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The Superhedging Problem

Consider a market with a stock S .

The Superhedging Problem

Given a (path-dependent) payoff function Φ, what is the minimal
initial capital needed to outperform the claim Φ({St}0≤t≤T )?

1. Formulate the problem: Take a probability space (Ω,F ,P)
which supports the process S , and consider

D(Φ) := inf{a ∈ R : ∃∆ ∈ H s.t. a + (∆ · S)T ≥ Φ P-a.s.}.

H := {admissible trading strategies}.
(∆ · S)T :=

∫ T

0
∆tdSt .

2. Risk-neutral pricing: Find probabilities Q� P s.t. S is a
Q-martingale. Then,

D(Φ) = sup
Q∈Q(P)

EQ[Φ], (1)

where Q(P) := {Q : Q� P is a martingale measure}.
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Some critiques on Q(P)

Dupire (1994): liquidly traded options (e.g. vanilla calls) should
be viewed as primary assets, with prices given exogenously.

Let C (t,K ) denote the market price of a vanilla call with
maturity t > 0 and strike K > 0.

For any t > 0 and any pricing measure Q,∫
R+

(St − K )+dQ = C (t,K ), ∀K ≥ 0.

This already specifies the distribution of St under Q.

µt(K ) = 1− lim
ε→0

1

ε
(C (t,K )− C (t,K + ε)) .

Conclusion: consider pricing measures Q under which

St admits the distribution µt for all t ≥ 0.
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Model-independent Superhedging

Difficult to find an appropriate physical measure P to start with.
⇒ Can we do superhedging without any a priori given P?

Model-independent Superhedging

Can my terminal wealth ≥ a claim Φ,

no matter which probability P eventually materializes?

Pioneering work: Hobson (1998).

Extensions: Brown, Hobson & Rogers (2001), Bertsimas &
Popescu (2002), Hobson, Laurence & Wang (2005), Cox &
Ob lój (2011), Dolinsky & Soner (2013),...

Most of the papers above

focus on specific contingent claims
(e.g. barrier, lookback, basket, double no-touch options).

consider market prices of vanilla calls with maturities at T .
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Our Framework

We start with the set-up in Beiglböck, Henry-Labordère &
Penkner (2013).

Consider a discrete-time market with finite horizon T ∈ N.

Ω := RT
+.

The stock S is taken as the coordinate mapping process, i.e.

St(x) = xt for all x = (x1, · · · , xT ) ∈ RT
+.

F = {Ft}Tt=1 is the natural filtration generated by S .

Market prices C (t,K ) of vanilla calls for all maturities
t = 1, · · · ,T and strikes K ≥ 0.
⇒ for each t, µt (the distribution of St) is specified.
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Fixed Marginals

We consider

Π := {Q probability on RT
+ : Q admits marginals µ1, · · · , µT}.

This collection is non-empty and weakly compact (Villani
(2009), Kellerer (1984)).

Note that S1, S2, · · · ,ST are Q-integrable, for any Q ∈ Π.

EQ[St ] =

∫
x dµt(x) = C (t, 0).
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Our Framework

Trading strategies in “stock”:

∆ = {∆t}T−1
t=0 is a trading strategy if

∆t(x1, · · · , xt) is Borel measurable, for all t.

The stochastic integral is defined as

(∆ · x)t :=
t−1∑
i=0

∆i (x1, · · · , xi )(xi+1 − xi ), for t = 1, · · · ,T .

We denote by H the set of all trading strategies.

Static positions in “cash and vanilla calls”:

u = {ut}Tt=1 is a static position if each ut is of the form

ϕ(x) = a +
n∑

i=1

bi (x − Ki )
+,

for some a ∈ R, n ∈ N, bi ∈ R and Ki ≥ 0.

We denote by U the set of all static positions.
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Semi-static Superhedging

Given a payoff Φ, want to find ∆ ∈ H and u ∈ U such that

T∑
t=1

ut(xt) + (∆ · x)T ≥ Φ(x), ∀x = (x1, · · · , xT ) ∈ RT
+. (2)

Model-independent superhedging price

D(Φ) := inf

{
T∑
t=1

∫
R+

utdµt : u ∈ U and ∃∆ ∈ H s.t. (2) holds

}
.

