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Learning and memory are acquired through long-lasting changes in synapses. In the simplest models, such
synaptic potentiation typically leads to runaway excitation, but in reality there must exist processes that robustly
preserve overall stability of the neural system dynamics. How is this accomplished? Various approaches to this
basic question have been considered. Here we propose a particularly compelling and natural mechanism for
preserving stability of learning neural systems. This mechanism is based on the global processes by which
metabolic resources are distributed to the neurons by glial cells. Specifically, we introduce and study a model
composed of two interacting networks: a model neural network interconnected by synapses that undergo spike-
timing-dependent plasticity; and a model glial network interconnected by gap junctions that diffusively transport
metabolic resources among the glia and, ultimately, to neural synapses where they are consumed. Our main result
is that the biophysical constraints imposed by diffusive transport of metabolic resources through the glial network
can prevent runaway growth of synaptic strength, both during ongoing activity and during learning. Our findings
suggest a previously unappreciated role for glial transport of metabolites in the feedback control stabilization of
neural network dynamics during learning.
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I. INTRODUCTION

Glial brain cells play important and diverse roles regulating
the dynamics and structure of neural networks [1,2], including
learning-related changes in synapses [3,4]. In this paper we
focus on one of the most important functions thought to be
served by the glial network—the transport and distribution
of metabolic resources among the neural synapses [5]. This
hypothesis originated from early anatomical studies that
showed that the glia form a bridge between the neural synapses
and the brain vasculature [6] [Fig. 1(a)]. More recently,
experiments have directly demonstrated that glia—astrocytes,
more specifically—deliver metabolic resources to synapses
depending on how active the synapses are [7]. En route to the
synapses, these resources diffuse through an extensive network
of astrocytes [5]. The biophysical properties of such diffusive
transport of resources may have a fundamental influence
on the dynamics of the activity of the neural network that
consumes the resources [8–11]. For example, a highly active
synapse may consume all of its local resources, thus forcing
it to become less active until more resources arrive, and may
drain resources away from less active synapses, thus shaping
functional differences among synapses. Here, in order to
study these possibilities, we introduce a computational model
incorporating both a neural network and a glial network. Our
model neurons interact via synapses whose efficacy evolves
according to activity-dependent learning rules, namely spike-
timing-dependent plasticity (STDP) [12,13]. Under many
circumstances, modeling of STDP can result in unstable
growth of synaptic efficacy and typically requires additional
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types of learning rules to prevent such runaway growth (see
discussion in the Conclusion section and Refs. [13,14]).
The main finding of our work is that diffusive transport of
resources via the glial network can serve to prevent runaway
synaptic growth due to STDP, thereby maintaining stable
neural network dynamics. We show that this phenomenon
requires resource transport among the glia; locally confined
production and consumption of resources result in unstable
neural network dynamics. The known roles played by the glia
in synaptic plasticity are diverse and numerous [15], but, to
our knowledge, our work is the first to show that metabolic
resource distribution can play such a stabilizing role.

More broadly, there are many examples of dynamical
processes on networks in which the macroscopic network
dynamics undergoes a phase transition as the strength of
interactions between the network nodes is increased, including
synchronization [16,17], boolean models of gene regulation
networks [18,19], and functional brain networks [20,21]. In
some important cases, it has been argued that it is desirable
for the system to operate at the onset of the phase transition:
for Boolean gene regulatory networks, it has been proposed
that operating at the “edge of chaos” provides the network
with enough flexibility to have a number of different, useful
attractors, but without being too sensitive to perturbations
[18]; for neuronal networks, it has been hypothesized that
operating at critical point where the strengths of inhibitory and
excitatory synapses are balanced provides various benefits for
information processing and storage, both in neuronal network
models [22] and in coarser models based on synchronization
of neuronal rhythms [23]; for wireless networks, it has
been suggested that operating just past a phase transition in
connectivity can minimize costs while achieving operational
requirements [24]. A natural question is how these networks
can robustly maintain operation at the critical point without
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FIG. 1. Glial-neuronal interactions: (a) Cartoon based on existing
experiments, illustrating how glia serve to distribute metabolic
resources from the bloodstream to neural synapses. Red arrows
indicate paths of metabolite transport. (b) A simplified directed
graph representation of our two-layer network model. Black arrows
indicate neural synaptic interactions. Arrow thickness indicates
synaptic strength which evolves according to STDP. Red arrows
which terminate on black arrows represent the resource supply to
the corresponding synapse.

