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Fermionic shock waves: Distinguishing dissipative versus dispersive regularizations
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The collision of two clouds of Fermi gas at unitarity (UFG) has been recently observed to lead to shock waves
whose regularization mechanism, dissipative or dispersive, is being debated. While classical, dissipative shocks,
as in gas dynamics, develop a steep, localized shock front that translates at a well-defined speed, dispersively
regularized shocks are distinguished by an expanding region of short wavelength oscillations with two speeds,
those of the leading and trailing edges. For typical UFG experimental conditions, the theoretical oscillation
length scale is smaller than the resolution of present imaging systems so it is unclear how to determine the shock
type from its structure alone. Two experimental methods to determine the appropriate regularization mechanism
are proposed: measurement of the shock speed and observation of a one-dimensional collision experiment with
sufficiently tight radial confinement.
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Ultracold, dilute gases provide a universal medium for the
study of nonlinear hydrodynamic flows in the presence of
dissipation and dispersion [1]. Experimental attainment of the
superfluid regime in a Bose-Einstein condensate (BEC) and a
unitary Fermi gas (UFG) has led to the observation of nonlinear
coherent structures of fundamental interest, including quan-
tized vortices [2–4], solitons [5–7], and shock waves [8–10].
In the absence of regularization, the effects of nonlinearity
can lead to self-steepening and gradient catastrophe. In
many physical systems, this steepening is mediated by weak
dissipation, often due to the effects of viscosity, which transfers
kinetic energy to heat across a narrow transition region, a
viscous shock wave (VSW). An alternative regularization
mechanism occurs in dissipationless (conservative) media
where self-steepening is balanced by dispersion, in which
case gradient catastrophe is resolved into the formation of an
expanding oscillatory region called a dispersive shock wave
(DSW). For BEC, a mean-field description is well established
in which the hydrodynamic equations are regularized by
dispersion (cf. [11]). Generation of shock waves in recent UFG
collision experiments has fueled interest in the formulation of
an analogous theory for fermionic systems. While a direct,
computational approach using density-functional theory is
available [12], two simplified models have been proposed
and successfully fitted to the experimental data, one in which
the hydrodynamic equations are regularized by dissipation
[10] and the other by dispersion [13,14]. Although effort
has been made to develop theory incorporating dispersion in
the weakly interacting regime [15,16] and both dispersion
and dissipation in the weakly nonlinear regime [1], large
amplitude effects, and the relative magnitude of dissipation
and dispersion in the strongly interacting regime are still
unknown. This raises a fundamental question—how does one
determine the appropriate regularization for a UFG from
experiment? An obvious distinction is the structure of the
shock. A VSW takes the form of a traveling wave, while a DSW
is characterized by an expanding collection of large amplitude
oscillations. However, in the case of a UFG, the oscillation
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scale may be too fine to be imaged [10,13]. In this article,
we show that the type of regularization may alternatively be
distinguished by measuring the shock speed; VSW and DSW
speeds differ. We also highlight the parameter regime in which
a three-dimensional (3D) experiment is amenable to one-
dimensional (1D) simplification and argue that the collision
experiments in [10] were fully 3D, like those observed in BEC
[17]. We conclude with another regularization distinguishing
experiment, the 1D collision problem where a prominent
density bulge is predicted for the dissipative case alone.

At zero temperature, the macroscopic, low-energy dynam-
ics of a Fermi superfluid can be described by the, as yet
unregularized, equations of irrotational hydrodynamics [18],

∂n

∂t
+ ∇ · (nv) = 0, (1)

m
∂(nv)

∂t
+ m∇ · (nv ⊗ v) + ∇P (n) = −n∇U (r), (2)

where r = (x,y,z), U (r) is the trap potential, v(r,t) is the
velocity field, m is the particle mass, n(r,t) is the density,
and the pressure law P (n) = ξ h̄2

5m
(3π2n5/2)2/3 is a scaled

version of μ(n) = 5P (n)/(2n), the bulk chemical potential.
The total number of particles N = ∫

n dr is conserved. The
irrotational velocity field is proportional to the gradient of
a velocity potential φ, v = h̄

2m
∇φ. The Bertsch parameter,

ξ , is a dimensionless, universal constant for which we use
ξ � 0.40 [18], though more recent studies have suggested a
slightly smaller value (e.g., [19,20]). The particular value will
not affect the results of our analysis, only the scalings. In what
follows, we consider the case of a harmonic trap potential
U (r) = 1

2 (ω2
⊥r2

⊥ + ω2
zz

2), where r2
⊥ = x2 + y2 and ω⊥, ωz are

the transverse and longitudinal trap frequencies, respectively.
It is convenient to introduce the harmonic-oscillator lengths
a⊥,z = (h̄/mω⊥,z)1/2.