To get superhedging duality, the pricing measures should be??

“P” =⇒ Q(P) = {Q mart. measure : Q� P}
“ ” =⇒ M := {Q mart. measure : Q admits marginals µt ,∀t}.
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Duality and Arbitrage

Beiglböck, Henry-Labordère & Penkner (2013) use theory of
“optimal transport” to prove the superhedging duality

D(Φ) = sup
Q∈M

EQ[Φ], M = {Q ∈ Π : Q is a mart. measure}.

Acciaio, Beiglböck, Penkner & Schachermayer (2013) prove a
model-independent version of FTAP

There is no model-independent arbitrage ⇐⇒ M 6= ∅

Model-independent Arbitrage

There is model-independent arbitrage if ∃∆ ∈ H and u ∈ U with∑T
t=1

∫
utdµt = 0 s.t.

T∑
t=1

ut(xt) + (∆ · x)T > 0, ∀x ∈ RT
+.
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Our Goals

What if: trading strategies are subject to constraints?

Semi-static superhedging under portfolio constraints

D(Φ) := inf

{
T∑
t=1

∫
R+

utdµt : u ∈ U and ∃ ∆ ∈ S s.t. (2) holds

}
,

where S is a subset of H.

Our goals:

model-independent duality for superhedging with ∆ ∈ S.

model-independent FTAP with ∆ ∈ S.

Examples and extensions
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The Constraint Set S

Definition

S is a collection of trading strategies such that

(i) 0 ∈ S.

(ii) [adapted convexity] For any ∆,∆′ ∈ S and any adapted
process h with ht ∈ [0, 1] for all t = 0, · · · ,T − 1,

ht∆t + (1− ht)∆′t ∈ S.

(iii) ... (TBA)

(ii) is borrowed from Föllmer & Schied (2004).

This already covers convex Delta constraints (and more...)
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Upper Variation Process AQ

Introduced in Föllmer & Kramkov (1997), upper variation
process was used to get some supermartingale property under
portfolio constraints.

(Discrete) Upper Variation Process

For Q ∈ Π, the upper variation process AQ is defined by

AQ
0 := 0,

AQ
t+1 − AQ

t := ess supQ

∆∈S

{
∆t(EQ[St+1 | Ft ]− St)

}
, t > 0

= ess supQ

∆∈S∞

{
∆t(EQ[St+1 | Ft ]− St)

}
, t > 0

where
S∞ := {∆ ∈ S : ∆t is bounded, ∀t}.
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Basic Property of AQ

Lemma 1

For any Q ∈ Π,

EQ[AQ
T ] = sup

∆∈S∞
EQ[(∆ · S)T ]. (3)

Idea: By the definition of AQ
T ,

EQ[AQ
T ] =

T∑
t=1

EQ
[

ess supQ

∆∈S∞
EQ[∆t(St+1 − St) | Ft ]

]
.

For each t > 0, thanks to adapted convexity, the collection
{EQ[∆t(St+1 − St) | Ft ] : ∆ ∈ S∞} is directed upward. Thus,

EQ[AQ
T ] =

T∑
t=1

sup
∆∈S∞

EQ[∆t−1(St − St−1)]= sup
∆∈S∞

EQ[(∆ · S)T ],

where the last equality follows from adapted convexity.
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Supermartingale Property from AQ

Definition

Let QS be the collection of Q ∈ Π such that

EQ[AQ
T ] = sup

∆∈S∞
EQ[(∆ · S)T ] <∞.

Lemma 2

Given ∆ ∈ S, (∆ · S)t − AQ
t is a local supermartingale, ∀Q ∈ QS .

Idea: By the definition of AQ
T ,

EQ[(∆·S)t+1−(∆·S)t | Ft ] = ∆t ·(EQ[St+1 | Ft ]−St)≤ AQ
t+1−A

Q
t ,

i.e. EQ[(∆ · S)t+1 − AQ
t+1 | Ft ] ≤ (∆ · S)t − AQ

t . (4)

But since (∆ · S)t may not lie in L1(Q) ⇒ local supermartingality.
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Supermartingale Property from AQ

Lemma 3

Fix ∆ ∈ S and Q ∈ QS . If (∆ · S)T ≥ ϕ with ϕ Q-integrable, then

(∆ · S)t − AQ
t ≥ EQ[ϕ− AQ

T | Ft ] Q-a.s., ∀t. (5)

This implies (∆ · S)t − AQ
t is a true Q-supermartingale.