centralized control, while at the same time experiencing func-
tional state changes, as well as changes of inputs and external
environment. This long-standing question has been the subject
of much interest, and various mechanisms designed so that the
system’s parameters self-tune to operate at the critical point
have been proposed [25,26]. In some cases, however, there
might be constraints in the dynamics of the network that either
result in a net drift of the system away from the critical point,
or prevent fluctuations due to noise or finite-size effects from
being controlled. In this paper we introduce a mechanism
based on the transport of a resource through a secondary
network, which results in the stabilization of the primary
network’s dynamics at the critical point. In the broad context
of network science, this mechanism illustrates one benefit of
the dynamical interaction between different networks [27],
namely providing a novel avenue for organized criticality.

II. MODEL

As shown in Fig. 1(b), our model consists of a two-layered
network whose first layer is a weighted and directed neural
network and whose second layer is an unweighted undirected
glial network.

The neural network is composed of N excitable nodes that
represent neurons, labeled n = 1,2, . . . ,N , and M directed
edges, labeled η = 1,2, . . . ,M , on which synapses are located.
The state st

n of neuron n at a discrete time step t is represented
either as st

n = 0 (quiescent) or st
n = 1 (active). We define Wt

as the N × N adjacency matrix whose entry Wt
nm denotes the

weight of the synapse on the edge from neuron m to neuron n

at time t . Any presynaptic neuron m can be either excitatory
(εm = 1) or inhibitory (εm = −1). Thus, if we let wt

nm = |Wt
nm|

denote the absolute value of synapse strength, then Wt
nm =

εmwt
nm.

At each time step t (where t = 0,1,2, . . . ), the state of
neuron n is updated probabilistically based on the sum of its
synaptic input from active presynaptic neurons in the previous
time step,

st+1
n =

{
1 with probability σ

(∑N
m=1 Wt

nmst
m

)
,

0 otherwise .
(1)

As in Ref. [28], the model transfer function probability σ is
piecewise linear; σ (x) = 0 for x � 0, σ (x) = x for 0 < x < 1,
and σ (x) = 1 for x � 1.

The second layer of our model, the unweighted and
undirected glial network, consists of T glial cells labeled
i = 1,2, . . . ,T . Each glial cell i holds an amount of resource
Rt

i at time step t . While in this paper we do not focus on
a particular resource, we note that various metabolites are
transported diffusively among the glial cells such as glucose
and lactate [5]. Resources diffuse between the glial cells that
are connected to each other. We define a T × T symmetric
glial adjacency matrix U such that entry Uij = 1 if glial cell j

is connected to glial cell i and Uij = 0 otherwise. Each glial
cell serves a set of synapses by supplying resource to them.
Hence, we define a T × M matrix G with entries Giη = 1 if
glial cell i serves synapse η and Giη = 0 otherwise. Consistent
with recent experimental studies [29], we assume that all the
incoming synapses of each neuron (i.e., its dendrites) are
served by a single glial cell and that this glial cell serves
no other neurons. So, given a synapse η, there is a unique glial
cell i(η) such that Gi(η)η = 1.

