
SIAM J. SCI. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 28, No. 5, pp. 1716–1729

A PSEUDOSPECTRAL FICTITIOUS POINT METHOD FOR HIGH
ORDER INITIAL-BOUNDARY VALUE PROBLEMS∗
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Abstract. When pseudospectral approximations are used for space derivatives, one often en-
counters spurious eigenvalues. These can lead to severe time stepping difficulties for PDEs. This is
especially the case for equations with high order derivatives in space, requiring multiple conditions
at one or both boundaries. We note here that a very simple-to-implement fictitious point approach
circumvents most of these difficulties. The new approach is tested on the Kuramoto–Sivashinsky
equation and on a dispersive linear PDE featuring a time-space corner singularity.
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1. Introduction. PDEs with high derivatives in space typically require multiple
conditions at one or more of its boundaries, as noted in Table 1.1. Implementation of
one Dirichlet condition at a boundary is straightforward when using a Chebyshev-type
spectral method. This paper discusses how to best implement additional conditions.

The third order linear initial-boundary value (IBV) problem⎧⎨⎩PDE ut = uxxx,
IC u(x, 0) = f(x),
BC u(±L, t) = 0, ux(−L, t) = 0

(1.1)

can be used to illustrate this topic. A numerical methods-of-lines (MOL) time stepping
method for (1.1) will be stable if and only if the spatial differentiation operator is such
that, when instead applied to the eigenvalue problem{

ODE uxxx = λu,
BC u(±L) = 0, ux(−L) = 0,

(1.2)

the quantity ξ = λΔt for all the eigenvalues λ fall within the time stepping method’s
stability domain.

For the problem (1.2), the true eigenvalues are all real and negative. They are
given by the roots to

e3Lλ1/3 − 2 sin
(√

3Lλ1/3 +
π

6

)
= 0(1.3)

(omitting λ = 0), and can be approximated very closely by

λk ≈ −
[(

k+
1
6

)
π

√
3L

]3

, k = 1, 2, . . . .(1.4)
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Table 1.1

Number of conditions needed at each boundary for some time dependent PDEs in order to form
well-posed IBV problems.

PDE Number of conditions needed
Left side Right side

ut = ux 0 1
ut = uxx 1 1
ut = uxxx 2 1
ut = uxxxx 2 2
ut = uxxxxx 2 3

ut + uux + uxxx = 0 KdV 1 2
ut + uux + uxx + uxxxx = 0 KS 2 2

The challenge thus lies in approximating (1.2) so that (i) as many of the leading
eigenvalues (and eigenvectors) as possible become accurately approximated, and (ii)
the remaining (spurious) numerical eigenvalues are all located far out in the left half-
plane, so as not to damage either the accuracy or the stability when using the MOL
approach with a stiff ODE solver.

When using Galerkin (or tau) spectral methods—working with expansion coeffi-
cients rather than with node values as in the present pseudospectral (PS) approach—
remedies have been discussed numerous times in the literature, e.g., [15], [23], and the
references therein. However, especially in contexts involving variable coefficients and
nonlinearities, the PS approach tends to be a lot more convenient.

In the next two sections of this paper, we summarize some approaches for resolving
the problem with spurious eigenvalues when using the PS approach. We will note that
an approach based on fictitious points (previously introduced for spectral methods in
[13], in a slightly different context) is particularly effective, flexible, and simple to
implement. In section 4, we discuss the same issues for some more general PDEs,
in particular for the Kuramoto–Sivashinsky (KS) equation, and for some linearized
versions of it. We note in section 5 that the issue of time-space corner singularities still
needs more investigation, especially in the presence of nonlinearities. The example
in section 6 illustrates this singularity issue, and also shows that the application of
inhomogeneous boundary conditions (BCs) causes no further difficulties. Section 7
contains some concluding remarks.

2. Differentiation matrix (DM) approaches. With the node points denoted
by xk, k = 0, 1, . . . , n, and the corresponding function values by uk, the first derivative
values u′

k can be approximated by means of a matrix×vector product⎡⎢⎢⎣ D1

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

u0

u1

...
un

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
u′

0

u′
1

...
u′
n

⎤⎥⎥⎥⎦ .