Conservation laws of the form (1) and (2) are known to
admit discontinuous shock solutions which, when interpreted
in the vanishing viscosity limit, correspond to a generic
dissipative regularization of gradient catastrophe [21]. The
shock speed is determined by integrating (1), (2) across a
sharp transition resulting in jump conditions. While the bulk
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viscosity of a UFG is negligible, its shear viscosity is not [22],
suggesting that dissipation could be a viable regularization
mechanism for the singular hydrodynamics.

In contrast, a dispersive regularization of the hydrodynamic
equations, proposed in [23], uses an extended Thomas-
Fermi functional approach. The first-order correction to the
hydrodynamic system is the addition of a von Weizsacker–
type [24], dispersive correction term to the right-hand side
of (2) of the form λ h̄2

4m
∇ · (ρ∇ ⊗ ∇ log ρ), where λ is a

dimensionless parameter with accepted value λ � 0.25 [13].
Note that studies in the weakly interacting regime have led
to alternative dispersive models [15,16]. While the particular
form of the dispersion at the microscopic, oscillatory level
is still unknown, the qualitative behaviors due to dispersion
which distinguish such systems from their dissipative analogs
hold for a broad class of forms (see, e.g., [25]).

By introducing the complex wave function ψ =√
n exp[iφ/(2

√
λ)], the system (1), (2) with the gradient

correction term can equivalently be written in the form of
a generalized nonlinear Schrödinger (gNLS) equation, similar
to the Gross-Pitaevskii equation from BEC mean-field theory
but with a different nonlinear exponent

ih̄λ1/2 ∂ψ

∂t
= U (r)ψ − λ

h̄2

2m
∇2ψ + ξμ0|ψ |4/3ψ, (3)

where μ0 = h̄2

2m
(3π2)2/3.

To formulate the 1D shock problem for a UFG, we consider
the case of a cigar-shaped trap ω⊥ � ωz and derive an
effective 1D equation from (3). We assume sufficiently tight
radial confinement so that radial dynamics are negligible
and integrate over the transverse coordinates following a
standard procedure (see Appendix for details). The anisotropy
requirement for dimensionality reduction is ωz

ω⊥
� 1

N
[18].

This regime is realizable, for example, by means of a 2D optical
lattice [26,27]. The 1D wave function 
(z,t) then satisfies

ih̄λ1/2 ∂


∂t
= 1

2
mω2

zz
2
 − λ

h̄2

2m

∂2


∂z2

+
[

5mω2
⊥(ξμ0)3/2

4π

]2/5

|
|4/5
, (4)

where
∫ |
|2dz = N . Note that tight transverse confinement

leads to a nonlinear coefficient and power that differ from
their 3D analog in (3). It is important to distinguish the various
length and time scales in the problem so we nondimensionalize
(4) by introducing 
 = 
0
̃, z = Lz̃, and t = T t̃ with
L = L0, 
0 = √

N/L0, and T ≈ 1.56[L6
0/(Nω5

⊥a6
⊥)]1/5. All

stated approximate numerical values are given in full in the
Appendix. L0 is a characteristic length to be chosen. To obtain
the hydrodynamic equations, the longitudinal wave function
takes the form 
̃ = √

ρ̃ exp( i
ε

∫
ũ dz̃), and after dropping ,̃

the system of 1D conservation equations for UFG is

∂ρ

∂t
+ ∂(ρu)

∂z
= 0, (5)

∂(ρu)

∂t
+ ∂

∂z

(
5

7
ρ

7
5 + ρu2

)
= ε2

4

∂

∂z

[
ρ

∂2(log ρ)

∂z2

]
− κρz,

(6)

with

ε ≈ 0.78

(
a4

⊥
NL4

0

)1/5

, κ ≈ 2.45

(
a2

⊥L3
0

N1/2a5
z

)4/5

, (7)

and ρ, u are the dimensionless density and longitudinal
velocity, respectively. These hydrodynamic equations admit
the long wave speed of sound c(ρ) = ρ1/5. Note that the
transformation from (4) to (5) and (6) is exact with no
approximation. This form reveals the dispersive regularization
of the hydrodynamic equations when 0 < ε � 1.

