APPM 5720

Solutions to Final Exam Review Problems

1. The likelihood is

$$
f(\vec{x} \mid \lambda)=\frac{e^{-n \lambda} \lambda \sum x_{i}}{\prod_{i=1}^{n}\left(x_{i}!\right)} \prod_{i=1}^{n} I_{\{0,1,2, \ldots\}}\left(x_{i}\right) .
$$

The prior is

$$
f(\lambda)=\frac{1}{\Gamma(\alpha)} \beta^{\alpha} \lambda^{\alpha-1} e^{-\beta \lambda} I_{(0, \infty)}(\lambda)
$$

The posterior is

$$
\begin{aligned}
f(\lambda \mid \vec{x}) & \propto f(\vec{x} \mid \lambda) \cdot f(\lambda) \\
& \propto e^{-n \lambda} \lambda \sum x_{i} \cdot \lambda^{\alpha-1} e^{-\beta \lambda} I_{(0, \infty)}(\lambda) \\
& =\lambda^{\sum x_{i}+\alpha-1} e^{-(n+\beta) \lambda} I_{(0, \infty)}(\lambda) \\
\Rightarrow & \lambda \mid \vec{x} \sim \Gamma\left(\sum x_{i}+\alpha, n+\beta\right)
\end{aligned}
$$

2. (a) The likelihood is

$$
f(\vec{x} \mid \theta)=\theta^{\sum x_{i}}(1-\theta)^{n-\sum x_{i}} \prod_{i=1}^{n} I_{\{0,1\}}\left(x_{i} .\right)
$$

The prior is

$$
f(\theta)=\frac{1}{\mathcal{B}(a, b)} \theta^{a-1}(1-\theta)^{b-1} I_{(0,1)}(\theta)
$$

The posterior is

$$
\begin{aligned}
f(\theta \mid \vec{x}) & \propto f(\vec{x} \mid \theta) \cdot f(\theta) \\
& \propto \theta^{\sum x_{i}}(1-\theta)^{n-\sum x_{i}} \cdot \theta^{a-1}(1-\theta)^{b-1} I_{(0,1)}(\theta) \\
& =\theta^{\sum x_{i}+a-1}(1-\theta)^{n-\sum x_{i}+b-1} I_{(0,1)}(\text { theta }) \\
& \Rightarrow \theta \mid \vec{x} \sim \operatorname{Beta}\left(\sum x_{i}+a, n-\sum x_{i}+b\right)
\end{aligned}
$$

The posterior Bayes estimator is

$$
\begin{aligned}
\widehat{\theta}_{P B E} & =\mathrm{E}[\Theta \mid \vec{X}]=\frac{\sum X_{i}+a}{\sum X_{i}+a+n-\sum X_{i}+b}=\frac{\sum X_{i}+a}{a+b+n} \\
& =\frac{\sum X_{i}}{a+b+n}+\frac{a}{a+b+n} \\
& =\frac{n}{a+b+n} \underbrace{\bar{X}}_{\begin{array}{c}
\text { sample } \\
\text { mean }
\end{array}}+\frac{a+b}{a+b+n} \underbrace{\frac{a}{a+b}}_{\text {prior }}
\end{aligned}
$$

(b) Let $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Let $a^{*}=\sum_{i=1}^{n} x_{i}+a$ and $b^{*}=n-\sum_{i=1}^{n} x_{i}+b$.

The predictive distribution is given by

$$
\begin{aligned}
f\left(x_{n+1} \mid \vec{x}\right) & =\int_{0}^{1} f\left(x_{n+1} \mid \theta, \vec{x}\right) \cdot f(\theta \mid \vec{x}) d \theta \\
& =\int_{0}^{1} f\left(x_{n+1} \mid \theta\right) \cdot f(\theta \mid \vec{x}) d \theta \\
& =\int_{0}^{1} \theta^{x_{n+1}}(1-\theta)^{1-x_{n+1}} \frac{1}{\mathcal{B}\left(a^{*}, b^{*}\right)} \theta^{a^{*}-1}(1-\theta)^{b^{*}-1} d \theta \\
& =\frac{1}{\mathcal{B}\left(a^{*}, b^{*}\right)} \int_{0}^{1} \theta^{a^{*}+x_{n+1}-1}(1-\theta)^{b^{*}-x_{n+1}} d \theta \\
& =\frac{\mathcal{B}\left(a^{*}+x_{n+1}, b^{*}-x_{n+1}+1\right)}{\mathcal{B}\left(a^{*}, b^{*}\right)}
\end{aligned}
$$