Idea: Prove this by induction. At time T , (5) trivially holds true as

(∆ · S)T − AQ
T ≥ ϕ− AQ

T . (6)

Since (∆ · S)t −AQ
t is a local supermartingale, can use (6) to prove

(∆ · S)T−1 − AQ
T−1 ≥ EQ[ϕ− AQ

T | FT−1].
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Weak duality P(Φ) ≤ D(Φ)

Proposition 1

Suppose Φ : RT
+ 7→ R is measurable and ∃K > 0 s.t.

|Φ(x1, · · · , xT )| ≤ K (1 + x1 + · · ·+ xT ), ∀x ∈ RT
+. (7)

Then,
P(Φ) := sup

Q∈QS
EQ[Φ− AQ

T ] ≤ D(Φ). (8)

Idea: Take u ∈ U and ∆ ∈ S s.t.
∑T

t=1 ut(xt) + (∆ · x)T ≥ Φ.
For any Q ∈ QS , note that

(∆ · S)T ≥ ϕ(x) := Φ(x)−
∑

t=1,··· ,T
ut(xt),

and ϕ is Q-integrable thanks to (7). Thus, Lemma 3 gives

EQ[Φ−AQ
T ] ≤ EQ

[
T∑
t=1

ut(St) + (∆ · S)T − AQ
T

]
≤

T∑
t=1

∫
R+

utdµt .
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Proving P(Φ) ≥ D(Φ)

D(Φ) ≤ inf

{
T∑
t=1

∫
R+

utdµt : ∃∆ ∈ S∞c s.t.
∑
t

ut + (∆ · x)T ≥ Φ(x)

}

= inf
∆∈S∞c

inf

{
T∑
t=1

∫
utdµt :

T∑
t=1

ut(xt) ≥ Φ(x)− (∆ · x)T

}

Monge-Kantorovich Duality

Let ϕ : RT
+ 7→ R be upper semi-continuous and ∃K > 0 such that

|ϕ(x1, · · · , xT )| ≤ K (1 + x1 + · · ·+ xT ), ∀x ∈ RT
+.

Then,

sup
Q∈Π

EQ[ϕ] = inf

{
T∑
t=1

∫
utdµt : u1(x1) + · · ·+ uT (xT ) ≥ ϕ(x)

}
.
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Proving P(Φ) ≥ D(Φ)

=⇒ D(Φ) ≤ inf
∆∈S∞c

sup
Q∈Π

EQ[Φ(x)− (∆ · x)T ]

Minimax Theorem (Sion)

Let X be a compact convex subset of a vector space, Y be a
convex subset of a vector space, and f : X × Y 7→ R satisfy

(i) Given x ∈ X , y 7→ f (x , y) is convex on Y .

(ii) Given y ∈ Y , x 7→ f (x , y) is upper semi-continuous and
concave on X .

Then,
inf
y∈Y

sup
x∈X

f (x , y) = sup
x∈X

inf
y∈Y

f (x , y).

Taking X = Π, Y = S∞c and f (Q,∆) = EQ[Φ(x)− (∆ · x)T ],

D(Φ) ≤ sup
Q∈Π

inf
∆∈S∞c

EQ[Φ(x)− (∆ · x)T ]

(assuming Φ is u.s.c.)
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Proving P(Φ) ≥ D(Φ)

=⇒ D(Φ) ≤ sup
Q∈Π

{
EQ[Φ]− sup

∆∈S∞c
EQ[(∆ · x)T ]

}

= sup
Q∈Π

{
EQ[Φ]− sup

∆∈S∞
EQ[(∆ · S)T ]

}
= sup

Q∈Π

{
EQ[Φ]− EQ[AQ

T ]
}

= sup
Q∈QS

{
EQ[Φ]− EQ[AQ

T ]
}

= P(Φ),

Q: how can we guarantee that

sup
∆∈S∞

EQ[(∆ · x)T ] = sup
∆∈S∞c

EQ[(∆ · x)T ] ?
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The Constraint Set S

Definition 1

S is a collection of trading strategies such that

(i) 0 ∈ S.