It is beneficial to briefly describe the relations between
inherent length scales associated with different choices for
L0. The longitudinal oscillation length, Losc, associated with
DSWs, is obtained by choosing L0 in (7) so that ε = 1. The
longitudinal extent of the trapped UFG, Ltrap, is determined by
fixing L0 in (7) so that κ = 1. Another important length scale is
associated with the interparticle spacing Lint that is estimated
by standard arguments (see Appendix). The 1D anisotropy
requirement leads to the following relations:

Lint ∼ a
2/3
⊥ a

1/3
z

N1/6
� Losc ∼ a⊥

N1/4
� Ltrap ∼ N1/6 a

5/3
z

a
2/3
⊥

. (8)

That DSW dynamics occur at length scales much larger than
Lint is a requirement for the validity of the hydrodynamic
model [18]. DSWs exhibit rapid oscillations with wavelength
Losc and a larger, envelope modulation length we denote
Lmod. When L0 = Lmod such that Losc � Lmod � Ltrap, then
0 < ε � 1 and 0 < κ � ε2 so that a dispersive regularization
is appropriate and inhomogeneities due to the trap can be
neglected. In what follows, we use parameters from experiment
and set L0 = Lmod = 3 μm corresponding to the experimental
imaging resolution [10]. Then, ε ≈ 0.05 and κ ≈ 0.0003, thus
satisfying our smallness conditions. For the rest of this work
we neglect the trap, setting κ = 0 in (6).

We now discuss the dynamics of shock solutions for Eqs. (5)
and (6) with ε = 0 (dissipative regularization) and 0 < ε � 1
(dispersive regularization). We consider the conservation laws
with general step initial data,

ρ(z,0) =
{

ρ0, z � 0,

1, z > 0,
u(z,0) =

{
u0, z � 0,

0, z > 0.
(9)

For general ρ0 and u0, single step initial data results in the
generation of two waves. We focus on the case ρ0 > 1 and u0

specifically chosen from a locus of velocities corresponding
to a single, right propagating shock wave.

In dissipatively regularized systems, shock waves are
nonlinear traveling-wave solutions which can be viewed as
a balance between nonlinearity and dissipation. Deriving the
shock profile for the hydrodynamic equations of UFG with
a vanishing effective Newtonian viscosity is mathematically
equivalent to constructing a weak solution for the system
(5) and (6) with ε = 0. The magnitude of the dissipative
correction sets the width of the localized transition region
but does not affect the shock speed. In order to satisfy the
jump conditions for a single right-propagating shock wave,
it is required that the velocity of the left state depends on
the density ρ0 according to the Hugoniot locus relation [21]
u0(ρ0) = [5(ρ7/5

0 − 1)(ρ0 − 1)/(7ρ0)]1/2. The speed of the
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corresponding shock is then

V (ρ0) = {[
5
(
ρ

7/5
0 − 1

)
ρ0

]
/[7(ρ0 − 1)]

}1/2
. (10)

The VSW speed is parametrized only by the left-state density
ρ0 and is independent of the magnitude of the viscous
correction.

The dispersive regularization, 0 < ε � 1, of the initial
jump (9) results in a DSW, two distinct constant states
connected by an expanding, oscillatory region. This region is
characterized by nearly linear, vanishing amplitude waves at
the rightmost leading edge and a single (dark) solitary wave at
the leftmost trailing edge (see Fig. 2). DSW closure conditions,
analogous to the jump conditions for VSWs, provide relations
between the left and right constant states and the edge speeds.
To implement the DSW closure, we use Whitham-El DSW
theory [28], an extension of the nonlinear wave modulation
theory of Whitham [29] for dispersive shock fitting [30] to
nonintegrable systems such as the one considered here. For
the theoretical details, we refer the reader to an extensive
development of DSW theory for gNLS equations in [25].