Requiring that this formula becomes exact for all polynomials of degree n determines
the differentiation matrix D1 uniquely. This matrix can be computed at a cost of
only four operations per entry by means of the explicit formula [27]

D1
j,k =

⎧⎪⎨⎪⎩
aj

ak(xj−xk) if j �= k,

n∑
i−0
i�=k

1
xk−xi

if j = k,
where ak =

n∏
i−0
i�=k

(xk − xi).
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For higher derivatives, the corresponding DMs can be obtained by immediate matrix
multiplication, i.e., Dp = (D1)p. However, several direct recursions have been found
which give the entries of Dp both faster and in a more numerically stable manner.
For different methods and/or variations, see, for example, [12], [14], [19], [35], [36],
[37], [38]. In all the following discussions, we have used Chebyshev distributed nodes,
i.e., xk = −L cos πk

n , k = 0, 1, 2, . . . , n, in case of the interval [−L,L]. However,
the results and conclusions become the same for similar choices, such as Legendre,
Gegenbauer, or Jacobi distributions.

The immediate numerical discretization of (1.2) can be written as

ODE:

⎡⎣ D3

⎤⎦
n+1,n+1

⎡⎣ u

⎤⎦
n+1

= λ

⎡⎣ u

⎤⎦
n+1

,(2.1)

with

BC:

⎡⎣ 1 0 . . . 0 0
0 0 . . . 0 1
d0 d1 . . . dn−1 dn

⎤⎦
3,n+1

⎡⎣ u

⎤⎦
n+1

=

⎡⎣ 0
0
0

⎤⎦
3

.(2.2)

We have here also marked the sizes of the matrices and vectors. The most natural
way to incorporate the first two BCs would be to simply remove the first and last rows
and columns from D3 and the first and last elements of u, leading to the eigenvalue

problem D̂3û = λû of size (n − 1) × (n − 1). Had there been no more BCs (as in
the case for second derivatives using one condition at each end), this would have been
fully satisfactory. However, we have here also a third BC. Its implementation is much
less apparent, and forms the main topic of this present study.

Trefethen notes in [32, page 135] “There are two basic approaches to bound-
ary conditions for spectral collocation methods: (I) Restrict attention to interpolants
that satisfy the boundary conditions; or (II) Do not restrict the interpolants, but add
additional equations to enforce the boundary conditions.” We describe this second
approach first, in subsection 2.1. Most recent work has concentrated on the first
approach, discussed in subsection 2.2. We introduce then, in section 3, the ficti-
tious point (FP) approach. This is very simple to implement and, as will be shown,
lends itself especially well to the time stepping of PDEs with either homogeneous or
inhomogeneous BCs.

2.1. Approach II: Elimination of an additional row and column. Merry-
field and Shizgal [24] consider the possibility of adding suitable multiples of the last
BC in (2.2) to the different rows in the ODE, so that also the second column of D3

gets eliminated. The second unknown u1 can, from this BC, be expressed in terms of
the remaining unknowns:

u1 = − 1

d1

∑
i �=1

diui.(2.3)

In order not to impose more relations than there are unknowns, we would then omit
imposing the ODE at this second grid point location. The eigenvalue problem has
then been reduced to size (n− 2) × (n− 2). We write this as

D̃3
1 = λǔ,(2.4)
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Fig. 2.1. Complex spectra for the reduced matrix Ď3
1 in the Mulholland approach, when the

first and last row and column and also row and column r, r = 1, 10, 20, 30, have been eliminated.
The axes have been scaled by x → sign(x) log10(1 + |x|) and similarly for y (in order to keep signs
but compress large arguments).

where the subscript “1” denotes that the second row and column are also eliminated
(recalling that we count rows and columns starting with zero). Figure 2.1(a) (labeled
r = 1) compares, in the case of n = 40 and L = 1, the eigenvalue distribution for (2.4)
(marked by dots) against the first n + 1 analytic eigenvalues (marked by circles). As
Merryfield and Shizgal first noted, the presence of several spurious eigenvalues far out
in the right half-plane rules out this approach in the context of MOL time stepping.

