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order weights
1 12 0
2 2
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90 20 2 18 2 20 90

1 8 1 8 205 8 1 8 18
560 315 5 5 72 5 5 315 560
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−

− − −

− − −

− − − − −

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
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Some FD background          
First derivative

Second derivative

A few historical notes

c 1592 Jost Bürgi (interpolation in
trigonometric tables)

17th century   Calculus (limit of FD approximations)

19th century   ODE solvers in finance and
astronomy 
(e.g., linear multistep methods)

20th century    PDE solvers
(Richardson, 1911)
Led to FEM, FVM, PS methods.
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Complex plane FD formulas          
Analytic functions form a very important special case of general 2-D functions  f(x,y).

Definition: With  z = x + iy complex,  f(z) is  analytic if 

is uniquely defined, no matter from which direction Δz approaches zero.

Cauchy-Riemann’s equations:

Separating f(z) in real and imaginary parts

it holds that

Some consequences:

FD formulas in the complex x,y-plane, applied to analytic functions, are 
vastly more efficient / accurate than classical FD formulas.

- No distinction between         and         ;

- Cauchy’s integral formula:   
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A few examples of complex plane FD formulas          
1 8 1

1 8'(0) 8 0 8 ( ),
40

1 8 1

i i i
f f O h

h
i i i
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 = − + 
 − + + 

1 4( 1 ) 4(1 ) 1
477360 29835 1326 29835 477360
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1 1 8 8 1'(0) 0
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For  pth derivative, the accuracy 
is  O( h { {number of stencil points} – p}  )
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……
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1 4 1
504 1(0) 4 20 4 ( ),

1 4 1
f f O h

h

 
 = − + 
  

The weights at location μ + iν,   
μ,ν integers,   decay to zero like

2
2 2( )

( )O e
π μ ν− +

Extremely high accuracies already for very small 
stencils

As the accuracy order is increased (or goes to the 
PS limit), apptoximations remain highly local.
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Example of application: The Euler-Maclaurin formula          

- Magnitude of weights in 5x5 stencil case            → → →
Correction weights very small compared to TR weights.

- Accuracy order one above the number of 
stencil points (in figure O(h24))

- For finite interval, matching expansion at 
the opposite end

Trapezoidal rule (TR) approximation:

0
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With 3x3 stencils, one can approximate odd derivatives up through f (7) (0). Doing this gives
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Easier method to calculate the correction stencil weights

In the case of correcting the trapezoidal rule at the left end   z = 0:

Consider                 and apply to                      . This gives

(1)

Consider a correction stencil with weights wk at N given nodes zk, also applied to 

(2)

Equate coefficients for the leading N terms in the expansions (1), (2). 
This gives a linear system with a Vandermonde coefficient matrix for the weights wk.

The order of accuracy of the resulting quadrature approach will match the number of equated 
coefficients.

For this method, we don’t even need to know that the Euler-Maclaurin formula exists
(method will be utilized again for fractional derivative generlizations)

0
1

1( ) (0) ( )
2 k

f z dz f f k
∞∞

=

 − + 
 

 ( ) zf z e ξ=

0
1 1

1 1 1 ( )coth
2 2 2 !

z k k

k k

ke dz e
k

ξ ξ ξ ζ ξ
ξ

∞ ∞∞

= =

− − + = − = − 
 

 

( ) zf z e ξ=

{ }
1

Taylor expansion in k

N
z

k
k

w e ξ ξ
=

=
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Numerically approximate contour integrals in the complex plane
Test function illustrated:

2 1 1 3( )
0.4(1 ) 0.4(1 ) 1.2 1.6 1.3 2

f z
z i z i z i z i

= − + −
− + + + + − − −

Magnitude and phase angle

Real part Imaginary part

Contours  can be open or closed

We want to only use grid point values
(no other functional information) 

Using 7x7 ‘correction stencils’ at each path corner 
gives accuracy ordrer O(h50).
Grid density shown sufficient for error around 10 -40
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Two main opportunities to improve the trapezoidal rule (TR):
Trapezoidal rule for
periodic problem
Standard version

Trapezoidal rule for
finite interval
Standard version

Can one do better? Can one do better?

