Model-independent Superhedging under Portfolio Constraints

Yu-Jui Huang (Dublin City University)

Joint work with Arash Fahim (Florida State University)

Joint Financial Mathematics and Risk Stochastics Seminar London School of Economics 3rd March 2014

The Superhedging Problem

Consider a market with a stock S.

The Superhedging Problem

Given a (path-dependent) payoff function Φ , what is the **minimal** initial capital needed to outperform the claim $\Phi(\{S_t\}_{0 \le t \le T})$?

1. Formulate the problem: Take a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ which supports the process *S*, and consider

 $D(\Phi) := \inf\{a \in \mathbb{R} : \exists \Delta \in \mathcal{H} \text{ s.t. } a + (\Delta \cdot S)_{\mathcal{T}} \geq \Phi \mathbb{P}\text{-a.s.}\}.$

• $\mathcal{H} := \{ admissible trading strategies \}.$

•
$$(\Delta \cdot S)_T := \int_0^T \Delta_t dS_t.$$

2. Risk-neutral pricing: Find probabilities $\mathbb{Q} \ll \mathbb{P}$ s.t. S is a \mathbb{Q} -martingale. Then,

$$D(\Phi) = \sup_{\mathbb{Q} \in \mathcal{Q}(\mathbb{P})} \mathbb{E}^{\mathbb{Q}}[\Phi],$$
(1)

where $\mathcal{Q}(\mathbb{P}) := \{\mathbb{Q} : \mathbb{Q} \ll \mathbb{P} \text{ is a martingale measure} \}.$

Some critiques on $\mathcal{Q}(\mathbb{P})$

Dupire (1994): liquidly traded options (e.g. vanilla calls) should be viewed as primary assets, with **prices given exogenously**.

- Let C(t, K) denote the market price of a vanilla call with maturity t > 0 and strike K > 0.
- For any t > 0 and any pricing measure \mathbb{Q} ,

$$\int_{\mathbb{R}_+} (S_t - K)^+ d\mathbb{Q} = C(t, K), \quad \forall K \ge 0.$$

• This already specifies the distribution of S_t under \mathbb{Q} .

$$\mu_t(K) = 1 - \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left(C(t, K) - C(t, K + \varepsilon) \right).$$

Conclusion: consider pricing measures \mathbb{Q} under which

 S_t admits the distribution μ_t for all $t \ge 0$.

Model-independent Superhedging

Difficult to find an appropriate physical measure \mathbb{P} to start with. \Rightarrow Can we do superhedging **without** any a priori given \mathbb{P} ?

Model-independent Superhedging

Can my terminal wealth \geq a claim Φ ,

no matter which probability $\ensuremath{\mathbb{P}}$ eventually materializes?

- Pioneering work: Hobson (1998).
- Extensions: Brown, Hobson & Rogers (2001), Bertsimas & Popescu (2002), Hobson, Laurence & Wang (2005), Cox & Obłój (2011), Dolinsky & Soner (2013),...

Most of the papers above

- focus on specific contingent claims (e.g. barrier, lookback, basket, double no-touch options).
- consider market prices of vanilla calls with maturities at T.

We start with the set-up in **Beiglböck**, **Henry-Labordère & Penkner (2013)**.

Consider a discrete-time market with finite horizon $T \in \mathbb{N}$.

•
$$\Omega := \mathbb{R}_+^T$$
.

• The stock S is taken as the coordinate mapping process, i.e.

$$S_t(x) = x_t$$
 for all $x = (x_1, \cdots, x_T) \in \mathbb{R}_+^T$.

- $\mathbb{F} = \{\mathcal{F}_t\}_{t=1}^T$ is the natural filtration generated by S.
- Market prices C(t, K) of **vanilla calls** for all maturities $t = 1, \dots, T$ and strikes $K \ge 0$.
 - \Rightarrow for each *t*, μ_t (the distribution of S_t) is specified.

We consider

 $\Pi := \{ \mathbb{Q} \text{ probability on } \mathbb{R}_+^T : \mathbb{Q} \text{ admits marginals } \mu_1, \cdots, \mu_T \}.$

This collection is **non-empty** and **weakly compact** (Villani (2009), Kellerer (1984)).

Note that S_1, S_2, \cdots, S_T are \mathbb{Q} -integrable, for any $\mathbb{Q} \in \Pi$.

$$\mathbb{E}^{\mathbb{Q}}[S_t] = \int x \ d\mu_t(x) = C(t,0).$$

Our Framework

Trading strategies in "stock":

- $\Delta = {\{\Delta_t\}_{t=0}^{T-1} \text{ is a trading strategy if} }$ $\Delta_t(x_1, \cdots, x_t) \text{ is Borel measurable, for all } t.$
- The stochastic integral is defined as

$$(\Delta \cdot x)_t := \sum_{i=0}^{t-1} \Delta_i(x_1, \cdots, x_i)(x_{i+1} - x_i), \quad \text{for } t = 1, \cdots, T.$$

 \bullet We denote by ${\cal H}$ the set of all trading strategies.

Static positions in "cash and vanilla calls":

• $u = \{u_t\}_{t=1}^T$ is a static position if each u_t is of the form

$$\varphi(x) = a + \sum_{i=1}^{n} b_i (x - K_i)^+,$$

for some $a \in \mathbb{R}, n \in \mathbb{N}, b_i \in \mathbb{R}$ and $K_i \geq 0$.