Plugging in our expressions for a^{*} and b^{*}, this becomes

$$
f\left(x_{n+1} \mid \vec{x}\right)=\frac{\mathcal{B}\left(\sum_{i=1}^{n+1} x_{i}+a, n-\sum_{i=1}^{n+1} x_{i}+b+1\right)}{\mathcal{B}\left(\sum_{i=1}^{n} x_{i}+a, n-\sum_{i=1}^{n} x_{i}+b\right)}
$$

for $x_{n+1} \in\{0,1\}$.
Note that this discrete pdf represents the probability $P\left(X_{n+1}=x_{n+1} \mid \vec{X}=\vec{x}\right)$. A point estimate for X_{n+1} is given by

$$
\begin{aligned}
\widehat{X}_{n+1} & =\mathrm{E}\left[X_{n+1} \mid \vec{X}=\vec{x}\right]=0 \cdot P\left(X_{n+1}=0 \mid \vec{X}=\vec{x}\right)+1 \cdot P\left(X_{n+1}=1 \mid \vec{X}=\vec{x}\right) \\
& =P\left(X_{n+1}=1 \mid \vec{X}=\vec{x}\right) \\
& =\frac{\mathcal{B}\left(\sum_{i=1}^{n} x_{i}+1+a, n-\sum_{i=1}^{n} x_{i}-1+b+1\right)}{\mathcal{B}\left(\sum_{i=1}^{n} x_{i}+a, n-\sum_{i=1}^{n} x_{i}+b\right)}
\end{aligned}
$$

While you can stop there, this simplifies to

$$
\widehat{X}_{n+1}=\frac{\sum_{i=1}^{n} x_{i}+a}{a+b+n}
$$

3. (a) Let $\vec{X}_{1}, \vec{X}_{2}, \ldots, \vec{X}_{n} \stackrel{i i d}{\sim} M V N_{p}(\overrightarrow{0}, V)$ for $n \geq p$ and V positive deinite.

Define the $p \times n$ matrix \mathbf{X} so that its i th column is \vec{X}_{i}.
Define the p
timesp matrix A as

$$
A:=X X^{t} .
$$

Then A is a random matrix that has a Wishart distribution with parameters n, p, and V.
n is called the "degrees of freedom" of the distribution.
V is a variance/covariance parameter but is not the variance/covariance matrix for A. (In fact, we have not even defined the variance for matrix random variables.)
(b) The Wishart distribution is a conjugate prior for the inverse of the variance/covariance matrix of the multivariate normal distribution.
4. (a) The likelihood is

$$
f(\vec{x} \mid \lambda)=\lambda^{5} e^{-\lambda \sum_{i=1}^{5} x_{i}} \prod_{i=1}^{5} I_{(0, \infty)}\left(x_{i}\right)
$$

The prior is

$$
f(\lambda)=2 e^{-2 \lambda} I_{(0, \infty)}(\lambda) .
$$

The posterior is

$$
\begin{aligned}
f(\lambda \mid \vec{x}) & \propto f(\vec{x} \mid \lambda) \cdot f(\lambda) \\
& \propto \lambda^{5} e^{-\lambda \sum_{i=1}^{5} x_{i}} \cdot e^{-2 \lambda} I_{(0, \infty)}(\lambda) \\
& =\lambda^{5} e^{\left(\sum x_{i}+2\right) \lambda} I_{(0, \infty)}(\lambda) \\
\Rightarrow \quad \lambda \mid \vec{x} & \sim \Gamma\left(6, \sum_{i=1}^{5} x_{i}+2\right)=\Gamma(6,5)
\end{aligned}
$$

since $\sum_{i=1}^{5} x_{i}=3$.