(ii) [adapted convexity] For any ∆,∆′ ∈ S and any adapted
process h with ht ∈ [0, 1] for all t = 0, · · · ,T − 1,

ht∆t + (1− ht)∆′t ∈ S.

(iii) [continuous approximation] Given ∆ ∈ S∞, Q ∈ Π, and
ε > 0, ∃ closed Dε ⊆ RT

+ and ∆ε ∈ S∞c s.t.

Q(Dε) > 1− ε and ∆t = ∆ε
t on Dε ∀t.

Lemma 4

Under Definition 1 (iii),

sup
∆∈S∞

EQ[(∆ · x)T ] = sup
∆∈S∞c

EQ[(∆ · x)T ].
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The Constraint Set S
Definition 1 (iii) is not very restrictive, as it covers

Deterministic convex constraints:
For each t, let Kt ⊆ R be a closed convex set. Then

S := {∆ ∈ H : for each t, ∆t(x) ∈ Kt ∀x ∈ Rt
+}

satisfies Definition 1 (iii), thanks to Lusin’s theorem and
continuous extension theorem.

Adapted convex constraints:
Let {Kt}Tt=0 be an adapted set-valued process such that for
each t, Kt(x) = [mt(x),Mt(x)] ∀x ∈ Rt

+. Then

S := {∆ ∈ H : for each t, ∆t(x) ∈ Kt(x) ∀x ∈ Rt
+}.

satisfies Definition 1 (iii), if mt and Mt are continuous [thanks
to continuous selection theory in Michael (1956) and Brown
(1989)].
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The Superhedging Duality

The Duality

Suppose Φ : RT
+ 7→ R is upper semi-continuous and ∃K > 0 s.t.

|Φ(x1, · · · , xT )| ≤ K (1 + x1 + · · ·+ xT ), ∀x ∈ RT
+. (9)

Then
P(Φ) := sup

Q∈QS
EQ[Φ− AQ

T ] = D(Φ).

If QS 6= ∅, then ∃ Q∗ ∈ QS s.t. P(Φ) = EQ∗ [Φ− AQ∗
T ].
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Connection to Convex Risk Measures

Consider

X := {Φ : RT
+ 7→ R : Φ satisfies (9) [linear growth]}.

Convex Risk Measure

ρ : X 7→ R is called a convex risk measure if for all Φ,Φ′ ∈ X ,

[Monotonicity] If Φ ≤ Φ′, then ρ(Φ) ≥ ρ(Φ′).

[Translation Invariance] If m ∈ R, then ρ(Φ + m) = ρ(Φ)−m.

[Convexity] If 0 ≤ λ ≤ 1, then

ρ(λΦ + (1− λ)Φ′) ≤ λρ(Φ) + (1− λ)ρ(Φ′).

Let ρS : X 7→ R be defined by

ρS(Φ) := D(−Φ).
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Connection to Convex Risk Measures

Proposition

Suppose QS 6= ∅. Then, ρS := D(−Φ) is a convex risk measure,
and it admits the dual formulation

ρS(Φ) = sup
Q∈Π

(
EQ[−Φ]− α∗(Q)

)
, (10)

where the penalty function α∗ is given by

α∗(Q) :=

{
EQ[AQ

T ] if Q ∈ QS ,
∞, otherwise.

This generalizes Föllmer & Schied (2002) to a model-independent
framework. Moreover,

we cover unbounded financial positions (with linear growth).

our assumption “QS 6= ∅” is weaker than “no arbitrage”.
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Model-independent Arbitrage

Arbitrage under Constraints

There is model-independent arbitrage under constraint S, if
∃ u ∈ U with

∑T
t=1

∫
utdµt = 0 and ∆ ∈ S s.t.