A. Learning

Let η denote the synapse that connects presynaptic neuron
m to postsynaptic neuron n, i.e., the synapse η that corresponds
to the neural network edge m → n. We assume that the
absolute strength of synapse η, i.e., wnm, depends on its past
learning history as determined from the STDP learning rule
via an auxiliary variable, ŵt

nm, and on the amount of resource
Rt

η at synapse η,

wt
nm = f

(
Rt

η, ŵt
nm

)
, (2)

where ∂f (x,y)/∂x � 0, ∂f (x,y)/∂y � 0, and ŵt
nm evolves

according to the STDP learning rule:

ŵt+1
nm = ŵt

nm exp

[
εm

τ

(
st−1
m st

n − st
mst−1

n

)]
. (3)

Moreover, we implement synaptic strength limitation, by
requiring f not to exceed a maximum value w̄, f � w̄. For
excitatory synapses (εm = +1), causal firing corresponds to
firing of the presynaptic neuron m on the previous time step
t − 1 (i.e., st−1

m = 1), followed by the firing of the postsynaptic
neuron n on the current time step t (i.e., st

n = 1). Thus, for
causal excitations ŵt+1

nm > ŵt
nm and the excitatory synapse

is reinforced. Similarly, for anticausal excitations excitatory
synapses are weakened, ŵt+1

nm < ŵt
nm. The corresponding

analogous conditions hold for inhibitory neurons (εm = −1).
The constant τ sets the learning timescale.
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B. Resource-transport dynamics

Resource diffuses between glia through their connection
network (characterized by the adjacency matrix U ) and
between glia and the synapses they serve (via the glial-neural
connection network characterized by the adjacency matrix G).
Our model for the evolution of the amount of resource Rt

i at
glial cell i and the amount of resource Rt

η at synapse η is

Rt+1
i = Rt

i + C1 + DG

T∑
j=1

Uij

(
Rt

j − Rt
i

)

+ DS

M∑
η=1

Giη

(
Rt

η − Rt
i

)
, (4)

Rt+1
η = Rt

η + DS

(
Rt

i(η) − Rt
η

) − C2s
t
m(η), (5)

where DG is the rate of diffusion between glial cells, and DS

is the rate of diffusion between glia and synapses. Moreover,
we enforce Rη � 0, i.e., if Eq. (5) yields Rt+1

η < 0, then we
replace it by 0. The first term on the right hand side of Eq. (4),
Rt

i , is the amount of resource in glial cell i at time t . The
parameter C1 denotes the amount of resource added to each
glial cell at each time step (e.g., supplied by capillary blood
vessels). For simplicity, we assume each glial cell has the same
C1. The last two terms are the amount of resource transported
to glial cell i, respectively, from its neighboring glial cells and
from the synapses that it serves.

In Eq. (5), the first term denotes the amount of resource at
synapse η at time t . The term proportional to DS denotes
the amount of resource gained (if Rt

i(η) > Rt
η) or lost (if

Rt
i(η) < Rt

η) from glial cell i(η) that serves synapse η. If the
presynaptic neuron m(η) fires at time step t (st

m(η) = 1), then
all outgoing synapses for neuron m(η), including η, consume
some resource, thus decreasing the resource at each synapse
by an amount C2 (where C2 is a model parameter).

III. NUMERICAL EXPERIMENTS AND RESULTS

In this section, we present results of numerical experiments
on our model. For simplicity we assume that both the neural
network and the glial network have an Erdös-Renyi (ER)
network structure. We build the N × N directed weighted ER
neural network adjacency matrix W by creating a link from
node m to node n (i.e., setting Wnm �= 0) with probability p

and setting Wnm = 0 otherwise. This gives the mean number
of incoming and outgoing synapses per neuron, kN = Np,
and the expected total number of synapses M = NkN . To
specify the initial state of each synapse, at t = 0 we set R0

η = 1
and take the initial value of each ŵ0

nm to be an independent
draw from a uniform distribution over [0,1]. We then rescale all
entries in W by a constant to obtain a desired largest eigenvalue
of W , as discussed below.

The glial network, represented by the matrix U having T

nodes that represent glial cells, is taken to be an undirected
and unweighted ER network. If glial cell j is connected to
glial cell i, then Uij = Uji = 1; and Uij = 0 otherwise. If
the probability of forming a link is q, then the mean degree
of a glial cell is kG = T q. Recent evidence suggests that the
number of glial cells is roughly equal to the number of neurons

[30], and hence in our experiments we set T = N . The initial
resource for each glial cell is taken to be R0

i = 1. Although
the glial network is known to modulate the physical structure
of the neuronal connectome [2], for simplicity, we assume
that the matrix entries in U and W are independent of each
other.