Combine the two ideas for 
very accurate integration 
along finite line sections

All required weights can 
be obtained very easily
(5 lines in Mathematica)

Each pair of lines adds as 
many correct digits as 
present in regular TR

Order of accuracy 
one more than 
number of end 
correction entries
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Test problem 

Log-linear plot below – convergence slightly better than spectral.
Number of correct digits increases as expected with additional TR lines.

Periodic example :

cos( ) zf z e=

3-line case; weigh together 
TR sums on adjacent lines by 

2

2

2

1/ (2sinh ) 0.00187
(1 (coth ) ) / 2 1.00375

1/ (2sinh ) 0.00187

π
π

π

 − − 
   + ≈   
   − −  
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Non-periodic cases:
Examples of combinations of multi-line TR sums with end correction stencils.

Cartesian grids:

Hexagonal grids:
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Examples of FD stencil weights, Cartesian grid: 
3-line TR with 5x5 end correction stencils

Weigh together TR over integration interval as in periodic case. 

5-line Mathematica code give all end correction weights for any
combination of multi-line TR and stencil size.

For 3-line TR and 5x5 stencil:

All weights are shown coefficients times h (step length in any direction in the complex plane)
Weights that are not part of the standard 1-line TR are vanishingly small.

Accuracy O(h p) where p = (number of nodes in stencil) + 1.
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Test problem with closed contours:

Magnitude and phase Real part Imaginary part

Hexagonal grid with h = 0.1
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Regular derivatives: First derivative

Origin of Calculus

Gregory (1670)
Leibniz   (1684),   Newton (1687)

Fractional derivatives:

Origin of Fractional derivatives

1695 l’Hôpital asked Leibnitz about derivatives of order ½ to which Leibniz replied
“This is an apparent paradox from which one day, useful consequences will be drawn”

1823 Abel presented a complete framework for fractional calculus, and a first application

From 1832 Major further contributions by Liouville, Riemann, etc. 
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Some different ways to introduce fractional derivatives

1

0 0

1Let ( )( ) ( ) Cauchy:   ( )( ) ( ) ( )
( 1)!
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− 

Fractional integral :

Fourier series :
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νν

ν∞

=−∞
= =

1
2(1/2) 1/2 1/2 (1/2)

1
2

| | , 0
  ( ) ( )    with ( ) ( ) also real-valued.

| | , 0

i
i x

i
f x c i e i f xν

νν

ν ν
ν ν

ν ν

+
∞

=−∞ −

 >= = 
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

Fractional derivatives are not unique: 
It was recently (2022) discovered that all main versions belong to a two-parameter family. 
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Two most commonly used types of fractional derivatives

Riemann-Liouville (1832, 1847):

Caputo (1967):

Fractional erivatives of  e t

0 10

1 ( )( ) , 1
( ) ( )

n tRL
t n n

d fD f t d n n
n dt t

α
α

τ τ α
α τ + −= − < <
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0 10
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( ) ( )
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t nC d

t n

f
D f t d n n

n t
α τ

α

τ
τ α

α τ + −= − < <
Γ − −

- For m integer  Dα+mf(t) = Dm Dα f(t)
- Limit α → integer is continuous

- For m integer  Dα+mf(t) = Dα Dm f(t)
- D(constant) = 0
- Solving fractional ODEs requires easy initial

conditions ICs

- Singularity at t = 0 (branch point if t complex)

-

Note also:

1
( )

0 0
0

( ) ( ) (0).
( 1 )

kn
RL C k

t t
k

tD f t D f t f
k

α
α α

α

−−

=

= +
Γ + −
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What are fractional derivatives useful for? 

- Fractional diffusion
Recall heat / diffusion equation ut = uxx. 

i.  Fractional in time,    Dα
t u = uxx with α ≈ 1, provides ‘memory’

ii.  Fractional in space,  ut = Dα
x u with α ≈ 2, often represents better various

‘anomalous’ diffusion processes (typically with ‘base point’ on each side).

- Frequency-dependent wave propagation
- Random walks
- Active damping of flexible structures
- Gas/solute transport/reactions in porous media
- Epidemiology (incl. asymptomatic spreading)
- Modeling of bone/tissue growth/healing
- Modeling of shape memory materials
- Economic processes with memory
- Modeling of supercapacitors / advanced batteries using nano-materials
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0

( )1( ) , 0 1
(1 ) ( )

d
t d f

D f t d
t

α τ
α

τ
τ α

α τ
= < <

Γ − −

How to numerically compute fractional derivatives,  t real   

Recall Caputo:

Equispaced grid in t-direction

0  t

Grünwald-Letnikov formula: (1868)

Still dominant in computing; only first order accurate – Error O(h1).
Improvements available up to around O(h4). 