• We denote by \mathcal{U} the set of all static positions.

Semi-static Superhedging

Given a payoff Φ , want to find $\Delta \in \mathcal{H}$ and $u \in \mathcal{U}$ such that

$$\sum_{t=1}^{T} u_t(x_t) + (\Delta \cdot x)_T \ge \Phi(x), \quad \forall x = (x_1, \cdots, x_T) \in \mathbb{R}_+^T.$$
(2)

Model-independent superhedging price

$$D(\Phi) := \inf \left\{ \sum_{t=1}^{T} \int_{\mathbb{R}_{+}} u_{t} d\mu_{t} : u \in \mathcal{U} \text{ and } \exists \Delta \in \mathcal{H} \text{ s.t. (2) holds} \right\}.$$

To get superhedging duality, the pricing measures should be??

$$\label{eq:product} \begin{array}{ll} ``\mathbb{P}'' & \Longrightarrow & \mathcal{Q}(\mathbb{P}) = \{\mathbb{Q} \mbox{ mart. measure} : \mathbb{Q} \ll \mathbb{P} \} \\ `` & " & \Longrightarrow & \mathcal{M} := \{\mathbb{Q} \mbox{ mart. measure} : \mathbb{Q} \mbox{ admits marginals } \mu_t, \forall t \}. \end{array}$$

DUALITY AND ARBITRAGE

Beiglböck, Henry-Labordère & Penkner (2013) use theory of "optimal transport" to prove the **superhedging duality**

 $D(\Phi) = \sup_{\mathbb{Q} \in \mathcal{M}} \mathbb{E}^{\mathbb{Q}}[\Phi], \quad \mathcal{M} = \{\mathbb{Q} \in \Pi : \mathbb{Q} \text{ is a mart. measure}\}.$

Acciaio, Beiglböck, Penkner & Schachermayer (2013) prove a **model-independent version of FTAP**

There is no model-independent arbitrage $\iff \mathcal{M} \neq \emptyset$

Model-independent Arbitrage

There is model-independent arbitrage if $\exists \Delta \in \mathcal{H}$ and $u \in \mathcal{U}$ with $\sum_{t=1}^{T} \int u_t d\mu_t = 0$ s.t.

$$\sum_{t=1}^{T} u_t(x_t) + (\Delta \cdot x)_T > 0, \quad \forall x \in \mathbb{R}_+^T.$$

What if: trading strategies are subject to constraints?

Semi-static superhedging under portfolio constraints

$$D(\Phi) := \inf \left\{ \sum_{t=1}^{T} \int_{\mathbb{R}_{+}} u_{t} d\mu_{t} : u \in \mathcal{U} \text{ and } \exists \Delta \in \mathcal{S} \text{ s.t. (2) holds} \right\},$$

where \mathcal{S} is a subset of \mathcal{H} .

Our goals:

- $\bullet\,$ model-independent duality for superhedging with $\Delta\in\mathcal{S}.$
- model-independent FTAP with $\Delta \in \mathcal{S}$.
- Examples and extensions

DEFINITION

 $\ensuremath{\mathcal{S}}$ is a collection of trading strategies such that

- $(I) \ 0 \in \mathcal{S}.$
- (II) [adapted convexity] For any $\Delta, \Delta' \in S$ and any adapted process h with $h_t \in [0, 1]$ for all $t = 0, \dots, T 1$,

$$h_t\Delta_t + (1-h_t)\Delta_t' \in \mathcal{S}.$$

(III) ... (TBA)

- (ii) is borrowed from Föllmer & Schied (2004).
- This already covers convex Delta constraints (and more...)

Introduced in Föllmer & Kramkov (1997), **upper variation process** was used to get some **supermartingale** property under portfolio constraints.

(DISCRETE) UPPER VARIATION PROCESS

For $\mathbb{Q} \in \Pi$, the upper variation process $A^{\mathbb{Q}}$ is defined by

$$egin{aligned} &\mathcal{A}_0^\mathbb{Q} := 0, \ &\mathcal{A}_{t+1}^\mathbb{Q} - \mathcal{A}_t^\mathbb{Q} := \mathop{\mathrm{ess\ sup}}_{\Delta \in \mathcal{S}} \mathbb{Q}\left\{\Delta_t(\mathbb{E}^\mathbb{Q}[S_{t+1} \mid \mathcal{F}_t] - S_t)
ight\}, \quad t > 0 \ &= \mathop{\mathrm{ess\ sup}}_{\Delta \in \mathcal{S}^\infty} \left\{\Delta_t(\mathbb{E}^\mathbb{Q}[S_{t+1} \mid \mathcal{F}_t] - S_t)
ight\}, \quad t > 0 \end{aligned}$$

where

$$\mathcal{S}^{\infty} := \{\Delta \in \mathcal{S} : \Delta_t \text{ is bounded}, \forall t\}.$$

BASIC PROPERTY OF $A^{\mathbb{Q}}$

Lemma 1

For any $\mathbb{Q} \in \Pi$,

$$\mathbb{E}^{\mathbb{Q}}[A_{\mathcal{T}}^{\mathbb{Q}}] = \sup_{\Delta \in \mathcal{S}^{\infty}} \mathbb{E}^{\mathbb{Q}}[(\Delta \cdot S)_{\mathcal{T}}].$$
(3)