Mulholland [26] generalized the approach of eliminating row 1 and column 1 to
instead eliminating row r and column r, where 1 ≤ r ≤ n − 1. Since the extra
boundary condition appears at the left boundary, Merryfield and Shizgal’s choice
r = 1 is what first comes to mind. However, it transpires that the stability situation
improves very much when r is increased. Figures 2.1(b), (c), (d) show the results
with r = 10, 20, 30, respectively. Although the situation with r approaching n might
appear satisfactory in the present case, there is something strange about eliminating a
node in the Chebyshev grid far away from the boundary at which the extra condition
had to be imposed. In fact, the generalization

ur = − 1

dr

∑
i �=r

diui(2.5)

of (2.3) becomes problematic because the weights di are oscillatory and decay rapidly
in magnitude with increasing r. Figure 2.2 shows these in the case of L = 1 and
n = 20. Some coefficients di/dr in (2.5) become much larger than one, and small
oscillations in ui, i < r, get strongly amplified in the computed value of ur. The
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Fig. 2.2. Weights di when the first derivative is approximated at the left boundary of a 21-node
Chebyshev-spaced grid.

reason the methodology still works, even as r is increasing, is that the resulting errors
in ur occur close to the right boundary, and the general character of solutions to (1.1)
is that all modes are transported towards this right boundary and become completely
absorbed there—the faster the higher the mode is. It thus would appear that the
Mulholland approach will work only for very special PDEs. In fact, it fails entirely
for the KS equation, which we will consider in section 4.

2.2. Approach I: Modify the DM to incorporate the boundary infor-
mation. Determining the DM for collocation at x0, x1, . . . , xn with a polynomial
pn(x) over [−1, 1] and then enforcing u(−1) = u(1) = 0 leads to the same DM as
one would get if one considered only polynomials of the form (x + 1)(x − 1)pn−2(x)
and collocated only over the internal nodes x1, . . . , xn−1. In order to also enforce
ux(−1) = 0, we can collocate over the interior nodes with a polynomial of the form
(x+1)2(x−1)pn−2(x). This type of approach was taken by Funaro and Heinrichs [16],
later independently by Huang and Sloan [18], and again by Heinrichs [17]. In these
cases, closed form expressions for the resulting DMs were obtained. Trefethen [32,
page 146] describes another approach which, for arbitrary node distributions, gives
the desired DM from standard ones in just a few matrix operations. Figure 2.3(a),
showing its eigenvalues, should be compared to Figure 2.1. The spurious eigenval-
ues are located as advantageously as in any of the previous cases from Mulholland’s
method, but without the need to discard the governing equation at any one of the
interior grid points. One of the referees of the present paper proposed the following
procedure: with u= [u(−1), u1, u2, . . . , un−1, u(1)]T , form D1u, set its first component
to u′(−1), and then apply D2 to get an approximation for uxxx that incorporates the
given values of u(−1), u(1), and u′(−1). This procedure, which is particularly simple
to implement in case of nonhomogeneous BC, gives results that are only very slightly
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Fig. 2.3. Complex spectrum for the same test case as in Figure 2.1. (a) Collocation with a
polynomial of the form (x + 1)2(x − 1)pn−2(x). This will agree with the FP method described in
section 3. (b) Last method described in section 2.2.

different from the method just mentioned (as seen in Figure 2.3(b)).
None of the methods/implementations that have just been mentioned combine all

of the following desirable features:
(i) easy implementation;
(ii) easy generalization to nonhomogeneous cases;
(iii) ability to handle Robin-type BCs (involving linear combinations of values

and derivatives, in place of values and/or derivatives);
(iv) ability to impose BCs on staggered-type grids (where the actual boundary

location does not coincide with a grid point).

3. Fictitious point approach. Although for simplicity, our description will not
be the most general, the FP approach will be seen to meet all the four criteria that
were just noted.