In all our experiments we take the function f in Eq. (2) to be
f (x,y) = xy for xy < w̄ and f (x,y) = w̄ for xy � w̄. We set
N = 1000 and p = 0.05 and randomly draw an ER directed
random graph for the neural network. We make another draw
for the undirected glial network with T = N = 1000 and q =
p = 0.05. This gives us kN = kG = 50. For all our numerical
experiments we take DG and DS to be the same, DG = DS =
D; we also set the fraction of inhibitory nodes to be 0.2 [31]
and use the following additional parameter choices:

C1 = 0.0188, C2 = 0.001,

D = 0.005, w̄ = 0.14.

We chose these parameter values somewhat arbitrarily but, as
shown later, our results are fairly robust to the choice of these
values.

In the following, we report the three main findings from
our model. First, we show that network dynamics are stable,
avoiding saturation or extinction of neural activity. Second,
we show that resource transport among the glia is essential to
maintain this stability. Third, we verify that the neural network
can learn, i.e., external input results in long-lasting synaptic
changes.

A. Experiment 1

To quantitatively assess the stability of the network dynam-
ics we study λ, the largest eigenvalue of the matrix W . Previous
studies on purely excitatory networks [32] and networks
having inhibitory nodes [28,33] show that λ determines the
nature of the network’s dynamics: λ < 1 corresponds to a
hypoexcitable, or subcritical, state where activity dies out;
λ = 1 corresponds to the stable, critical state where activity
is balanced, neither growing nor decaying on average; and
λ > 1 corresponds to a hyperexcitable, supercritical state
where the activity grows until nearly all neurons are firing at
every time step. Moreover, it has been shown experimentally
[22] that criticality (λ near 1) provides neural networks
with potential benefits for information processing. In this
first experiment we choose different initial conditions for λ

(obtained by rescaling the initial W ), i.e., at t = 0 we start in
the critical, subcritical, and supercritical states, respectively,
λ0 = {1,0.5,1.5}. Figure 2(a) shows a plot of λ as a function
of time, t . In all three cases we find that after a brief transient,
the network dynamics become stable, i.e., λ fluctuates near 1
after sufficient time has passed. Also, starting at the critical
state does not result in any instabilities over time. Figure 2(b)
shows the total resource R held in all glia and synapses as a
function of time t , where R is given by

Rt =
T∑

i=1

Rt
i +

M∑
η=1

Rt
η. (6)

042310-3



VIRKAR, SHEW, RESTREPO, AND OTT PHYSICAL REVIEW E 94, 042310 (2016)

t ×104
1 2 3 4 5 6

R

×104

0

2

4

6

8

10
(b)

t
2000 4000 6000 8000 10000

S

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
(c)

0 2 4 6
t ×104

0.5

1

1.5

λ

λ
0 = 1

λ
0 = 0.5

λ0 = 1.5

0 5000
0.5

1

1.5 (a)

FIG. 2. Resource-transport dynamics stabilizes network activity (Experiment 1): (a) Time series of λt (largest eignenvalue of Wt ) reveal
rapid convergence to stable network dynamics (λ ≈ 1), independent of initial conditions. Three different initial conditions were tested:
hyperexcitable (blue, λ0 = 1.5), stable (black, λ0 = 1), and hypoexcitable (red, λ0 = 0.5). The inset is an expanded view of the first 5000 time
steps. (b) After a longer transient the total resource R also stabilizes to a steady value. (c) Similarly, in all three cases, the average activity S

reaches a statistical steady state with large fluctuations.