Idea: By the definition of $A_T^{\mathbb{Q}}$,

$$\mathbb{E}^{\mathbb{Q}}[A_{T}^{\mathbb{Q}}] = \sum_{t=1}^{T} \mathbb{E}^{\mathbb{Q}} \left[\operatorname{ess\,sup}_{\Delta \in \mathcal{S}^{\infty}} \mathbb{E}^{\mathbb{Q}}[\Delta_{t}(S_{t+1} - S_{t}) \mid \mathcal{F}_{t}] \right].$$

For each t > 0, thanks to adapted convexity, the collection $\{\mathbb{E}^{\mathbb{Q}}[\Delta_t(S_{t+1} - S_t) \mid \mathcal{F}_t] : \Delta \in S^{\infty}\}$ is directed upward. Thus,

$$\mathbb{E}^{\mathbb{Q}}[A^{\mathbb{Q}}_{\mathcal{T}}] = \sum_{t=1}^{\mathcal{T}} \sup_{\Delta \in \mathcal{S}^{\infty}} \mathbb{E}^{\mathbb{Q}}[\Delta_{t-1}(S_t - S_{t-1})] = \sup_{\Delta \in \mathcal{S}^{\infty}} \mathbb{E}^{\mathbb{Q}}[(\Delta \cdot S)_{\mathcal{T}}],$$

where the last equality follows from adapted convexity.

Supermartingale Property from $A^{\mathbb{Q}}$

DEFINITION

Let $\mathcal{Q}_{\mathcal{S}}$ be the collection of $\mathbb{Q} \in \Pi$ such that

$$\mathbb{E}^{\mathbb{Q}}[A_{T}^{\mathbb{Q}}] = \sup_{\Delta \in S^{\infty}} \mathbb{E}^{\mathbb{Q}}[(\Delta \cdot S)_{T}] < \infty.$$

Lemma 2

Given $\Delta \in S$, $(\Delta \cdot S)_t - A_t^{\mathbb{Q}}$ is a local supermartingale, $\forall \mathbb{Q} \in \mathcal{Q}_S$.

Idea: By the definition of $A_T^{\mathbb{Q}}$,

$$\mathbb{E}^{\mathbb{Q}}[(\Delta \cdot S)_{t+1} - (\Delta \cdot S)_t \mid \mathcal{F}_t] = \Delta_t \cdot (\mathbb{E}^{\mathbb{Q}}[S_{t+1} \mid \mathcal{F}_t] - S_t) \leq A_{t+1}^{\mathbb{Q}} - A_t^{\mathbb{Q}},$$

i.e.
$$\mathbb{E}^{\mathbb{Q}}[(\Delta \cdot S)_{t+1} - A_{t+1}^{\mathbb{Q}} \mid \mathcal{F}_t] \leq (\Delta \cdot S)_t - A_t^{\mathbb{Q}}.$$
 (4)

But since $(\Delta \cdot S)_t$ may not lie in $L^1(\mathbb{Q}) \Rightarrow$ **local** supermartingality.

Supermartingale Property from $A^{\mathbb{Q}}$

Lemma 3

Fix $\Delta \in S$ and $\mathbb{Q} \in \mathcal{Q}_S$. If $(\Delta \cdot S)_T \ge \varphi$ with φ \mathbb{Q} -integrable, then

$$(\Delta \cdot S)_t - A_t^{\mathbb{Q}} \ge \mathbb{E}^{\mathbb{Q}}[\varphi - A_T^{\mathbb{Q}} \mid \mathcal{F}_t] \quad \mathbb{Q}\text{-a.s.}, \quad \forall t.$$
(5)

This implies $(\Delta \cdot S)_t - A_t^{\mathbb{Q}}$ is a true \mathbb{Q} -supermartingale.

Idea: Prove this by induction. At time T, (5) trivially holds true as

$$(\Delta \cdot S)_{\mathcal{T}} - A_{\mathcal{T}}^{\mathbb{Q}} \ge \varphi - A_{\mathcal{T}}^{\mathbb{Q}}.$$
 (6)

Since $(\Delta \cdot S)_t - A_t^{\mathbb{Q}}$ is a local supermartingale, can use (6) to prove

$$(\Delta \cdot S)_{T-1} - A_{T-1}^{\mathbb{Q}} \geq \mathbb{E}^{\mathbb{Q}}[\varphi - A_T^{\mathbb{Q}} \mid \mathcal{F}_{T-1}].$$

WEAK DUALITY $P(\Phi) \leq D(\Phi)$

PROPOSITION 1

Suppose $\Phi : \mathbb{R}^{\mathcal{T}}_{+} \mapsto \mathbb{R}$ is measurable and $\exists K > 0$ s.t. $|\Phi(x_1, \cdots, x_{\mathcal{T}})| \leq K(1 + x_1 + \cdots + x_{\mathcal{T}}), \ \forall x \in \mathbb{R}^{\mathcal{T}}_{+}.$ (7)

Then,

$$P(\Phi) := \sup_{\mathbb{Q} \in \mathcal{Q}_{S}} \mathbb{E}^{\mathbb{Q}}[\Phi - A_{T}^{\mathbb{Q}}] \le D(\Phi).$$
(8)