Since we in our model problem (1.2) have one more BC than can be imposed by
just fixing the values for u(x0) and u(xn), we introduce an additional grid point at
some arbitrary location xFP . When evaluating the matrix D3, for example, by the
algorithm in [37], this point is included just like x0, . . . , xn. The extra BC can be
expressed as a linear combination of node values:

[
dFP d0 d1 . . . dn−1 dn

]
n+2

⎡⎣ u

⎤⎦
n+2

= 0.

Since finding these weights requires the computation of only one global FD stencil
(rather than a full DM), the algorithm in [12] is particularly suitable for this task.
Multiples of [dFP d0 d1 . . . dn−1 dn] are next subtracted from D3 in order to eliminate
all weights at xFP . The two BCs for u(x0) and u(xn) are implemented as before, i.e.,
we omit the first and last row and column of D3. The key to this approach is that,

apart from possible rounding errors, the resulting D̃3 matrix becomes completely
independent of our choice for xFP . The reason for this is that introducing this point
and then eliminating all weights at it can be seen as a particularly convenient way
to find the same DM as before, i.e., corresponding to collocating with polynomials of



1722 BENGT FORNBERG

the form

P (x) = (x + 1)2(x− 1)pn−2(x).(3.1)

The equivalence just mentioned can be explained in more detail as follows: Data
values u0 = 0, {ui, i = 1, 2, . . . , n − 1}, un = 0 at node locations x0 = −1, {xi, i =
1, 2, . . . , n − 1}, xn = 1 determine uniquely the polynomial P (x) in (3.1). We next
choose an additional point xFP and evaluate uFP = P (xFP ). If we extend the data
set above with the value uFP at location xFP , it will then consist of n + 2 points,
and it therefore determines a unique interpolating polynomial of degree n + 1. This
polynomial must be identical to P (x). The FP approach provides the exact value for
any derivative of this polynomial, at any location, i.e., its results must agree exactly
with those obtained by immediate use of (3.1). The value we happened to have chosen
for xFP did not affect P (x) (which was determined before xFP was introduced), and
it could therefore not in any way have influenced the outcome of the FP method.

The general idea of introducing one (or more) temporary grid points outside an
interval is not new. It has long been used to implement Neumann conditions in
connection with low order FD methods (e.g., [30, page 32]); other contexts include
domain decomposition, block-PS methods [7], [8], and the “enslaving” idea for FD
schemes [21]. In all these cases, the final computational result will depend on where
the extra point(s) are located. The expression “fictitious point” was first used in [13],
in a situation where the point truly vanished in the sense that not even its temporary
location left any remaining trace behind. We use here the term FP in that sense.
These points can just as well be placed inside a computational domain as outside it.

4. The Kuramoto–Sivashinsky equation. The KS equation can be written

ut = −u ux − uxx − uxxxx.(4.1)

It features some similarities with Burgers’ equation

ut = −u ux + uxx(4.2)

but is more interesting in several respects. In (4.2), the dissipative term uxx counter-
acts the effects of steepening caused by the nonlinear term uux, and solutions typically
evolve into pulses which travel while decaying. In (4.1), the uxx term (in conjunction
with the time derivative) amounts to the backwards heat equation, which is unstable
for all modes. Inclusion of the uxxxx term causes high modes to become dampened
while low modes remain unstable. The uux term causes again a steepening of waves,
with the effect that unstable modes of sufficient height get brought over to the stable
higher-frequency regime. The KS equation models numerous phenomena in physics
[34] and is a frequently used model equation for chaotic dynamics [20], [29].

A very brief Fourier-PS MATLAB code, slightly modified from [33], has been used
to produce Figure 4.1. This shows how the small initial disturbance

u(x, 0) =

{
0.1 sin2(x/2), −12π < x < −10π,

0 otherwise
(4.3)

over the periodic domain [−16π, 16π] causes chaotic structures to emerge.

