

xi + 2

)
= Γ(6, 5)

since
∑5
i=1 xi = 3.

(b) Consider a horizontal line at some height k.

We want to choose the maximum k for which

{λ : f(λ|~x) > k}

gives a 90% credible region. This will necessarily be the shortest interval in λ.



(c) Let ~x = (x1, x2, x3, x4, x5). Then

f(x6|~x) =
∫∞
0 f(x6|λ, ~x)f(λ|~x) dλ

=
∫∞
0 f(x6|λ)f(λ|~x) dλ

=
∫∞

0 λe−λx6 · 1
Γ(6)56λ5e−5λ dλ

= 56

Γ(6)

∫∞
0 λ6e−(x6+5)λ dλ

The integrand is looking like a Γ(7, x6 + 5) pdf. Thus

f(x6|~x) = 56

Γ(6)

∫∞
0 λ6e−(x6+5)λ dλ

= 56

Γ(6)
Γ(7)

(x6+5)7

∫ ∞
0

1

Γ(7)
(x6 + 5)7λ6e−(x6+5)λ dλ︸ ︷︷ ︸

1

= 6·56
(x6+5)7

for x6 > 0.

In order to estimate P (X6 > 0.25), we could simulate several values of x6 from the target
density

f(x6|~x) =
6 · 56

(x6 + 5)7
I(0,∞)(x6)

and compute the proportion of times we get a result greater than 0.25. There are many
ways to do this. I would simply use the inverse cdf method since the cdf is compoutable
and invertible for this problem.

5. (a)

f(~x|M1) =
n∏
i=1

(
1

2

)xi (
1− 1

2

)1−xi
=

(
1

2

)∑xi (1

2

)n−∑xi

=

(
1

2

)n
f(~x|M2) =

∫ 1
0 f(~x|θ) f(θ) dθ

=
∫ 1

0 θ
∑

xi(1− θ)n−
∑

xi · 1
B(a,b)θ

a−1(1− θ)b−1 dθ

...

=
B(
∑

xi+a,n−
∑

xi+b)

B(a,b)

The Bayes factor is

B12 =
f(~x|M1)

f(~x|M2)
=

B(a, b)

2nB(
∑
xi + a, n−

∑
xi + b)

(b)

f(~x|M1) =
∫ 1/2
0 f(~x|θ) f(θ) dθ

= 1
B(a,b)

∫ 1/2
0 θa+

∑
xi−1(1− θ)n−

∑
xi+b−1 dθ



and
f(~x|M1) =

∫ 1
1/2 f(~x|θ) f(θ) dθ

= 1
B(a,b)

∫ 1
1/2 θ

a+
∑

xi−1(1− θ)n−
∑

xi+b−1 dθ

These would have to be numerically integrated. (Use Monte Carlo integration!)

The Bayes factor is then

B12 =
f(~x|M1)

f(~x|M2)
.

(c) A “large” Bayes factor would support model M1 over model M2.

6. (a) We need to specify two probabilities P (M1) and P (M2) (Really only one since they must
add up to 1!) representing our prior belief in Model 1 versus Model 2.

We also need to set up priors for β1, σ2
1, β2, and σ2

2.

(b)
f(~y|Mj) =

∫∞
0

∫∞
−∞ f(~y|βj , σ2

j ,Mj) · f(βj , σ
2
j |Mj) dβj dσ

2
j

=
∫∞

0

∫∞
−∞ f(~y|βj , σ2

j ) · f(βj , σ
2
j ) dβj dσ

2
j

(c)

P (Mj |~y) =
f(~y|Mj) · P (Mj)

f(~y)

(d)

PO1 =
P (M1|~y)

P (M2|~y)

Note that, if there were more than 2 models, it should be

PO1 =
P (M1|~y)

1− P (M1|~y)

A large value of PO1 gives support for Model 1.

(e) First, we will need the predictive density.

f(yn+1|~y) =
∫∞

0

∫∞
−∞ f(yn+1|β1, σ

2
1, ~y)f(β1, σ

2
1|~y) dβ1 dσ

2
1

=
∫∞

0

∫∞
−∞ f(yn+1|β1, σ

2
1)f(β1, σ

2
1|~y) dβ1 dσ

2
1

The prediction is then

Ŷn+1 = E[Yn+1|~y] =

∫ ∞
−∞

yn+1f(yn+1|~y) dyn+1.

(f) The model averaging prediction is

Ŷn+1 = E[Yn+1|~y] = E[Yn+1|M1, ~y] · P (M1|~y) + E[Yn+1|M2, ~y] · P (M2|~y)

The expectation E[Yn+1|M1, ~y] is exactly the expectation computed in part (e) above.
Working out part (e) using Model 2 parameters would give us the other expectation.