Idea: Take $u \in \mathcal{U}$ and $\Delta \in S$ s.t. $\sum_{t=1}^{T} u_t(x_t) + (\Delta \cdot x)_T \ge \Phi$. For any $\mathbb{Q} \in \mathcal{Q}_S$, note that

$$(\Delta \cdot S)_T \ge \varphi(x) := \Phi(x) - \sum_{t=1,\cdots,T} u_t(x_t),$$

and φ is Q-integrable thanks to (7). Thus, Lemma 3 gives

$$\mathbb{E}^{\mathbb{Q}}[\Phi - A_T^{\mathbb{Q}}] \leq \mathbb{E}^{\mathbb{Q}}\left[\sum_{t=1}^T u_t(S_t) + (\Delta \cdot S)_T - A_T^{\mathbb{Q}}\right] \leq \sum_{t=1}^T \int_{\mathbb{R}_+} u_t d\mu_t.$$

Proving $P(\Phi) \ge D(\Phi)$

$$D(\Phi) \leq \inf\left\{\sum_{t=1}^{T} \int_{\mathbb{R}_{+}} u_{t} d\mu_{t} : \exists \Delta \in \mathcal{S}^{\infty}_{c} \text{ s.t. } \sum_{t} u_{t} + (\Delta \cdot x)_{T} \geq \Phi(x)\right\}$$
$$= \inf_{\Delta \in \mathcal{S}^{\infty}_{c}} \inf\left\{\sum_{t=1}^{T} \int u_{t} d\mu_{t} : \sum_{t=1}^{T} u_{t}(x_{t}) \geq \Phi(x) - (\Delta \cdot x)_{T}\right\}$$

Monge-Kantorovich Duality

Let $\varphi : \mathbb{R}_+^T \mapsto \mathbb{R}$ be upper semi-continuous and $\exists K > 0$ such that $|\varphi(x_1, \cdots, x_T)| \leq K(1 + x_1 + \cdots + x_T), \ \forall x \in \mathbb{R}_+^T.$

Then

$$\sup_{\mathbb{Q}\in\Pi} \mathbb{E}^{\mathbb{Q}}[\varphi] = \inf\left\{\sum_{t=1}^{T} \int u_t d\mu_t : u_1(x_1) + \dots + u_T(x_T) \ge \varphi(x)\right\}.$$

PROVING $P(\Phi) \ge D(\Phi)$

$$\implies \quad D(\Phi) \leq \inf_{\Delta \in \mathcal{S}^\infty_c} \sup_{\mathbb{Q} \in \Pi} \mathbb{E}^\mathbb{Q}[\Phi(x) - (\Delta \cdot x)_T]$$

MINIMAX THEOREM (SION)

Let X be a compact convex subset of a vector space, Y be a convex subset of a vector space, and $f : X \times Y \mapsto \mathbb{R}$ satisfy

(I) Given
$$x \in X$$
, $y \mapsto f(x, y)$ is convex on Y.

(II) Given $y \in Y$, $x \mapsto f(x, y)$ is upper semi-continuous and concave on X.

Then,

$$\inf_{y\in Y} \sup_{x\in X} f(x,y) = \sup_{x\in X} \inf_{y\in Y} f(x,y).$$

Taking $X = \Pi$, $Y = S_c^{\infty}$ and $f(\mathbb{Q}, \Delta) = \mathbb{E}^{\mathbb{Q}}[\Phi(x) - (\Delta \cdot x)_T]$,

$$D(\Phi) \leq \sup_{\mathbb{Q}\in\Pi} \inf_{\Delta\in\mathcal{S}_c^{\infty}} \mathbb{E}^{\mathbb{Q}}[\Phi(x) - (\Delta \cdot x)_T]$$

(assuming Φ is u.s.c.)

PROVING $P(\Phi) \ge D(\Phi)$

$$\begin{array}{l} \Longrightarrow \quad D(\Phi) \leq \sup_{\mathbb{Q}\in\Pi} \left\{ \mathbb{E}^{\mathbb{Q}}[\Phi] - \sup_{\Delta\in\mathcal{S}_{c}^{\infty}} \mathbb{E}^{\mathbb{Q}}[(\Delta\cdot x)_{T}] \right\} \\ \\ = \sup_{\mathbb{Q}\in\Pi} \left\{ \mathbb{E}^{\mathbb{Q}}[\Phi] - \sup_{\Delta\in\mathcal{S}^{\infty}} \mathbb{E}^{\mathbb{Q}}[(\Delta\cdot S)_{T}] \right\} \\ \\ = \sup_{\mathbb{Q}\in\Pi} \left\{ \mathbb{E}^{\mathbb{Q}}[\Phi] - \mathbb{E}^{\mathbb{Q}}[A_{T}^{\mathbb{Q}}] \right\} \\ \\ = \sup_{\mathbb{Q}\in\mathcal{Q}_{\mathcal{S}}} \left\{ \mathbb{E}^{\mathbb{Q}}[\Phi] - \mathbb{E}^{\mathbb{Q}}[A_{T}^{\mathbb{Q}}] \right\} = P(\Phi), \end{array}$$

Q: how can we guarantee that

$$\sup_{\Delta \in \mathcal{S}^{\infty}} \mathbb{E}^{\mathbb{Q}}[(\Delta \cdot x)_{\mathcal{T}}] = \sup_{\Delta \in \mathcal{S}^{\infty}_{c}} \mathbb{E}^{\mathbb{Q}}[(\Delta \cdot x)_{\mathcal{T}}] ?$$