Nodes in t-direction at prescribed non-equispaced locations

0  t
Spectral methods reminiscent of Gaussian quadrature possible. 
This type of node sets are  impractible in time for fractional order ODEs / PDEs.

[ ]/

0
0

( ) lim     where    ( 1) ( ).
t h

RL jGL
h GL

j
D f t f t jh

jh
α

α

α
−>

=

 Σ= Σ = − − 
 


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Apply complex plane integration approach to fractional derivative calculations
Work pursued in collaboration with Cécile Piret, Austin Higgins, and Andrew Lawrence

Recall again Caputo derivative: 

Theorem: If f(z) is analytic, so is Dαf(z)   (typically with branch point at z = 0).

Preliminary step for numerics: Integrate by parts once, to get f(τ) instead of f’(τ).

Key result: One can obtain equally high order accurate TR end correction stencils also 
for the singular end point  τ = z of the integrand.

An additional technicality is needed when the evaluation point  z is close to the base point 0.

Procedure: Follow grid lines with TR and end correct wit 5x5 stencils at base point,
evaluation point, and at any path corner.

0

1 '( )( ) , 0 1
(1 ) ( )

z fD f z d
z

α
α

τ τ α
α τ

= < <
Γ − −
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Fractional derivative illustrations:
Displayed grid densities sufficient for machine precision 10-16 accuracy
Function in complex plane:

Exact: . (1 , )1
(1 )

z z zD e eα α
α

 Γ −= − Γ − 

( ) zf z e=

Fractional derivative,  shown in the case of α = 5/7
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( )2
5/3

3 4 111/3 2
2 2 2 3 6

9 1, ; , ;
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z zD e F z− = − −
Γ

2 2
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1 2 8 2 16 4
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π
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π
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−
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( ) ( ) ( )( )1/2
2 2 2cos cos ( ) sin ( )D z z S z z C zπ π ππ= −

where S(z) and C(z) are the Fresnel sine and cosine functions 

( )
8/5

1 3 13 92/5 2 2
3 2 2 2 10 5

251 ,1, ; , ;
24 (3 / 5)

zD z F z+ = −
Γ

( )2cos( ) zf z π=

21( ) zf z +=
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Some conclusions
Regular derivatives and integrals:
- Derivatives and Contour integrals of grid-based analytic functions can be evaluated to very high levels 

of accuracy already on coarse grids.

Fractional derivatives:
- Fractional derivatives of analytic functions  can also be computed to machine precision accuracy using 

grids with density comparable to what is needed for typical functional displays.

Further fractional derivative research opportunities that are currently pursued:
- Change present complex plane method to be applicable along the real axis.
- Solve fractional order ODEs to high orders of accuracy.
- Evaluations of special (especially hypergeometric) functions. For example:

Some references:
B.F. and C. Piret, Complex Variables and Analytic functions: An Illustrated Introduction, SIAM (2020)  
B.F., Contour integrals of analytic functions given on a grid in the complex plane, IMA J. Num. Anal. (2021).
B.F.,  Generalizing the trapezoidal rule in the complex plane, Numerical Algorithms (2022).
B.F., Finite difference formulas in the complex plane, Numerical Algorithms (2022).
A. Higgins, Numerical computations of fractional derivatives of analytic functions, SIAM URO (2022).
B.F., Infinite-order accuracy limit of finite difference formulas in the complex plane, IMA J. Num. Anal. (2021).
B.F. and C. Piret, Computation of fractional derivatives of analytic functions, J. of Sci. Comp, to appear.

( )

1 1
1 1

1 1
2 1

1 1

( )( ; ; ) [ ]
( )
( )( , ; ; ) [ (1 ) ]
( )
simple fractional

( ; ; ) ( ; ; )
function deriv. of

c a c z a
z

c b c b a
z

c
p q p q

cF a c z z D e z
b
cF a b c z z D z z
a

F z z F z

− − −

− − −

+ +

Γ=
Γ
Γ= −
Γ

   
= ×   
   

   