(b) Consider a horizontal line at some height k.

We want to choose the maximum k for which

$$
\{\lambda: f(\lambda \mid \vec{x})>k\}
$$

gives a 90% credible region. This will necessarily be the shortest interval in λ.
(c) Let $\vec{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$. Then

$$
\begin{aligned}
f\left(x_{6} \mid \vec{x}\right) & =\int_{0}^{\infty} f\left(x_{6} \mid \lambda, \vec{x}\right) f(\lambda \mid \vec{x}) d \lambda \\
& =\int_{0}^{\infty} f\left(x_{6} \mid \lambda\right) f(\lambda \mid \vec{x}) d \lambda \\
& =\int_{0}^{\infty} \lambda e^{-\lambda x_{6}} \cdot \frac{1}{\Gamma(6)} 5^{6} \lambda^{5} e^{-5 \lambda} d \lambda \\
& =\frac{5^{6}}{\Gamma(6)} \int_{0}^{\infty} \lambda^{6} e^{-\left(x_{6}+5\right) \lambda} d \lambda
\end{aligned}
$$

The integrand is looking like a $\Gamma\left(7, x_{6}+5\right)$ pdf. Thus

$$
\begin{aligned}
f\left(x_{6} \mid \vec{x}\right) & =\frac{5^{6}}{\Gamma(6)} \int_{0}^{\infty} \lambda^{6} e^{-\left(x_{6}+5\right) \lambda} d \lambda \\
& =\frac{5^{6}}{\Gamma(6)} \frac{\Gamma(7)}{\left(x_{6}+5\right)^{7}} \underbrace{\int_{0}^{\infty} \frac{1}{\Gamma(7)}\left(x_{6}+5\right)^{7} \lambda^{6} e^{-\left(x_{6}+5\right) \lambda} d \lambda}_{1} \\
& =\frac{6 \cdot 5^{6}}{\left(x_{6}+5\right)^{7}}
\end{aligned}
$$

for $x_{6}>0$.
In order to estimate $P\left(X_{6}>0.25\right)$, we could simulate several values of x_{6} from the target density

$$
f\left(x_{6} \mid \vec{x}\right)=\frac{6 \cdot 5^{6}}{\left(x_{6}+5\right)^{7}} I_{(0, \infty)}\left(x_{6}\right)
$$

and compute the proportion of times we get a result greater than 0.25 . There are many ways to do this. I would simply use the inverse cdf method since the cdf is compoutable and invertible for this problem.
5. (a)

$$
\begin{aligned}
f\left(\vec{x} \mid M_{1}\right)=\prod_{i=1}^{n} & \left(\frac{1}{2}\right)^{x_{i}}\left(1-\frac{1}{2}\right)^{1-x_{i}}=\left(\frac{1}{2}\right)^{\sum x_{i}}\left(\frac{1}{2}\right)^{n-\sum x_{i}}=\left(\frac{1}{2}\right)^{n} \\
f\left(\vec{x} \mid M_{2}\right) & =\int_{0}^{1} f(\vec{x} \mid \theta) f(\theta) d \theta \\
& =\int_{0}^{1} \theta \sum^{\sum x_{i}}(1-\theta)^{n-\sum x_{i}} \cdot \frac{1}{\mathcal{B}(a, b)} \theta^{a-1}(1-\theta)^{b-1} d \theta \\
& \vdots \\
& =\frac{\mathcal{B}\left(\sum x_{i}+a, n-\sum x_{i}+b\right)}{\mathcal{B}(a, b)}
\end{aligned}
$$

The Bayes factor is

$$
B_{12}=\frac{f\left(\vec{x} \mid M_{1}\right)}{f\left(\vec{x} \mid M_{2}\right)}=\frac{\mathcal{B}(a, b)}{2^{n} \mathcal{B}\left(\sum x_{i}+a, n-\sum x_{i}+b\right)}
$$