The Constraint Set ${\mathcal S}$

Definition 1

 ${\cal S}$ is a collection of trading strategies such that $(I) \ \ 0 \in {\cal S}.$

(II) [adapted convexity] For any $\Delta, \Delta' \in S$ and any adapted process h with $h_t \in [0, 1]$ for all $t = 0, \dots, T - 1$,

$$h_t\Delta_t+(1-h_t)\Delta_t'\in\mathcal{S}.$$

(III) [continuous approximation] Given $\Delta \in S^{\infty}$, $\mathbb{Q} \in \Pi$, and $\varepsilon > 0$, \exists closed $D_{\varepsilon} \subseteq \mathbb{R}_{+}^{T}$ and $\Delta^{\varepsilon} \in S_{c}^{\infty}$ s.t. $\mathbb{Q}(D_{\varepsilon}) > 1 - \varepsilon$ and $\Delta_{t} = \Delta_{t}^{\varepsilon}$ on $D_{\varepsilon} \forall t$.

Lemma 4

Under Definition 1 (iii),

$$\sup_{\Delta \in \mathcal{S}^{\infty}} \mathbb{E}^{\mathbb{Q}}[(\Delta \cdot x)_{\mathcal{T}}] = \sup_{\Delta \in \mathcal{S}^{\infty}_{c}} \mathbb{E}^{\mathbb{Q}}[(\Delta \cdot x)_{\mathcal{T}}].$$

Model-independent Superhedging under Constraints 20 / 40

The Constraint Set ${\cal S}$

Definition 1 (iii) is not very restrictive, as it covers

Deterministic convex constraints: For each *t*, let K_t ⊆ ℝ be a closed convex set. Then

 $\mathcal{S} := \{ \Delta \in \mathcal{H} : \text{for each } t, \ \Delta_t(x) \in K_t \ \forall x \in \mathbb{R}^t_+ \}$

satisfies Definition 1 (iii), thanks to Lusin's theorem and continuous extension theorem.

Adapted convex constraints:

Let $\{K_t\}_{t=0}^T$ be an adapted set-valued process such that for each t, $K_t(x) = [m_t(x), M_t(x)] \ \forall x \in \mathbb{R}^t_+$. Then

 $\mathcal{S} := \{ \Delta \in \mathcal{H} : \text{for each } t, \ \Delta_t(x) \in K_t(x) \ \forall x \in \mathbb{R}^t_+ \}.$

satisfies Definition 1 (iii), if m_t and M_t are continuous [thanks to **continuous selection** theory in Michael (1956) and Brown (1989)].

THE DUALITY

Suppose $\Phi : \mathbb{R}^{\mathcal{T}}_+ \mapsto \mathbb{R}$ is upper semi-continuous and $\exists K > 0$ s.t.

$$|\Phi(x_1,\cdots,x_T)| \leq K(1+x_1+\cdots+x_T), \quad \forall x \in \mathbb{R}^T_+.$$
 (9)

Then

$$P(\Phi) := \sup_{\mathbb{Q}\in \mathcal{Q}_S} \mathbb{E}^{\mathbb{Q}}[\Phi - A_T^{\mathbb{Q}}] = D(\Phi).$$

If
$$\mathcal{Q}_{\mathcal{S}} \neq \emptyset$$
, then $\exists \mathbb{Q}^* \in \mathcal{Q}_{\mathcal{S}}$ s.t. $P(\Phi) = \mathbb{E}^{\mathbb{Q}^*}[\Phi - A_T^{\mathbb{Q}^*}]$.

CONNECTION TO CONVEX RISK MEASURES

Consider

$$\mathcal{X} := \{ \Phi : \mathbb{R}_+^T \mapsto \mathbb{R} : \Phi \text{ satisfies (9) [linear growth]} \}.$$

CONVEX RISK MEASURE

 $\rho: \mathcal{X} \mapsto \mathbb{R}$ is called a **convex risk measure** if for all $\Phi, \Phi' \in \mathcal{X}$,

- [Monotonicity] If $\Phi \leq \Phi'$, then $\rho(\Phi) \geq \rho(\Phi')$.
- [Translation Invariance] If $m \in \mathbb{R}$, then $\rho(\Phi + m) = \rho(\Phi) m$.
- [Convexity] If $0 \le \lambda \le 1$, then

$$ho(\lambda\Phi+(1-\lambda)\Phi')\leq\lambda
ho(\Phi)+(1-\lambda)
ho(\Phi').$$

Let $\rho_{\mathcal{S}}: \mathcal{X} \mapsto \mathbb{R}$ be defined by

$$\rho_{\mathcal{S}}(\Phi) := D(-\Phi).$$

Connection to Convex Risk Measures

PROPOSITION

Suppose $Q_S \neq \emptyset$. Then, $\rho_S := D(-\Phi)$ is a convex risk measure, and it admits the dual formulation

$$\rho_{\mathcal{S}}(\Phi) = \sup_{\mathbb{Q}\in\Pi} \left(\mathbb{E}^{\mathbb{Q}}[-\Phi] - \alpha^*(\mathbb{Q}) \right),$$
(10)

where the penalty function α^{\ast} is given by

$$\alpha^*(\mathbb{Q}) := \begin{cases} \mathbb{E}^{\mathbb{Q}}[A_T^{\mathbb{Q}}] & \text{ if } \mathbb{Q} \in \mathcal{Q}_S, \\ \infty, & \text{ otherwise.} \end{cases}$$

This generalizes Föllmer & Schied (2002) to a model-independent framework. Moreover,

- we cover unbounded financial positions (with linear growth).
- our assumption " $Q_S \neq \emptyset$ " is weaker than "no arbitrage".