T∑
t=1

ut(xt) + (∆ · x)T > 0, ∀ x ∈ RT
+.
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Properties of PS
Consider the set of probability measures

PS := {Q ∈ Π : (∆ · S)t is a local Q-supermartingale, ∀∆ ∈ S}.

Lemma 5

Fix Q ∈ Π. Then, Q ∈ PS ⇐⇒ AQ
T = 0 Q-a.s.

Idea: (⇐) Obvious, as (∆ · S)t − AQ
t is a local supermartingale.

(⇒) Given ∆ ∈ S∞, (∆ · S)t is a local Q-supermartingale.
Boundedness of ∆ implies (∆ · S)− is Q-integrable, and thus
(∆ · S)t is a true supermartingale. Then,

EQ[AQ
T ] = sup

∆∈S∞
EQ[(∆ · S)T ] = 0.

Consequence:

PS ⊆ QS .

If PS = ∅, EQ[AQ
T ] > 0 for all Q ∈ Π ⇒ infQ EQ[AQ

T ] > 0 ?
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Properties of PS

Lemma 6

If PS = ∅, then inf
Q∈Π

EQ[AQ
T ] > 0.

Idea: Suppose infQ∈Π EQ[AQ
T ] = 0. Then, ∀ ε > 0, ∃ Qε ∈ Π s.t.

0 ≤ EQε [AQε

T ] < ε. Since Qε converges weakly to some Q∗ ∈ Π
(recall that Π is weakly compact),

0 = lim
ε→0

EQε [AQε

T ] = lim
ε→0

sup
∆∈S∞c

EQε [(∆ · S)T ]

≥ sup
∆∈S∞c

lim
ε→0

EQε [(∆ · S)T ] = sup
∆∈S∞c

EQ∗ [(∆ · S)T ] = EQ∗ [AQ∗
T ].

Thus, AQ∗
T = 0 Q∗-a.s. By Lemma 5, Q∗ ∈ PS , a contradiction.

Note: for “=”, since (∆ · S)T may not be bounded, need
additional estimates from Villani (2009).
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FTAP under Constraints

FTAP under Constraints

The following are equivalent.

(i) There is no model-independent arbitrage under constraint S.

(ii) PS 6= ∅.

Idea: [(ii) ⇒ (i)] Suppose there is model-independent arbitrage,
i.e. ∃ u ∈ U with

∑
t

∫
utdµt = 0 and ∆ ∈ S s.t.

T∑
t=1

ut(xt) + (∆ · S)T > 0 ∀x ∈ RT
+.

=⇒
T∑
t=1

ut(xt) + (∆ · S)T − AQ
T > −AQ

T Q-a.s., ∀Q ∈ QS .

=⇒ 0 ≥ EQ[(∆ · S)T − AQ
T ] > −EQ[AQ

T ], ∀Q ∈ QS .

Hence, EQ[AQ
T ] > 0 ∀Q ∈ QS ⇒ Q /∈ PS ∀Q ∈ QS ⇒ PS = ∅.
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FTAP under Constraints

[(i) ⇒ (ii)] Suppose PS = ∅. By Lemma 6,

δ := inf
Q∈QS

EQ[AQ
T ] ≥ inf

Q∈Π
EQ[AQ

T ] > 0.

Taking Φ ≡ 0 in Superhedging Duality,

D(0) = sup
Q∈QS

EQ[−AQ
T ] = −δ.

This implies: can superhedge Φ ≡ 0 with initial wealth −δ/2, i.e.
∃ u ∈ U with

∑T
t=1

∫
R+

utdµt = −δ/2 and ∆ ∈ S s.t.

T∑
t=1

ut(xt) + (∆ · S)T ≥ 0 ∀x ∈ RT
+.

=⇒
T∑
t=1

(
ut(xt)−

∫
R+

utdµt

)
+ (∆ · S)T ≥ 0 +

δ

2
> 0 ∀x ∈ RT

+.

This is already arbitrage with u′t(z) := ut(z)−
∫
R+

utdµt and ∆.
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Characterizing QS 6= ∅
Superhedging and risk-measuring are meaningful as long as

QS 6= ∅,

which is weaker than the no-arbitrage condition PS 6= ∅.