(b)

$$
\begin{aligned}
f\left(\vec{x} \mid M_{1}\right) & =\int_{0}^{1 / 2} f(\vec{x} \mid \theta) f(\theta) d \theta \\
& =\frac{1}{\mathcal{B}(a, b)} \int_{0}^{1 / 2} \theta^{a+\sum x_{i}-1}(1-\theta)^{n-\sum x_{i}+b-1} d \theta
\end{aligned}
$$

and

$$
\begin{aligned}
f\left(\vec{x} \mid M_{1}\right) & =\int_{1 / 2}^{1} f(\vec{x} \mid \theta) f(\theta) d \theta \\
& =\frac{1}{\mathcal{B}(a, b)} \int_{1 / 2}^{1} \theta^{a+\sum x_{i}-1}(1-\theta)^{n-\sum x_{i}+b-1} d \theta
\end{aligned}
$$

These would have to be numerically integrated. (Use Monte Carlo integration!)
The Bayes factor is then

$$
B_{12}=\frac{f\left(\vec{x} \mid M_{1}\right)}{f\left(\vec{x} \mid M_{2}\right)}
$$

(c) A "large" Bayes factor would support model M_{1} over model M_{2}.
6. (a) We need to specify two probabilities $P\left(M_{1}\right)$ and $P\left(M_{2}\right)$ (Really only one since they must add up to 1 !) representing our prior belief in Model 1 versus Model 2.
We also need to set up priors for $\beta_{1}, \sigma_{1}^{2}, \beta_{2}$, and σ_{2}^{2}.
(b)

$$
\begin{aligned}
f\left(\vec{y} \mid M_{j}\right) & =\int_{0}^{\infty} \int_{-\infty}^{\infty} f\left(\vec{y} \mid \beta_{j}, \sigma_{j}^{2}, M_{j}\right) \cdot f\left(\beta_{j}, \sigma_{j}^{2} \mid M_{j}\right) d \beta_{j} d \sigma_{j}^{2} \\
& =\int_{0}^{\infty} \int_{-\infty}^{\infty} f\left(\vec{y} \mid \beta_{j}, \sigma_{j}^{2}\right) \cdot f\left(\beta_{j}, \sigma_{j}^{2}\right) d \beta_{j} d \sigma_{j}^{2}
\end{aligned}
$$

(c)

$$
P\left(M_{j} \mid \vec{y}\right)=\frac{f\left(\vec{y} \mid M_{j}\right) \cdot P\left(M_{j}\right)}{f(\vec{y})}
$$

(d)

$$
P O_{1}=\frac{P\left(M_{1} \mid \vec{y}\right)}{P\left(M_{2} \mid \vec{y}\right)}
$$

Note that, if there were more than 2 models, it should be

$$
P O_{1}=\frac{P\left(M_{1} \mid \vec{y}\right)}{1-P\left(M_{1} \mid \vec{y}\right)}
$$

A large value of $P O_{1}$ gives support for Model 1.
(e) First, we will need the predictive density.

$$
\begin{aligned}
f\left(y_{n+1} \mid \vec{y}\right) & =\int_{0}^{\infty} \int_{-\infty}^{\infty} f\left(y_{n+1} \mid \beta_{1}, \sigma_{1}^{2}, \vec{y}\right) f\left(\beta_{1}, \sigma_{1}^{2} \mid \vec{y}\right) d \beta_{1} d \sigma_{1}^{2} \\
& =\int_{0}^{\infty} \int_{-\infty}^{\infty} f\left(y_{n+1} \mid \beta_{1}, \sigma_{1}^{2}\right) f\left(\beta_{1}, \sigma_{1}^{2} \mid \vec{y}\right) d \beta_{1} d \sigma_{1}^{2}
\end{aligned}
$$

The prediction is then

$$
\widehat{Y}_{n+1}=\mathrm{E}\left[Y_{n+1} \mid \vec{y}\right]=\int_{-\infty}^{\infty} y_{n+1} f\left(y_{n+1} \mid \vec{y}\right) d y_{n+1} .
$$