Arbitrage under Constraints

There is **model-independent arbitrage** under constraint S, if $\exists u \in U$ with $\sum_{t=1}^{T} \int u_t d\mu_t = 0$ and $\Delta \in S$ s.t.

$$\sum_{t=1}^{T} u_t(x_t) + (\Delta \cdot x)_T > 0, \quad \forall \ x \in \mathbb{R}_+^T.$$

Properties of $\mathcal{P}_{\mathcal{S}}$

Consider the set of probability measures

 $\mathcal{P}_{\mathcal{S}} := \{\mathbb{Q} \in \Pi : (\Delta \cdot \mathcal{S})_t \text{ is a local } \mathbb{Q}\text{-supermartingale}, \ \forall \Delta \in \mathcal{S} \}.$

Lemma 5

Fix
$$\mathbb{Q} \in \Pi$$
. Then, $\mathbb{Q} \in \mathcal{P}_{\mathcal{S}} \iff A^{\mathbb{Q}}_{\mathcal{T}} = 0$ \mathbb{Q} -a.s.

Idea: (\Leftarrow) Obvious, as $(\Delta \cdot S)_t - A_t^{\mathbb{Q}}$ is a local supermartingale.

 (\Rightarrow) Given $\Delta \in S^{\infty}$, $(\Delta \cdot S)_t$ is a local Q-supermartingale. Boundedness of Δ implies $(\Delta \cdot S)^-$ is Q-integrable, and thus $(\Delta \cdot S)_t$ is a true supermartingale. Then,

$$\mathbb{E}^{\mathbb{Q}}[A_{T}^{\mathbb{Q}}] = \sup_{\Delta \in \mathcal{S}^{\infty}} \mathbb{E}^{\mathbb{Q}}[(\Delta \cdot S)_{T}] = 0.$$

Consequence:

- $\mathcal{P}_{\mathcal{S}} \subseteq \mathcal{Q}_{\mathcal{S}}$.
- If $\mathcal{P}_{\mathcal{S}} = \emptyset$, $\mathbb{E}^{\mathbb{Q}}[A_T^{\mathbb{Q}}] > 0$ for all $\mathbb{Q} \in \Pi \implies \inf_{\mathbb{Q}} \mathbb{E}^{\mathbb{Q}}[A_T^{\mathbb{Q}}] > 0$?

Properties of $\mathcal{P}_{\mathcal{S}}$

Lemma 6

If
$$\mathcal{P}_{\mathcal{S}} = \emptyset$$
, then $\inf_{\mathbb{Q} \in \Pi} \mathbb{E}^{\mathbb{Q}}[A_T^{\mathbb{Q}}] > 0$.

Idea: Suppose $\inf_{\mathbb{Q}\in\Pi} \mathbb{E}^{\mathbb{Q}}[A_T^{\mathbb{Q}}] = 0$. Then, $\forall \varepsilon > 0, \exists \mathbb{Q}_{\varepsilon} \in \Pi \text{ s.t.}$ $0 \leq \mathbb{E}^{\mathbb{Q}_{\varepsilon}}[A_T^{\mathbb{Q}_{\varepsilon}}] < \varepsilon$. Since \mathbb{Q}_{ε} converges weakly to some $\mathbb{Q}^* \in \Pi$ (recall that Π is weakly compact),

$$0 = \lim_{\varepsilon \to 0} \mathbb{E}^{\mathbb{Q}_{\varepsilon}}[A_{T}^{\mathbb{Q}_{\varepsilon}}] = \lim_{\varepsilon \to 0} \sup_{\Delta \in S_{c}^{\infty}} \mathbb{E}^{\mathbb{Q}_{\varepsilon}}[(\Delta \cdot S)_{T}]$$

$$\geq \sup_{\Delta \in S_{c}^{\infty}} \lim_{\varepsilon \to 0} \mathbb{E}^{\mathbb{Q}_{\varepsilon}}[(\Delta \cdot S)_{T}] = \sup_{\Delta \in S_{c}^{\infty}} \mathbb{E}^{\mathbb{Q}^{*}}[(\Delta \cdot S)_{T}] = \mathbb{E}^{\mathbb{Q}^{*}}[A_{T}^{\mathbb{Q}^{*}}].$$

Thus, $A_T^{\mathbb{Q}^*} = 0 \ \mathbb{Q}^*$ -a.s. By Lemma 5, $\mathbb{Q}^* \in \mathcal{P}_S$, a contradiction.

Note: for "=", since $(\Delta \cdot S)_T$ may not be bounded, need additional estimates from Villani (2009).

FTAP UNDER CONSTRAINTS

FTAP UNDER CONSTRAINTS

The following are equivalent.

(I) There is no model-independent arbitrage under constraint S. (II) $\mathcal{P}_S \neq \emptyset$.