Model-independent unbounded profit

There is model-independent unbounded profit under constraint
S, if ∀ a ∈ R+, ∃ u ∈ U with

∑T
t=1

∫
utdµt = 0 and ∆ ∈ S s.t.

T∑
t=1

ut(xt) + (∆ · x)T > a, ∀x ∈ RT
+. (11)

FTAP for Unbounded Profit

The following are equivalent.

(i) There is no model-independent unbounded profit under S.

(ii) QS 6= ∅.
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Reduction to No-constraint Case

If no constraint, i.e. S = H, can show that

M = PS = QS .

Superhedeing Duality

Suppose S = H. Let Φ be u.s.c. and has linear growth. Then

D(Φ) = sup
Q∈QS

EQ[Φ− AQ
T ] = sup

Q∈M
EQ[Φ].

This recovers the duality in Beiglböck et al. (2013).
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Reduction to No-constraint Case

FTAP

The following are equivalent:

(i) There is no model-independent arbitrage for ∆ ∈ H.

(ii) M 6= ∅.

This recovers FTAP in Acciaio et al. (2013).

In Acciaio et al. (2013),

tradable options can be very general.

use functional analysis (Stone-Cech compactification)

FTAP ⇒ Superhedging duality.

In our paper,

tradable options: vanilla calls with all maturities and strikes.

use duality from optimal transport, weak compactness.

Superhedging duality ⇒ FTAP.
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Some Examples

Shortselling constraint: Given c ∈ R+, consider

S := {∆ ∈ H : ∆t ≥ −c , ∀t}.

We have PS = QS = {Q ∈ Π : S is a Q-supermartingale}
no arbitrage ⇐⇒ no unbounded profit.

Relative-drawdown constraint: Consider the running maximum

x∗t := max{x0, x1, · · · , xt}.

For any continuous functions a and b, introduce

S := {∆ ∈ H : a(St/S
∗
t ) ≤ ∆t ≤ b(St/S

∗
t ), ∀t}.

We have QS = Π. =⇒ no unbounded profit under S
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Gamma Constraint

Given Γ > 0, consider

SΓ := {∆ ∈ H : |∆t −∆t−1| ≤ Γ, ∀t}, where ∆−1 ≡ 0.

Note:

SΓ does NOT satisfy [adapted convexity].

∆ ≡ 0, ∆′ ≡ 2Γ ∈ SΓ, but ∆̃s := 0 1{s≤2} + 2Γ 1{s>2} /∈ SΓ.

Every ∆ ∈ SΓ is bounded.

Using this boundedness, can show that superhedging duality and
FTAP still hold true.

Proposition

QSΓ
= Π 6= ∅ and PSΓ

=M.
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Future Work

Can we take into account other type of frictions?

transaction costs; Dolinsky & Soner (2013).
find a unified approach to deal with different kinds of
frictions.

Can we drop the semi-continuity condition?

Do not need this in classical case,
nor in the model uncertainty framework by Bouchard & Nutz
(2013).
quantile hedging, hedging under controlled loss, ...

THANK YOU very much for your attention!
Q & A
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Beiglböck, Mathias and Henry-Labordère, Pierre
and Penkner, Friedrich, Model-independent bounds for
option prices—a mass transport approach, Finance Stoch., 17
(2013), pp. 477–501.

Bertsimas, Dimitris and Popescu, Ioana, On the
relation between option and stock prices: a convex
optimization approach, Oper. Res., 50 (2002), pp. 358–374.

Yu-Jui Huang (Dublin City University) Model-independent Superhedging under Constraints 36 / 40



References II

Brown, A. L., Set valued mappings, continuous selections,
and metric projections, Journal of Approximation Theory, 57
(1989), pp. 48–68.

Brown, Haydyn and Hobson, David and Rogers, L.
C. G., Robust hedging of barrier options, Math. Finance, 11
(2001), pp. 285–314.

Bouchard, Bruno and Nutz, Marcel, Arbitrage and
Duality in Nondominated Discrete-Time Models, to appear in
the Annals of Applied Probability, (2013).

Cox, Alexander M. G. and Ob lój, Jan, Robust pricing
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