7. Suppose that X1, X2, . . . , Xn
iid∼ f(x|θ).

Let fθ(θ) denote the prior for θ.

The likelihood may be written as fx|θ(~x|θ) and then the posterior is

fθ|x(θ|~x) ∝ fx|θ(~x|θ)fθ(θ)

Suppose we wish to reparameterize the model in terms of τ where τ = g(θ) for some function
g.

The prior for θ induces a prior for τ , given by

fτ (τ) = fθ(g
−1(τ)) ·

∣∣∣∣ ddτ g−1(τ)

∣∣∣∣ .
The likelihood, as a function of τ , is written as fx|τ (~x|τ).

The posterior, in terms of τ is then

fτ |x(τ |~x) ∝ fx|τ (~x|τ)fτ (τ)

= fx|τ (~x|τ)fθ(g
−1(τ)) ·

∣∣∣ ddτ g−1(τ)
∣∣∣ . (1)

However, we are not in general going to get the same result if we reparameterize the posterior
at the end:

fτ |x(τ |~x) = fθ|x(g−1(τ)|~x) ·
∣∣∣∣ ddτ g−1(τ)

∣∣∣∣ . (2)

That is, we are not guaranteed that (1) is the same as (2). We will have this guarantee if we
use the Jeffreys’ prior for fθ(θ)!

8. The Bayes risk is

Rδ = E[L(Θ, δ( ~X))]

=
∫ ∫

L(θ, δ(~x))f(~x, θ) dθ d~x

=
∫ ∫

(δ(~x)− θ)2f(θ|~x)f(~x) dθ d~x

To minimize this with respect to δ = δ(~x), we need only to minimize the inner integral (f(~x)
is pulled out of the integral) ∫

(δ(~x)− θ)2f(θ|~x) dθ

This is equal to
E[(δ(~x)−Θ)2| ~X = ~x].

Expanding, we get
δ2 − 2δE[Θ| ~X = ~x] + E[Θ2| ~X = ~x]

Taking the derivative WRT δ and setting it equal to zero gives

2δ − 2E[Θ| ~X = ~x]
set
= 0

Thus, we get that
δ = δ(~x) = E[Θ| ~X = ~x]

which is the posterior Bayes estimator for θ.



9. (a)
Rδ(λ) = E[(δ(X)− λ)2] = E[(cX − λ)2]

= c2E[X2]− 2cλE[X] + λ2

= c2(λ+ λ2)− 2cλ · λ+ λ2

= c2(λ+ λ2)− 2cλ2 + λ2

(b) Let δc = cX. Note that

Rδc(λ) = c2(λ+ λ2)− 2cλ2 + λ2

= (c− 1)2λ2 + c2λ

= ≥ c2λ > λ

if c > 1.

So, any δc with c > 1 would be dominated by δ1.

(c) A decision rule δ∗ is minimax if

sup
λ
Rδ∗(λ) = inf

δ
sup
λ
Rδ(λ)

Remember, we will be taking the infimum over all decision rules of the form δ(X) = c(X).
So, we can rewrite this as

sup
λ
Rδ∗(λ) = inf

c
sup
λ
Rδc(λ)

Note that
sup
λ
Rδc(λ) = sup

λ
[(c− 1)2λ2 + c2λ] =∞

Thus, there is no minimax rule.

By the way, minimizing the result of part (a) with respect to c gives c = λ
1+λ . Call the

resulting decision rule δ∗. That is, define

δ∗(X) =
λ

1 + λ
X

which is 1 when “supped” over λ. However, you may recall from analysis that

sup
x

inf
y
f(x, y) ≤ inf

y
sup
x
f(x, y).

This is what we are seeing (1 <∞) in this case!

(d) For this part, you were not supposed to be limited to a certain class of
decision functions! I will continue using δ(x) of the form δ(x) = cx but we
will not end up getting c to be constant!

A standard computation shows that the posterior distribution of λ given x is Γ(x+1, 2).

The Bayes risk is

Rδ =

∫ [∫
(cx− λ)2f(λ|x) dλ

]
f(x) dx

The inner integral is

E[(cx− Λ)2|X = x] = c2x2 − 2cxE[Λ|X = x] + E[Λ2|X = x]



Taking the derivative WRT c and setting it equal to 0 gives us

c =
E[Λ|X = x]

x2
=

(x+ 1)/2

x2
=
x+ 1

2x2
.

(A second derivative shows that we are in fact minimizing here.)

Thus, the Bayes rule is

δ(X) = cX =
X + 1

2X2
X =

X + 1

2X
.

(e) The posterior Bayes estimator is

λ̂ = E[Λ|X] =
X + 1

2
.

This should only match our decision rule, under squared error loss, if the possible decision
rules were unrestricted. In this problem they were restricted to ones of the form δ(x) =
cx.