Idea: [(ii) \Rightarrow (i)] Suppose there is model-independent arbitrage, i.e. $\exists u \in \mathcal{U}$ with $\sum_t \int u_t d\mu_t = 0$ and $\Delta \in S$ s.t.

$$\begin{split} \sum_{t=1}^{T} u_t(x_t) + (\Delta \cdot S)_T &> 0 \quad \forall x \in \mathbb{R}_+^T. \\ \implies \sum_{t=1}^{T} u_t(x_t) + (\Delta \cdot S)_T - A_T^{\mathbb{Q}} &> -A_T^{\mathbb{Q}} \quad \mathbb{Q}\text{-a.s.}, \quad \forall \mathbb{Q} \in \mathcal{Q}_S. \\ \implies 0 \geq \mathbb{E}^{\mathbb{Q}}[(\Delta \cdot S)_T - A_T^{\mathbb{Q}}] &> -\mathbb{E}^{\mathbb{Q}}[A_T^{\mathbb{Q}}], \quad \forall \mathbb{Q} \in \mathcal{Q}_S. \end{split}$$
Hence, $\mathbb{E}^{\mathbb{Q}}[A_T^{\mathbb{Q}}] > 0 \quad \forall \mathbb{Q} \in \mathcal{Q}_S \Rightarrow \mathbb{Q} \notin \mathcal{P}_S \quad \forall \mathbb{Q} \in \mathcal{Q}_S \Rightarrow \mathcal{P}_S = \emptyset. \end{split}$

FTAP UNDER CONSTRAINTS

 $[(i) \Rightarrow (ii)]$ Suppose $\mathcal{P}_{\mathcal{S}} = \emptyset.$ By Lemma 6,

$$\delta := \inf_{\mathbb{Q} \in \mathcal{Q}_{\mathcal{S}}} \mathbb{E}^{\mathbb{Q}}[A_{\mathcal{T}}^{\mathbb{Q}}] \ge \inf_{\mathbb{Q} \in \Pi} \mathbb{E}^{\mathbb{Q}}[A_{\mathcal{T}}^{\mathbb{Q}}] > 0.$$

Taking $\Phi \equiv 0$ in Superhedging Duality,

$$D(0) = \sup_{\mathbb{Q}\in \mathcal{Q}_{\mathcal{S}}} \mathbb{E}^{\mathbb{Q}}[-A_T^{\mathbb{Q}}] = -\delta.$$

This implies: can superhedge $\Phi \equiv 0$ with initial wealth $-\delta/2$, i.e. $\exists u \in \mathcal{U}$ with $\sum_{t=1}^{T} \int_{\mathbb{R}_{+}} u_t d\mu_t = -\delta/2$ and $\Delta \in S$ s.t.

$$\sum_{t=1}^{T} u_t(x_t) + (\Delta \cdot S)_T \ge 0 \quad \forall x \in \mathbb{R}_+^T.$$
$$\implies \sum_{t=1}^{T} \left(u_t(x_t) - \int_{\mathbb{R}_+} u_t d\mu_t \right) + (\Delta \cdot S)_T \ge 0 + \frac{\delta}{2} > 0 \quad \forall x \in \mathbb{R}_+^T.$$

This is already arbitrage with $u_t'(z) := u_t(z) - \int_{\mathbb{R}_+} u_t d\mu_t$ and Δ .

Superhedging and risk-measuring are meaningful as long as

 $\mathcal{Q}_{\mathcal{S}} \neq \emptyset$,

which is *weaker than* the no-arbitrage condition $\mathcal{P}_{\mathcal{S}} \neq \emptyset$.

Model-independent unbounded profit

There is **model-independent unbounded profit** under constraint S, if $\forall a \in \mathbb{R}_+$, $\exists u \in U$ with $\sum_{t=1}^T \int u_t d\mu_t = 0$ and $\Delta \in S$ s.t. $\sum_{t=1}^T u_t(x_t) + (\Delta \cdot x)_T > a, \quad \forall x \in \mathbb{R}_+^T.$ (11)

FTAP FOR UNBOUNDED PROFIT

The following are equivalent.

 $\begin{array}{ll} (I) & \mbox{There is no model-independent unbounded profit under \mathcal{S}.} \\ (II) & \mathcal{Q}_{\mathcal{S}} \neq \emptyset. \end{array}$

Reduction to No-constraint Case

If **no constraint**, i.e. S = H, can show that

$$\mathcal{M}=\mathcal{P}_{\mathcal{S}}=\mathcal{Q}_{\mathcal{S}}.$$

SUPERHEDEING DUALITY

Suppose S = H. Let Φ be u.s.c. and has linear growth. Then

$$D(\Phi) = \sup_{\mathbb{Q}\in\mathcal{Q}_{\mathcal{S}}} \mathbb{E}^{\mathbb{Q}}[\Phi - A_{\mathcal{T}}^{\mathbb{Q}}] = \sup_{\mathbb{Q}\in\mathcal{M}} \mathbb{E}^{\mathbb{Q}}[\Phi].$$

This recovers the duality in Beiglböck et al. (2013).

Reduction to No-constraint Case

FTAP

The following are equivalent:

 $\begin{array}{ll} {\rm (I)} & \mbox{There is no model-independent arbitrage for } \Delta \in \mathcal{H}. \\ {\rm (II)} & \mbox{$\mathcal{M} \neq \emptyset$}. \end{array}$

This recovers FTAP in Acciaio et al. (2013).

In Acciaio et al. (2013),

- tradable options can be very general.
- use functional analysis (Stone-Cech compactification)
- FTAP \Rightarrow Superhedging duality.

In our paper,

- tradable options: vanilla calls with all maturities and strikes.
- use duality from optimal transport, weak compactness.
- Superhedging duality \Rightarrow FTAP.