4.1. A linear model equation. In preparation for introducing a nonperiodic
PS code for the KS equation, we next consider the linear problem

ut = −uxx − uxxxx(4.4)
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Fig. 4.1. Periodic solution to the KS equation (4.1) with initial condition (IC) (4.3) computed
with a periodic PS method using 128 points in space.

with BCs

u(±L, t) = 0, ux(±L, t) = 0.(4.5)

If we at first limit ourselves still further to

ut = −uxx(4.6)

with BC u(±L) = 0, the corresponding eigenvalues become

λk =

[
kπ

2L

]2

, k = 1, 2, 3, . . . ,

and for

ut = −uxxxx(4.7)

with BC (4.5), they become λk = −
( ρk

2L

)4
, where ρk is the kth positive root to

cos(ρ) · cosh(ρ) = 1, i.e.,

λk ≈ −
[
(k + 1

2 )π

2L

]4

, k = 1, 2, 3, . . . .

The PS approach to (4.6) features all real and positive eigenvalues, as seen in Figure
4.2(a) for the case of L = 20 and n = 10, 20, 30, . . . , 80. The lowest eigenvalues are
very accurate, whereas the higher (spurious) ones become very large. Figure 4.2(b)
shows similarly the FP PS method’s eigenvalues for (4.7). These are all negative—
again with spurious ones far away. One might have guessed that the FP-computed
eigenvalues to the combined equation (4.4) would feature spurious eigenvalues both
to the right and to the left (and, if so, causing maybe insurmountable time stepping
difficulties). However, as Figure 4.2(c) shows, they are all far out in the left half-plane.
Although the equation that gives the exact eigenvalues to (4.4) is too complicated to
be practical to work with, they can nevertheless be computed accurately. The lower
eigenvalues appear in close pairs, as can be seen in the tabulation along the top edge of
Figure 4.3. The figure also shows graphically the errors in FP-type PS approximations
based on increasingly fine Chebyshev distributions.
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Fig. 4.4. Nonperiodic solution to the KS equation (4.1), computed by the FP PS method.

4.2. Numerical solution of the nonperiodic KS equation. The FP PS
method, as just described, has been implemented for solving the KS equation (4.1)
with the nonperiodic BC u(±L, t) = 0, ux(±L, t) = 0. With again L = 16π and the
IC (4.3), Figure 4.4 shows the resulting time evolution.

In this calculation, the time stepping (again over 0 ≤ t ≤ 150) was performed
with the 2-stage fourth order accurate Hammer–Hollingsworth implicit Runge–Kutta
scheme. However, any standard stiff ODE solver should also have worked perfectly
well. According to comparisons in [22], an LI (linearly implicit) scheme or an ETD
(exponential time differencing) scheme would likely have been a more effective choice.
The former have a long history, and were recently surveyed, for example, in [1] and
[5], while Runge–Kutta-based LI schemes are considered in [28]. It should, however,
be noted that Boyd [3, pages 267–269] warns against their use for certain nonlinear
wave equations. ETD schemes were introduced independently several times [31], [2],
[25], and [6], with a stability problem resolved in [22]. In Figure 4.4, we see again
a chaotic solution that reaches approximately the same amplitude as in the periodic
case. However, both quantitative and qualitative differences can be spotted compared
to the periodic case that was previously displayed in Figure 4.1.

5. Time-space corner singularities. In applications leading to IBV problems,
ICs and BCs typically come from different physical considerations. In order for the
solutions to the PDE not to feature singularities in the time-space corners where
ICs and BCs meet, an infinite number of compatibility conditions need to hold, as
explored by Flyer and collaborators [4], [9], [10], [11]. For (1.1), these were ana-
lyzed in detail in [10]. Figure 5.1 shows for k = 1 and k = 2 the structure of the
solutions

uk(x, t) = tk
{

1F2

(
−k,

{
1

3
,
2

3

}
,− x3

27t

)
− x2

2t2/3
Γ(k + 1)

Γ(k + 1
3 )

1F2

(
2

3
− k,

{
4

3
,
5

3

}
,− x3

27t

)}(5.1)
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near the origin for the quarter-plane problems⎧⎪⎪⎪⎨⎪⎪⎪⎩
PDE ut = uxxx,

IC u(x, 0) = 0,

BC

{
u(t, 0) = tk,
ux(t, 0) = 0,

k = 0, 1, 2, . . . ; u(t,∞) = 0,

(5.2)

x ≥ 0, t ≥ 0. For the BCs u(t, 0) = 0, ux(t, 0) = tk, we denote the corresponding
quarter-plane solutions by vk(x, t):

vk(x, t) = tk+ 1
3

{
1F2

(
−k,

{
2

3
,
4

3

}
,− x3

27t

)
− x2

2t2/3
Γ(k + 1)

Γ(k + 2
3 )

1F2

(
1

3
−k,

{
4

3
,
5

3

}
,− x3

27t

)}
.

