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Some FD background          
First derivative

Second derivative

A few historical notes

c 1592 Jost Bürgi (trigonometric tables)

17th century   Calculus (limit of FD approximations)

19th century   ODE solvers in finance and
astronomy 
(e.g., linear multistep methods)

20th century    PDE solvers
(Richardson, 1911)
Led to FEM, FVM, PS methods.
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Pseudospectral (PS) limit of (formally) infinite order of accuracy
If data is periodic, one can repeat it indefinitely, and then apply an infinitely wide FD limit stencil.

Theorem: The result becomes identical to having done an FFT on data, and  then analytically
having differentiated the obtained trigonometric interpolant.

PS methods can be highly efficient, but have two main flaws:

1. Approximations are not ‘local’

2. Anisotropy
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1st derivative weights
2nd derivative weights
etc.

Derivatives should be a ‘local’ property of a function.

Compare approximations for

1, , .
2x y x y
    

     

Last case is a derivative in a
direction along which no data
has been utilized
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Complex plane FD formulas          
Analytic functions form a very important special case of general 2-D functions  f(x,y).

Definition: With  z = x + iy complex,  f(z) is  analytic if 

is uniquely defined, no matter from which direction Dz approaches zero.

Cauchy-Riemann’s equations:

Separating f(z) in real and imaginary parts

it holds that

Some consequences:

FD formulas in the complex x,y-plane, applied to analytic functions, are 
vastly more efficient / accurate than classical FD formulas.

- No distinction between         and         ;

- Cauchy’s integral formula:   
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A few examples of complex plane FD formulas          
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For  pth derivative, the accuracy 
is  O( h { number of stencil points – p}  )
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Examples of applications: The Euler-Maclaurin formula          

- Magnitude of weights in 5x5 stencil case → → →
No danger of numerical cancellations.

- Accuracy order one above the number of 
stencil points

- For finite interval, matching expansion at 
the opposite end

Trapezoidal rule (TR) approximation:
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With 3x3 stencils, one can approximate odd derivatives up through f (7) (0). Doing this gives
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Contour integration in the complex plane          

Log-log plot of error
2 1 1 3( )

0.4(1 ) 0.4(1 ) (1.2 1.6 ) (1.3 2 )
f z

z i z i z i z i
   

       

- The accuracy needed for a reasonably resolved functional display (above, left) is about
the same as needed for typical double precision O(10-16) contour integral accuracy
(i.e., no additional function evaluations are needed beyond what the grid already contains).

- No apparent ill effect of singularities very near to a FD stencils.
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Numerical analytic continuation          
Analytic continuation: Circle-chain theorem:  Useful for theoretical insights only;

Several more practical continuation options are available
Numerical continuation: FD formulas can provide a practical numerical approach
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; can be expressed as  

Example:

Function  Re[1/(z)]  given around 
edge of [0,3]x[-1.5,1.5], then solved
over interior by applying the 3x3
stencil at all interior grid points

In reverse: Function Re[1/(z)] now given only at  
The 17 grid points along [0,1]. Then enforce:
- Stencil at all interior points,
- Exact values at 17 grid points along [0,1]
- Least square minimize [1 -2  1] around boundary

Recall 
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Numerical calculation of the conjugate harmonic function          

The Cauchy-Riemann equations: With then  

Present task: Given u(x,y) over a grid, calculate the matching v(x,y).

Basic FD formula:

More accurate version:
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Interpolation to a denser grid                
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For analytic (and harmonic) functions, the small 
stencil below is 4th order accurate: 

For larger stencils, the order becomes the same 
as the total number of nodes; for example:

16

25 162 459 162 459 25
162 459 26325 26325 162 4591( ) ( )
162 459 26325 26325 162 459106496

25 162 459 162 459 25

i i
i i

f f O h
i i

i i

    
    
  
     

 

Coupling between real and imaginary parts can be removed with slight drop in order
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Pseudospectral (PS) limit of increasing orders / stencil sizes
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Regular FD: With 1-D unit-spaced nodes:   zk = 0, ±1, ±2, ±3,…

Noting: and  
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Recall: 1st derivative; the weights in PS limit are:    

Problematic, since derivatives should be a ‘local’ property of a function.

General result (1-D real, or complex): Approximate d/dz at z = 0 with nodes at z = zk. 
By differentiating Lagrange’s interpolation formula, the 1st derivative weights are: 

with node polynomial .   

1 1 1 1 1 11 0 1
4 3 2 2 3 4

    

shows that (k ≠ 0) and .  

One node at z = 0, wk weight at a different node
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PS limit of increasing orders / stencil sizes – Complex plane case
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The formula still holds. 

Consider unit-spaced stencils: ,   with 0, 1, 2, , ,  0, 1, 2, , .kz i n n             

The extrememly rapid decay rate of the coefficients explains why complex plane FD formulas 
can be applied very near to singularities with only minimal loss of accuracy.
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Then (for zk ≠ 0)                                               , so PS limit for 1st derivative
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Similar limits available for all derivatives.
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PS limit of increasing orders of accuracy / stencil sizes
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For higher derivatives, get more terms with each term still of similar form

± sign pattern



Slide 14 of 19 

A couple of algorithms to calculate FD weights 

Method 1: Solve a Vandermonde system

Require the exact result for as many powers of z as possible  

Task: Find the optimal weights wk at nodes zk to approximate a linear operator L at z = 0. 
The nodes zk are arbitrary placed (but assumed distinct). 
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     
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     
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This linear system is non-singular, but is usually severely ill-conditioned.

Proof of non-singularity when the zk are distinct:

Call the system matrix A, and rename zN to z. Then, det(A) is a polynomial in 
z of degree N-1, i.e., it can have at most N-1 roots. All these roots are 
accounted for by z = z1, z = z2, … , z = zN-1, implying that det(A) ≠ 0 otherwise.
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A couple of algorithms to calculate FD weights (continued) 

Method 2: Taylor expand in an auxiliary variable:

Given linear operator L, equate as many Taylor coefficients as possible in ξ for

This also results in a linear system for the weights wk.

Example:

Example:

Mathematica:

Note: The second example produces the weights in the Euler-Maclaurin stencils with no
knowledge needed about its coefficients – or even that such an expansion exists.
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Current application: Mineral prospecting
Collaboration with Jeff Thuston, Intrepid Geophysics
Data collected by airborne measurements of magnetic and gravity fields  

Magnetic Surveys Gravity Surveys
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Planned chromium mining in Ring of Fire, Ontario, Canada 

Data traces, followed by ‘state-ot-the-art’
postprocessing:

FFT based Hilbert transform; analytically
conƟnue downwards                              →

Recovered magnetic and gravity field
anomalies                   ↓                         ↘
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Comparison between
postprocessing approaches:

‘Industry standard’
FFT + Hilbert transform conƟnuaƟon   →

FFT + Hilbert transform providing data 
for complex plane FD formulas for up 
through the 5th derivative, followed 
by degrees {2,3} Padé conƟnuaƟon      →
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Some conclusions

- While ‘regular’ FD approximations have a long history, surprisingly little (if any) attention 
has previously been given to FD formulas specific to analytic (or harmonic) functions, 

- Orders of accuracy in complex plane FD formulas increase similarly to total number of 
stencil points (rather than to the number of points in each spatial direction),

- The pseudospectral limit of increasing order FD approximations remains highly ‘local’, 
implying that high order stencils can be applied also near singularities,

- In the context of Euler-Maclaurin expansions, derivatives can be entirely replaced by
function evaluations.

- Mathematical applications: Analytic continuation, PDEs in the 
complex plane

- Industrial application: Mineral prospecting 
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