(f) The model averaging prediction is

$$
\widehat{Y}_{n+1}=\mathrm{E}\left[Y_{n+1} \mid \vec{y}\right]=\mathrm{E}\left[Y_{n+1} \mid M_{1}, \vec{y}\right] \cdot P\left(M_{1} \mid \vec{y}\right)+\mathrm{E}\left[Y_{n+1} \mid M_{2}, \vec{y}\right] \cdot P\left(M_{2} \mid \vec{y}\right)
$$

The expectation $\mathrm{E}\left[Y_{n+1} \mid M_{1}, \vec{y}\right]$ is exactly the expectation computed in part (e) above. Working out part (e) using Model 2 parameters would give us the other expectation.
7. Suppose that $X_{1}, X_{2}, \ldots, X_{n} \stackrel{i i d}{\sim} f(x \mid \theta)$.

Let $f_{\theta}(\theta)$ denote the prior for θ.
The likelihood may be written as $f_{x \mid \theta}(\vec{x} \mid \theta)$ and then the posterior is

$$
f_{\theta \mid x}(\theta \mid \vec{x}) \propto f_{x \mid \theta}(\vec{x} \mid \theta) f_{\theta}(\theta)
$$

Suppose we wish to reparameterize the model in terms of τ where $\tau=g(\theta)$ for some function g.

The prior for θ induces a prior for τ, given by

$$
f_{\tau}(\tau)=f_{\theta}\left(g^{-1}(\tau)\right) \cdot\left|\frac{d}{d \tau} g^{-1}(\tau)\right| .
$$

The likelihood, as a function of τ, is written as $f_{x \mid \tau}(\vec{x} \mid \tau)$.
The posterior, in terms of τ is then

$$
\begin{align*}
f_{\tau \mid x}(\tau \mid \vec{x}) & \propto f_{x \mid \tau}(\vec{x} \mid \tau) f_{\tau}(\tau) \\
& =f_{x \mid \tau}(\vec{x} \mid \tau) f_{\theta}\left(g^{-1}(\tau)\right) \cdot\left|\frac{d}{d \tau} g^{-1}(\tau)\right| . \tag{1}
\end{align*}
$$

However, we are not in general going to get the same result if we reparameterize the posterior at the end:

$$
\begin{equation*}
f_{\tau \mid x}(\tau \mid \vec{x})=f_{\theta \mid x}\left(g^{-1}(\tau) \mid \vec{x}\right) \cdot\left|\frac{d}{d \tau} g^{-1}(\tau)\right| . \tag{2}
\end{equation*}
$$

That is, we are not guaranteed that (1) is the same as (2). We will have this guarantee if we use the Jeffreys' prior for $f_{\theta}(\theta)$!
8. The Bayes risk is

$$
\begin{aligned}
R_{\delta} & =\mathrm{E}[L(\Theta, \delta(\vec{X}))] \\
& =\iint L(\theta, \delta(\vec{x})) f(\vec{x}, \theta) d \theta d \vec{x} \\
& =\iint(\delta(\vec{x})-\theta)^{2} f(\theta \mid \vec{x}) f(\vec{x}) d \theta d \vec{x}
\end{aligned}
$$

To minimize this with respect to $\delta=\delta(\vec{x})$, we need only to minimize the inner integral $(f(\vec{x})$ is pulled out of the integral)

$$
\int(\delta(\vec{x})-\theta)^{2} f(\theta \mid \vec{x}) d \theta
$$

This is equal to

$$
\mathrm{E}\left[(\delta(\vec{x})-\Theta)^{2} \mid \vec{X}=\vec{x}\right] .
$$

Expanding, we get

$$
\delta^{2}-2 \delta \mathrm{E}[\Theta \mid \vec{X}=\vec{x}]+\mathrm{E}\left[\Theta^{2} \mid \vec{X}=\vec{x}\right]
$$

Taking the derivative WRT δ and setting it equal to zero gives

$$
2 \delta-2 \mathrm{E}[\Theta \mid \vec{X}=\vec{x}] \stackrel{\text { set }}{=} 0
$$