In all three cases R reaches a steady-state value. Figure 2(c)
shows that the average activity,

S = 1

N

N∑
n=1

st
n, (7)

is initially below the activity for the critical case for λ0 = 0.5
and above the activity for the critical case for λ0 = 1.5,
indicative of the subcritical and supercritical regimes. Starting
in these regimes, over time, the dynamics of S becomes
statistically similar to the dynamics of S for the critical
initial state of λ0 = 1. Thus, our model naturally leads
to a network that operates in a stable critical (λ near 1)
regime. This can be understood on the basis that high activity
rapidly consumes resources at the synapses, thus reducing
their weights and leading to decrease in λ; while with low
activity synapses consume resource at a low rate, allowing
buildup of resource with time and consequent increase of
synaptic weights, essentially a feedback control stabilization
process. An indication of the potential information handling
benefits of criticality [22,34] can be seen in Fig. 2(c) at early

time, t � 300, where we observe that in both the subcritical
(red triangles) and supercritical (blue squares) states there is
relatively little time variation, corresponding to relatively little
potential for information content; while, in contrast, in the
critical case (black circles), the signal varies over a larger
range (0.3 � S � 0.7).

B. Experiment 2

STDP and resource distribution dynamics are both active
during the stabilization demonstrated in Fig. 2(a). Next, we
pose the question: Is the diffusion of resources via the glial
network important for stable cortical dynamics? Or can we
still get stability if we switch off transport among the glia (i.e.,
set DG = 0)? To address this question, for t = 1,2, . . . ,T1 =
80 000, we let the system reach a steady state with the glial net-
work operative as in Fig. 2, using Eq. (4), and define an equiva-
lent time averaged resource supply rate Ci for each glial cell i,

Ci =
〈
DG

T∑
j=1

Uij

(
Rt

j − Rt
i

)〉
T1,T2

+ C1. (8)
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FIG. 3. Turning off diffusion results in runaway growth (Experiment 2): (a) The maximum eigenvalue λ versus t , and (b) the total resource
R versus t . The data plotted in black are “baseline” results obtained using our model as described in Sec. II of the paper. For the data plotted
in red (labelled “instability”), the initial evolution is the same as for the baseline data up until t = 100 000 (marked in the figure by a vertical
arrow), at which time the diffusion of resources between the glial cells is turned off, as described in the text.
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In the above equation 〈 〉T1,T2 represents the time average over
the interval t = (T1,T2). We switch off transport among the
glia at t = T2 by setting DG = 0, and replace Eq. (4) by

Rt+1
i = Rt

i + DS

M∑
η=1

Giη

(
Rt

η − Rt
i

) + Ci. (9)

Thus, the average rate of total nonsynapse resource supply to
each glial cell is preserved after the glial diffusion is turned
off. Replacing Eq. (4) by Eq. (9) after t = T2 = 100 000, we
run the dynamics for a total of 160 000 time steps.

For initial condition λ0 = 1, Fig. 3 shows the results for
two runs—one in which we use the dynamics described by
Eq. (4) (baseline) and the other in which we switch off the glial
network and run the dynamics as described above (instability).
Figure 3(b) shows that after the glial network is switched off,
Rt increases as resource starts to accumulate at some synapses
and gets used up at others. Such increases and decreases in Rη

change the weights of the matrix W resulting in an increase
in λ as shown in Fig. 3(a). Thus, the dynamical nature of the
diffusion is a crucial process for stabilizing the neural network
learning dynamics.

C. Experiment 3

In the next experiment we demonstrate that the neural
network can learn and memorize while maintaining λ close to
the stable value of 1. To do this we divide the neurons into two
equally sized groups, G1 and G2, consisting of 500 neurons
each. This results in four groups of synapses: synapses that
connect neurons within G1, synapses from G1 to G2, synapses
from G2 to G1, and synapses that connect neurons within G2.