DSW closure implies that the velocity u0 must lie on the
DSW locus u0(ρ0) = 5(ρ1/5

0 − 1), which is distinct from the
Hugoniot locus for VSWs. The speed vL of the linear, leading
edge satisfies

vL = 2α2
L − 1

αL
,

27(1 + αL)

2(2 + αL)3
= ρ

−2/5
0 . (11)

The speed vS at the trailing, soliton edge is

vS = [
αSρ

1/5
0 + 5

(
ρ

1/5
0 − 1

)]
,

27(1 + αS)

2(2 + αS)3
= ρ

2/5
0 . (12)

While for classical shocks, Eq. (10) gives an explicit speed
in terms ρ0, Eqs. (11) and (12) give implicit relations. To
compare them directly, we consider the small jump case
0 < δ = (ρ0 − 1) � 1, in which the dispersively regularized
conservation laws admit a weak DSW with speeds vL ∼
1 + 12δ/5 and vS ∼ 1 + 2δ/5. For the weak VSW from (10),
V ∼ 1 + 3δ/5. This analysis demonstrates that regularization
dependent shock speeds differ, even for small density pertur-
bations. In Fig. 1, we plot the dispersive and viscous shock
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FIG. 1. (Color online) Nondimensional shock speeds by type
of regularization. vL and vS correspond to the leading and trailing
edge speeds of a UFG DSW, respectively. V is the dissipative shock
speed. The vertical dotted line at ρ0 = 2.7 is for comparison with the
particular discontinuity simulated in Fig. 2.
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FIG. 2. (Color online) Numerical simulation of the gNLS equa-
tion (solid) [from Eqs. (5) and (6)] for a DSW with ρ0 = 2.7 and
corresponding VSW solution (dashed). The right panels depict the
filtered solutions.

speeds for a range of density jumps. As noted earlier, not
only the shock speed but also its structure changes drastically
depending on the regularization mechanism, though under
present imaging capabilities, the difference is not as clear. The
left panels of Fig. 2 depict the numerical solution to the gNLS
equation corresponding to the hydrodynamic equations (5)
and (6) and shock solution for the dissipative hydrodynamics
(ε = 0). The signature slowly modulated, oscillatory envelope
structure expected for a DSW is further revealed by the
zoomed-in inset. The right panels of Fig. 2 depict the DSW
and VSW solutions convolved with a Gaussian of width 1, the
modulation length, mimicking the effects of imaging. Owing to
the smoothing of the rapid DSW oscillations, the DSW is now
more difficult to distinguish from the filtered VSW solution
(dashed). However, DSW expansion is noticeable from the
spreading of the steep density gradient. Conversely, the VSW
maintains its shape and propagates with a different speed.
This shows that determination of the speed of the shock front
and its scaling according to (10) or (11) and (12) is a viable
experimental method for distinguishing between dispersive
and dissipative shocks even when potential oscillations are
subimaging resolution.

In deriving the shock solutions, we have assumed the
validity of the one-dimensional reduction. In previous attempts
to describe the UFG collision experimental observations, a
regularization term has been added to a 1D or 3D hydrody-
namic model [10,13,14]. From the experimental parameters,
it is verified that the anisotropy criterion for reduction to 1D
is not met [10]. Further, from its similarity to observations
in BEC [17], the appearance of a characteristic center “bulge”
upon collision in the experiments of [10] suggests the presence
of transverse instabilities and vortex formation, lending doubt
to the accuracy of the azimuthally symmetric numerical
simulations in [13]. The 1D regime, however, is not subject
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FIG. 3. (Color online) Numerical simulation of the gNLS equa-
tion (solid) and dissipative hydrodynamic equations (dashed) for the
collision problem. The right panels depict the filtered solutions.

to these instabilities. Therefore, we consider the 1D collision
problem with dissipative (ε = 0) and dispersive (0 < ε � 1)
regularizations for the idealized initial condition

ρ(z,0) =
{

1, |z| > L,

0, |z| � L,
u(z,0) = 0, (13)

representing two initially separated, quiescent UFGs.
The results for L = 1 are depicted in Fig. 3. The left panels

show the numerical solution for gNLS and the solution for
the corresponding dissipative problem, while the right panels
show the Gaussian filtered solutions. Initially, two rarefaction
waves propagate inward, for which the two regularizations
agree to leading order because the effects of dissipation and
dispersion are negligible. Upon collision of the rarefaction
waves, outward propagating shocks are created. In the case
of the viscous problem, we derive the weak solution to
the hydrodynamic equations (see Appendix). The dispersive
shock solution is similar to that observed in BEC theoretical
and experimental studies [31]. The key physical difference
after filtering is the distinct center bulge created in the
dissipative problem. The filtered dispersive solution, on the
other hand, forms a smooth, expanding well between the
two constant states. Therefore, the one-dimensional collision
problem provides a clear distinction between dissipative and
dispersive regularizations.