The top row of subplots in Figure 5.1 shows seemingly very smooth analytic
solutions, for which one would not expect any numerical difficulties. No amount of
“zooming in” (uniformly in x and t) near the origin in the (x, t)-plane will visually
reveal any irregularities. However, if we increase the graphical resolution in time only,
the lower subplots reveal the presence of transient fine structures which accurate nu-
merics would also need to resolve. A typical numerical approach, as explained in
some detail for convective-diffusive equations in [9], would be to subtract an appro-
priate combination of different corner singularity functions before an FP PS numerical
method is applied to the remaining problem.

The issue of corner singularities in the time-space domain was little noted before
the advent of spectral methods, since the truncation errors of finite difference and finite
element methods tended to dominate over them. However, when using PS methods,
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corner-induced errors can easily dominate over other errors with many orders of mag-
nitude. In the present test case for the KS equation (4.1), all space derivatives of the
IC (4.3) and time derivatives of the BC (4.5) are zero in the corners, and this issue
did not arise. However, it needs to be noted that it is one that has to be considered in
most spectral IBV calculations. The precise form of the corner singularity functions
for most higher order PDEs (such as (4.4) and (4.1)) remains to be investigated. For
cases when they cannot be obtained in convenient closed form, it was noted in [9] that
a simple change of variables makes their numerical computation straightforward.

6. Inhomogeneous boundary conditions. The description of the FP ap-
proach in section 3 applies entirely unchanged also to the case of inhomogeneous
BCs. As an example, we consider the case illustrated in the center left subplot of
Figure 5.1, i.e., we use the FP method to numerically solve⎧⎪⎪⎨⎪⎪⎩

PDE ut = uxxx,

IC u(x, 0) = 0,

BC u(0, t) = t, ux(0, t) = 0, u(2, t) =
{

values from the ana-
lytic solution (5.1)

}(6.1)

for 0 ≤ t ≤ 0.01. The resulting solution should agree exactly with the k = 1 case of
(5.1). Figure 6.1(a) shows the result on a 20-node Chebyshev grid with the time step-
ping, this time carried out with one of MATLAB’s standard stiff ODE solvers (ode15s).
Part (b) of the figure shows the error compared to the analytic solution. At the very
first moments, extremely high frequency transients emerge from the origin (where the
ICs and BCs meet) and then race to the right across the spatial domain. After they
have done so, and have “died down” at the right boundary, the numerical solution fea-
tures a very high accuracy. As we noted above, these initial transients at first contain
frequencies that are too high for any computational grid, and the error they cause
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Fig. 6.1. The u1(x, t) corner function for ut = uxxx. (a) Numerical FP solution on a 20-node
Chebyshev grid. (b) The error compared to the analytic solution.
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can easily dominate all other errors by several orders of magnitude. It depends on
the application whether or not accurate resolution of initial transients is important.

7. Conclusions. High order IBV problems can require several conditions at
each boundary. When using Chebyshev-type PS approximations in space, it has in
the past not been clear how best to implement these conditions in order to obtain
good accuracy, stability, flexibility, and simplicity. The present FP approach has
been shown to meet such requirements. Demonstration cases have included the KS
equation as well as the dispersive wave equation ut = uxxx with inhomogeneous
boundary conditions. As with other Chebyshev-type PS methods, the DMs in the
FP approach are not particularly close to being normal matrices. However, they
are close enough that eigenvalue analysis accurately describes actual stability under
time stepping. With the very high accuracy that is now easily reachable also for high
order IBV problems, the singularities that such equations generally have at time-space
corners (where ICs and BCs meet) will need to be taken into account, especially in
computations over short times.
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