We run the dynamics for a total of 160 000 time steps
such that we have three distinct phases: prelearning (1 � t �
80 000), learning (80 000 < t � 100 000) and post-learning
(t > 100 000). In the prelearning phase, the dynamics are as
described in the previous section. The total resource R reaches
a steady-state value and the eigenvalue λ fluctuates near 1 [see
Figs. 4(b) and 4(c)]. In the learning phase, for neurons in
group Gν (ν = 1 or 2) we modify Eq. (1) by introducing a
time-dependent external stimulus, ζ

(ν)
t ,

st+1
n =

{
1 with prob. σ

(∑N
m=1 Wt

nmst
m + ζ

(ν)
t

)
,

0 otherwise .
(10)
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FIG. 4. The STDP network learns and remembers (Experiment 3): We divide the neurons into two equally sized groups, G1 and G2,
consisting of 500 neurons each. This results in four groups of synapses: synapses within the first group (Within G1), synapses that convey
signals from neurons in G1 to neurons in G2 (G1 to G2), synapses that convey signals from neurons in G2 to neurons in G1 (G2 to G1) and
synapses within the second group (Within G2). Panel (a) depicts the learning protocol (see text). Panels (b) and (c) show λ and R versus t .
The learning regime spans t = [80 000,100 000] (delimited by the vertical arrows). Panel (b) shows that λ becomes subcritical during learning
[35], but then quickly evolves back to the critical state λ ∼= 1. Panel (d) shows the mean synaptic strength for the four groups of synapses for
excitatory synapses during learning. In accord with the STDP learning rule, the mean synaptic strength increases for G1 to G2 synapses. In the
post-learning regime, spanning t = [80 000,160 000], panel (d) shows that the model remembers what it learned.
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FIG. 5. Robustness of dynamics to parameter change: Time
average of the largest eigenvalue, 〈λ〉t , as a function of C1/Ĉ1, C2/Ĉ2,
and D/D̂ where Ĉ1, Ĉ2, and D̂ are the parameter values used for
Figs. 2–4. All three curves show that our model is fairly robust to
parameter changes, e.g., a 25% change in C1 or C2 yields a change
in 〈λ〉t of about 0.3%.

where ν is the group to which neuron n belongs, and, letting
ζ = 0.15, the learning protocol defining ζ

(ν)
t is as shown in

Fig. 4(a). That is, starting at the beginning of the learning
phase (t = T1 = 80 000), we stimulate neurons only in G1;
then, in the next time step, we stimulate neurons only in G2;
then, in the next two time steps, no stimulus is applied to either
group; and this four step sequence is successively repeated
until the end of the learning phase (t = T2 = 100 000),
past which no stimuli are applied. As expected, sequential
firing of G1 neurons followed by G2 neurons results in
strengthening of excitatory synapses from G1 to G2 and
weakening of excitatory synapses from G2 to G1. We plot
the mean synaptic strength for the four groups of synapses
in Figs. 4(d). Importantly, these learning-related changes in
strengths of the four groups of synapses are preserved in the
post-learning phase (after time step 100 000), thus confirming
that the neural network remembered what it learned.

Finally, Fig. 4(c) shows that during the learning phase there
is a corresponding decrease in total resource R. The increased
resource consumption and the consequent decrease in R can
be attributed to the increase in neuronal firing rates owing to
the external stimulus. As the stimulus is removed in the post-
learning phase, the plots in Figs. 4(b) and 4(c) show that the
resource R is replenished and λ resets to 1 with fluctuations.
Hence, in the post-learning phase we have balanced cortical
state, and the neural network remembers what it learned.
Thus, although the glial transport stabilizes a unique attracting
macrostate with λ ∼= 1, it, nevertheless, still potentially allows
for distinct microstates representing stored information.

D. Robustness

We find that the qualitative results we obtain in our
numerical experiments are fairly robust to parameter variations
over a 25% range in C1 and C2 and even larger ranges for D

and w̄. One indication of this is shown in Fig. 5 where we
plot the time averaged largest eigenvalue 〈λ〉t of W as each
parameter C1, C2, and D normalized to their values used in

Figs. 2–4 is changed, while keeping the others fixed. We note
that 〈λ〉t changes only by roughly 0.3% when C1 or C2 changes
by 25%.