The similarity between the bulge-producing, dissipative
collision problem and both the BEC [17] and UFG [10]
experiments is striking. We know that BEC is regularized
by dispersion, yet a bulge is still produced. One possible

interpretation is that the proliferation of quantized vortices and
quantum turbulence in the fully 3D case yields an effective
viscosity for the larger scale dynamics, even though the
underlying model is dissipationless. Similarly, fully 3D exper-
iments in a UFG may not provide a definitive determination
of the underlying hydrodynamic regularization mechanism
unless imaging resolution is significantly improved. Our work
here provides unambiguous measures of dissipative versus
dispersive effects in a unitary Fermi gas from shock dynamics,
enabling the determination of the dominant regularization
mechanism.

We thank John Thomas, James Joseph, and Peter Engels
for enlightening discussion. This work was supported by NSF
Grants No. DGE-1252376 and No. DMS-1008973.

APPENDIX

The 3D wave-function expression (3) was reduced to
an effective 1D model by integrating over the transverse
dynamics as described in Menotti and Stringari [32]. In
this Appendix, we present the details of this calculation, as
well as the derivation of the characteristic length and time
scales presented. We further derive the weak solution for
the dissipative 1D collision problem. We assume that the
anisotropy condition is satisfied.

Decompose the 3D complex wave function such that
ψ(r,t) = �[r⊥; n1(z,t)]
(z,t), where r = (r⊥,z) and n1(z,t)
is the local density function which satisfies the normalization
condition

n1(z,t) = N

∫
|ψ(r⊥,z,t)|2dr⊥. (A1)

Also assume the trap potential takes the special form U (r) =
U1(r⊥) + U2(z) (above we consider the case of an ideal
harmonic trap which certainly fits into this assumption).
Normalize the transverse and longitudinal wave functions
according to the constraints∫

|�(r⊥; n1)|2dr⊥ = 1,

∫
|
(z,t)|2dz = N. (A2)

Hence n1(z,t) = N |
(z,t)|2. Substituting these anzatzes into
(3) yields[

ih̄λ1/2 ∂


∂t
+ λ

h̄2

2m

∂2


∂z2
− U2(z)


]
�

=
[
−λ

h̄2

2m
�r� + U1(r⊥)� + ξμ0(|�
|4/3)�

]

. (A3)

Multiply the equation by the complex conjugate �∗ and
integrate with respect to the transverse coordinates r⊥. Using
the normalization condition on � gives

ih̄λ1/2 ∂


∂t
+ λ

h̄2

2m

∂2


∂z2
− U2(z)
 = μ⊥(n1)
, (A4)

where

μ⊥(n1) =
∫

�∗
[
−λ

h̄2

2m
�r + U1(r⊥)

+ ξμ0(|�
|4/3)

]
� dr⊥. (A5)

013605-4



FERMIONIC SHOCK WAVES: DISTINGUISHING DISSIPATIVE PHYSICAL REVIEW A 88, 013605 (2013)

This is now an effectively 1D equation, but it is left to
determine μ⊥ and �. If we substitute the expression for
μ⊥ (A5) into Eq. (A3) and enter the Thomas-Fermi regime
(neglecting the radial Laplacian term), we get the following
eigenvalue problem for �:

U1(r⊥)� + ξμ0(|�
|4/3�) = μ⊥(n1)�. (A6)

Note that |
|4/3 = (n1/N )2/3. Assuming that � is real and in
the ground state, Eq. (A6) can be solved explicitly to obtain

� =
{(

N
n1

)1/2{ξμ0[μ⊥ − U1(r⊥)]} 3
4 , μ⊥ > U1(r⊥),

0, otherwise.

(A7)

Next, an expression is needed for μ⊥ which comes from the
normalization condition on the transverse wave function (A2).
Assume an ideal, harmonic trap potential so that U1(r⊥) =
1
2ω2

⊥r2
⊥, where r2

⊥ = x2 + y2. Note that � vanishes for r⊥
such that U1(r⊥) � μ⊥. This gives the upper bound of the
integration in (A1) to be

r⊥ <

(
2μ⊥
mω⊥

)1/2

. (A8)

Substituting Eqs. (A7) and (A8) into Eq. (A2), one can solve
for μ⊥ from

∫ ( 2μ⊥
mω⊥ )1/2

0
r⊥

(
μ⊥ − 1

2
ω2

⊥r2
⊥

)3/2

dr⊥ = (ξμ0)3/2

2π

(n1

N

)
.