Thus, we get that

$$
\delta=\delta(\vec{x})=\mathrm{E}[\Theta \mid \vec{X}=\vec{x}]
$$

which is the posterior Bayes estimator for θ.
9. (a)

$$
\begin{aligned}
R_{\delta}(\lambda) & =\mathrm{E}\left[(\delta(X)-\lambda)^{2}\right]=\mathrm{E}\left[(c X-\lambda)^{2}\right] \\
& =c^{2} \mathrm{E}\left[X^{2}\right]-2 c \lambda \mathrm{E}[X]+\lambda^{2} \\
& =c^{2}\left(\lambda+\lambda^{2}\right)-2 c \lambda \cdot \lambda+\lambda^{2} \\
& =c^{2}\left(\lambda+\lambda^{2}\right)-2 c \lambda^{2}+\lambda^{2}
\end{aligned}
$$

(b) Let $\delta_{c}=c X$. Note that

$$
\begin{aligned}
R_{\delta_{c}}(\lambda) & =c^{2}\left(\lambda+\lambda^{2}\right)-2 c \lambda^{2}+\lambda^{2} \\
& =(c-1)^{2} \lambda^{2}+c^{2} \lambda \\
& =\geq c^{2} \lambda>\lambda
\end{aligned}
$$

if $c>1$.
So, any δ_{c} with $c>1$ would be dominated by δ_{1}.
(c) A decision rule δ^{*} is minimax if

$$
\sup _{\lambda} R_{\delta^{*}}(\lambda)=\inf _{\delta} \sup _{\lambda} R_{\delta}(\lambda)
$$

Remember, we will be taking the infimum over all decision rules of the form $\delta(X)=c(X)$. So, we can rewrite this as

$$
\sup _{\lambda} R_{\delta^{*}}(\lambda)=\inf _{c} \sup _{\lambda} R_{\delta_{c}}(\lambda)
$$

Note that

$$
\sup _{\lambda} R_{\delta_{c}}(\lambda)=\sup _{\lambda}\left[(c-1)^{2} \lambda^{2}+c^{2} \lambda\right]=\infty
$$

Thus, there is no minimax rule.
By the way, minimizing the result of part (a) with respect to c gives $c=\frac{\lambda}{1+\lambda}$. Call the resulting decision rule δ^{*}. That is, define

$$
\delta^{*}(X)=\frac{\lambda}{1+\lambda} X
$$

which is 1 when "supped" over λ. However, you may recall from analysis that

$$
\sup _{x} \inf _{y} f(x, y) \leq \inf _{y} \sup _{x} f(x, y) .
$$

This is what we are seeing $(1<\infty)$ in this case!
(d) For this part, you were not supposed to be limited to a certain class of decision functions! I will continue using $\delta(\mathbf{x})$ of the form $\delta(\mathbf{x})=\mathbf{c x}$ but we will not end up getting c to be constant!
A standard computation shows that the posterior distribution of λ given x is $\Gamma(x+1,2)$. The Bayes risk is

$$
R_{\delta}=\int\left[\int(c x-\lambda)^{2} f(\lambda \mid x) d \lambda\right] f(x) d x
$$

The inner integral is

$$
\mathrm{E}\left[(c x-\Lambda)^{2} \mid X=x\right]=c^{2} x^{2}-2 c x \mathrm{E}[\Lambda \mid X=x]+\mathrm{E}\left[\Lambda^{2} \mid X=x\right]
$$

Taking the derivative WRT c and setting it equal to 0 gives us

$$
c=\frac{\mathrm{E}[\Lambda \mid X=x]}{x^{2}}=\frac{(x+1) / 2}{x^{2}}=\frac{x+1}{2 x^{2}} .
$$

(A second derivative shows that we are in fact minimizing here.)
Thus, the Bayes rule is

$$
\delta(X)=c X=\frac{X+1}{2 X^{2}} X=\frac{X+1}{2 X}
$$

(e) The posterior Bayes estimator is

$$
\widehat{\lambda}=\mathrm{E}[\Lambda \mid X]=\frac{X+1}{2} .
$$

This should only match our decision rule, under squared error loss, if the possible decision rules were unrestricted. In this problem they were restricted to ones of the form $\delta(x)=$ $c x$.