IV. CONCLUSIONS

The brain makes up only 2% of human body weight, but
is responsible for 20% of energy consumption. A significant
amount of the human body’s energy consumption occurs at
synapses in the brain [36]. This energy is consumed by the
biophysical mechanisms underlying transsynaptic signaling
and in learning-related long-term changes in synapses [3,4].
Metabolic resources maintaining this high rate of energy
consumption are delivered by a network of glial cells, which
transport these resources from the bloodstream to the synapses.
Since these resources are key to the functioning of synapses,
it is natural to ask if the structure and function of this
resource transport network plays a role in controlling the
activity of the neuronal network in a beneficial way [37–39].
In this paper we have shown, using a two-layered network
model composed of glial cells and neurons, that the dynamics
of metabolic resource transport across the network of glial
cells can stabilize learning dynamics in neuronal networks.
Specifically, our three numerical experiments showed that (i)
the balance between supply and consumption of resources
naturally leads to a regime in which excitation and inhibition
are balanced, even if in the initial state they are not, (ii) in
the absence of diffusion of resources across the glial cell
network, the balanced state becomes unstable, and (iii) the glial
regulated neuronal network can learn and subsequently return
to the balanced state retaining the learned pattern. Furthermore,
these findings are robust to parameter changes.

It is well known that without homeostatic regulatory mech-
anisms that control synaptic strengths, Hebbian plasticity rules
lead to runaway growth in synaptic efficacy and to excessive
neural activity [13,40,41]. Various regulatory mechanisms
preventing this instability have been proposed theoretically
[14,40,42–46] and found experimentally [47–50]. Synaptic
scaling [47,48,51] operates on a timescale of hours to days
[49] by reducing all the afferent synapses to a given neuron
by the same amount so that relative differences in synaptic
strengths are preserved. Mechanisms collectively known as
homeostatic intrinsic plasticity modify the intrinsic excitability
properties of a neuron depending on its firing activity [52]
by up- or down-regulating the expression of membrane ion
channels. Another class of models considers plasticity rules
whose parameters depend on neuronal activity (metaplasticity)
[43]. In addition, stand-alone STDP models that result in
stable critical dynamics have been proposed [42,50]. The
belief has been expressed that these diverse mechanisms
operate together, complementing each other, to keep neural
dynamics in a balanced regime (e.g., [41]). However, it has
been pointed out recently that, consistent with our experiment
3, a homeostatic mechanism that operates on faster timescales
might also be necessary [53]. In this paper, we hypothesize
that the regulatory mechanism imposed by metabolic resource
distribution via the glial network could play this role. For
related work on the influence of the glial network on neurons,
see, e.g., Refs. [54–56]. We note that regulation of network
activity by depletion of metabolic resources was proposed
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recently by Delattre et al. [14]. Reference [14] considers
a modification of the STDP rule that depends on a global
metabolic resource that is depleted by the globally averaged
network activity and finds that it results in stable neural activity.
In contrast to globally based resource regulation, we consider
here a spatially distributed resource transportation network in
which resource diffusion through the glial cell network plays
the key role in stabilizing the neural dynamics at the balanced
state (λ near 1 in our model). In the limit of infinitely fast
diffusion, the resource at every glial cell would become the
same, and our model would reduce to one similar to that of
Ref. [14]. However, local resource depletion and transport
through the network of glia is more realistic and allows one
to study the effect of different forms of spatially structured
neuron-glia interactions. Finally, we note that while in this
paper we used simple models for the neuronal network, the
glial network, and the resource dynamics, our work can be
extended to include more realistic modeling.

In the broader context of network science, there has been
much recent interest in multilayered networks [27,57,58] and
in the dynamics of interdependent networks (e.g., power grid
networks and the internet depend on each other [59]). Our work
is an example of how the interactions of two different networks
can result in beneficial dynamics, in particular, the feedback
control stabilization of an otherwise disabling instability.
Other examples of multilayer network interactions include
coupled oscillator networks (a resource transport network
regulating synchronization was considered in Ref. [60]) and
transportation networks [61].
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