Shortselling constraint: Given $c \in \mathbb{R}_+$, consider

$$\mathcal{S} := \{ \Delta \in \mathcal{H} : \Delta_t \ge -c, \ \forall t \}.$$

We have $\mathcal{P}_{S} = \mathcal{Q}_{S} = \{\mathbb{Q} \in \Pi : S \text{ is a } \mathbb{Q}\text{-supermartingale}\}$ no arbitrage \iff no unbounded profit.

Relative-drawdown constraint: Consider the running maximum

$$x_t^* := \max\{x_0, x_1, \cdots, x_t\}.$$

For any continuous functions a and b, introduce

 $\mathcal{S} := \{\Delta \in \mathcal{H} : a(S_t/S_t^*) \leq \Delta_t \leq b(S_t/S_t^*), \ \forall t\}.$

We have $Q_{\mathcal{S}} = \Pi$. \implies no unbounded profit under \mathcal{S}

Given $\Gamma > 0$, consider

 $\mathcal{S}_{\Gamma}:=\{\Delta\in\mathcal{H}: |\Delta_t-\Delta_{t-1}|\leq \Gamma, \ \forall t\}, \ \text{ where } \Delta_{-1}\equiv 0.$

Note:

• S_{Γ} does NOT satisfy [adapted convexity].

•
$$\Delta \equiv 0$$
, $\Delta' \equiv 2\Gamma \in S_{\Gamma}$, but $\tilde{\Delta}_s := 0 \ \mathbb{1}_{\{s \leq 2\}} + 2\Gamma \ \mathbb{1}_{\{s > 2\}} \notin S_{\Gamma}$.

• Every $\Delta \in \mathcal{S}_{\Gamma}$ is **bounded**.

Using this **boundedness**, can show that superhedging duality and FTAP still hold true.

PROPOSITION

$$\mathcal{Q}_{\mathcal{S}_{\Gamma}} = \Pi \neq \emptyset$$
 and $\mathcal{P}_{\mathcal{S}_{\Gamma}} = \mathcal{M}$.

FUTURE WORK

- Can we take into account other type of frictions?
 - transaction costs; Dolinsky & Soner (2013).
 - find a **unified approach** to deal with different kinds of frictions.
- Can we drop the semi-continuity condition?
 - Do not need this in classical case, nor in the **model uncertainty** framework by Bouchard & Nutz (2013).
 - quantile hedging, hedging under controlled loss, ...

THANK YOU very much for your attention! Q & A

- Nathias and Beiglböck, Mathias and PENKNER, FRIEDRICH AND SCHACHERMAYER, WALTER, A model-free version of the fundamental theorem of asset pricing and the super-replication theorem, to appear in Mathematical Finance, arXiv preprint arXiv:1301.5568 (2013).
- 🦫 Beiglböck, Mathias and Henry-Labordère, Pierre AND PENKNER, FRIEDRICH, Model-independent bounds for option prices—a mass transport approach, Finance Stoch., 17 (2013), pp. 477–501.

No. Bertsimas, Dimitris and Popescu, Ioana, *On the* relation between option and stock prices: a convex optimization approach, Oper. Res., 50 (2002), pp. 358–374.

References II

- BROWN, A. L., Set valued mappings, continuous selections, and metric projections, Journal of Approximation Theory, 57 (1989), pp. 48-68.
- Note: The Way and Hobson, David and Rogers, L. C. G., Robust hedging of barrier options, Math. Finance, 11 (2001), pp. 285-314.
- New York, Bruno and Nutz, Marcel, Arbitrage and Duality in Nondominated Discrete-Time Models, to appear in the Annals of Applied Probability, (2013).

- NAN DOLINSKY AND H.METE SONER, Robust Hedging with Proportional Transaction Costs, to appear in Finance Stochastics, (2013).
- 🌑 Dolinsky, Yan and Soner, H. Mete, Robust hedging and martingale optimal transport in continuous time, to appear in Probability Theory and Related Fields, (2013), available at https://sites.google.com/site/dolinskyyan/research
- DUPIRE, BRUNO, Pricing with a smile, Risk, 7 (1994), pp. 18-20.
- EÖLLMER, H. AND KRAMKOV, D., Optional decompositions under constraints, Probab. Theory Related Fields, 109 (1997), pp. 1–25.

References IV

- 💊 Föllmer, Hans and Schied, Alexander, *Convex* measures of risk and trading constraints, Finance Stoch., 6 (2002), pp. 429–447.
- No. Föllmer, H. and Schied, A., Stochastic finance: An introduction in discrete time, vol. 27 de Gruyter Studies in Mathematics, Walter de Gruyter & Co., Berlin, extended ed., 2004
- BOBSON, DAVID, Robust hedging of the lookback option, Finance & Stochastics, 2 (1998), pp. 329–347.
- Not the second term of TAI-HO, Static-arbitrage upper bounds for the prices of basket options, Probab. Quant. Finance, 5 (2005), pp. 329-342.

KELLERER, HANS G., Duality theorems for marginal problems, Z. Wahrsch. Verw. Gebiete, 67 (1984), pp. 399-432.

- NICHAEL, ERNEST, Continuous selections. I, Annals of Mathematics. Second Series, 63 (2013), pp. 361–382.
- NILLANI, CÉDRIC, Optimal transport, old and new, vol. 338 📎 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 2009.