(A9)

Equation (A9) is integrated upon making a simple change of
variables to obtain

μ⊥ =
(

5mω2
⊥(ξμ0)3/2

4π

)2/5

|
|4/5. (A10)

The trap potential in the longitudinal coordinate z is assumed
to be U2(z) = 1

2mω2
zz

2. Hence Eq. (A4) becomes

ih̄λ1/2 ∂


∂t
+ λ

h̄2

2m

∂2


∂z2
− 1

2
mω2

zz
2


−
(

5mω2
⊥(ξμ0)3/2

4π

)2/5

|
|4/5
 = 0, (A11)

which is 1D and in dimensional form.
We now nondimensionalize the equation using 
 = 
0
̃,

z = Lz̃, and t = T t̃ to the semiclassical scaling with normal-
ized sound speed, which after dropping tildes becomes

iε
∂


∂t
+ ε2

2

∂2


∂z2
− 1

2
κz2
 − 5

2
|
|4/5
 = 0. (A12)

Note that each term in (A11) is dimensional. We multiply
both sides by a dimensional parameter A and normalize
(A11) to the semiclassical scaling (A12) while enforcing the
normalization condition (A2). This yields the parameters and

scalings

L = L0, 
0 =
(

N

L0

)1/2

, (A13)

T =
(

10
√

5

3πξ 3/2N

)1/5 (
1

ω⊥

) (
L0

a⊥

)6/5

, (A14)

ε =
(

10
√

5λ5/2

3πξ 3/2N

)1/5 (
a⊥
L0

)4/5

, (A15)

κ =
(

10
√

5

3πξ 3/2N

)2/5 (
ωz

ω⊥

)2 (
L0

a⊥

)12/5

, (A16)

A =
(

10
√

5

3πξ 3/2N

)2/5 (
1

h̄ω⊥

)(
L0

a⊥

)2/5

. (A17)

The interparticle spacing Lint is estimated by determining
the approximate volume occupied by N fermions in the
ground state of the harmonic trap. The standard Thomas-Fermi
approximation is used whereby the kinetic-energy terms are
neglected in favor of a balance between the nonlinearity and
the trap potential, μ(n) = μ0 − U (r) from Eq. (2). μ0 is the
total chemical potential determined by the requirement that∫

n dr = N . The volume is

Vol{r|μ0 > U (r)} = 27/2ξ 3/4π

31/2
N1/2a2

⊥az

≈ 10.3N1/2a2
⊥az. (A18)

Dividing the cube root of the volume by N gives

Lint =
(

27/2ξ 3/4π

31/2

)1/3 (
a2

⊥az

N1/2

)1/3

≈ 2.18

(
a2

⊥az

N1/2

)1/3

.

(A19)

The 1D collision problem with ε = 0 and initial data given
by (13) generates two rarefaction waves propagating inward
from the initial discontinuities at |z| = L, which interact at
time t = ti. For comparison with numerical simulations, we set
L = 1, though the results are easily generalizable. On the right
(the left can be constructed from symmetry), the rarefaction
wave is given by

u(z,t) = 5

6

[
z − 1

t
− 1

]
, (A20)

ρ(z,t) =
[

1

6

(
5 + z − 1

t

)]5

, (A21)

for (z − 1)/t ∈ [−5,1]. Hence ti = 1/5. Immediately upon
interaction, an intermediate velocity state um = 0 is created
along the center axis z = 0, and two outward propagating
shocks are produced. These can be described by constructing
an intermediate density ρm so that it lies along the appropriate
density locus, i.e.,

u2 = 5
(
ρ

7/5
m − ρ7/5

)
(ρm − ρ)

7ρmρ
, (A22)

where u and ρ are evaluated at the right rarefaction waves just
ahead of the shock front, which are the variable background
into which the shock is propagating. The intermediate value
ρm, which must be found by evaluating (A22) implicitly,
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couples to the shock speed by invoking the jump conditions to
give the ordinary differential equation

s ′(t) = ρu

ρ − ρm

∣∣∣∣
z=s(t)

. (A23)

The initial condition must be prescribed just after the interac-
tion time so that a shock is created, say t = ti + ν, where
0 < ν � 1. Then, inserting the Taylor series expansion,
s(1/5) = 0 ∼ s(1/5 + ν) − νs ′(1/5 + ν), into (A22) and

(A23) gives the approximate initial data,

s(1/5 + ν) ∼ ν17/7 517/7

355/7 − 1
, 0 < ν � 1, (A24)

which we use as the initial condition to numerically
solve the system (A22) and (A23). For the simula-
tions presented, we took ν = 5 × 10−5 and found it to
be sufficiently small to accurately resolve the shock
dynamics.
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