
A FINITE DIFFERENCE METHOD FOR FREE BOUNDARY
PROBLEMS

BENGT FORNBERG∗

Abstract. Fornberg and Meyer-Spasche proposed some time ago a simple strategy to correct
finite difference schemes in the presence of a free boundary that cuts across a Cartesian grid. We
show here how this procedure can be combined with a minimax-based optimization procedure to
rapidly solve a wide range of elliptic-type free boundary value problems.

Key words. Finite differences, free boundary, minimax optimization.

1. Introduction. Both free and moving boundary problems arise in a vast num-
ber of physical settings, as surveyed for example in [3] and [12]. We focus in this study
on free boundary problems of the type

Lu+ f +(u) = 0 (1.1)

where L is a linear (or locally linearizable) second order elliptic differential operator,
and

f +(u) =

{
λu+O(u2) or µ+O(u) if u > 0

0 if u ≤ 0
. (1.2)

Here u is a function of any number of space variables, and λ and µ are either constants
or smooth functions of the space variables. The many important free boundary prob-
lems that can be cast in these forms include the Euler equations for steady flows [11],
[4], [5] and the Grad-Shafranov equation describing magnetohydrodynamic (MHD)
equilibria in plasma physics [1], [8], [10]. A common feature between free boundary
problems in these as well as in others categories (such as flows in porous media, etc.)
is that interfaces virtually always become very smooth, thereby offering great oppor-
tunities for highly effective numerical representations. This is in striking contrast to
moving boundary problems, for which extreme interface complexities are common.

The simplest possible numerical approach for the present class of problems would
be to discretize L with standard second order finite difference (FD2) approximations
(a 5-point stencil in 2-D if L contains no mixed derivatives), and use for f +(u) its
value at the FD2-stencil’s center point. The two main problems with this approach
are how to:

• Avoid the loss of accuracy that will arise because of inaccurate treatment of
the interface on the fixed grid. Movements of the free boundary with less
than the grid spacing may not be ‘felt’ at all by this numerical scheme.

An extremely simple correction scheme (involving no u-values beyond those
that are already part of the basic FD2 stencil) was initially proposed in [10],
and then discussed further in [9]. Like for the immersed interface method
[7], second order accurate results are obtained starting with standard FD2
approximations of L. We will find here that the free boundary influence in
some cases will be sufficiently reduced that Richardson extrapolation can be
used to improve the accuracy still further.

∗University of Colorado, Department of Applied Mathematics, 526 UCB, Boulder, CO 80309,
USA (fornberg@colorado.edu).

1

• Achieve a high and reliable rate of convergence in the numerical iterations.

Since free boundary problems are nonlinear, some type of iterative scheme
will be needed for their solution. Successful options include a regula falsi
approach [6], Newton-type iterations [2], and fixed-area (or fixed-circulation)
functional iterations [4]. We propose here the use of a numerical ‘minimax’
approach, implemented for example with the fminimax function in Matlab’s
optimization toolbox.

We introduce in Section 2 two test problems that were earlier considered in [9],
and then proceed by

• Describing the free boundary correction procedure,
• Showing how this procedure reduces the numerical residual in case both the
free boundary and the analytic solution u are known,

• Showing how we can obtain an accurate solution to u in case only the free
boundary is given, and how this provides an easy-to-measure residual if the
given boundary approximation is inaccurate,

• Showing how the free boundary approximation can be adjusted in order to
minimize this residual.

The last of these steps completes the description of the present short and easy-to-
implement Cartesian grid-based FD2 algorithm in which the presence of a free bound-
ary only leads to a very small degradation of accuracy.

2. Two primary test problems. After having arrived at the numerical pro-
cedure in Section 6, we will use Problems 1 and 2 described below for the numerical
tests given in Section 7. Euler flows give rise to free boundary equations of a similar
type as Problem 1 while both types frequently arise in MHD contexts (tokamaks,
solar physics, etc.). The task will be to numerically determine both the PDE solu-
tion u(x, y) and the location of the free boundary. The solution u(x, t) to Problem 1
will feature a discontinuous second derivative at the free boundary. The solution to
Problem 2 is one order smoother - irregular first in its third derivative. Although this
is not a limitation of the numerical approach, we restrict for simplicity our attention
to problems in which the free boundary does not intersect any fixed boundary or any
edge of the computational domain. As is explained in Section 8, only a very minor
modification of the algorithm is needed if these two problems are replaced by the
much more general ones outlined in (1.1) and (1.2). This is also illustrated in Figures
7-9 in [9]. Of the two present test problems, the first one has by far the most severe
free boundary irregularity, and is therefore the most important case to achieve a free
boundary correction for. We are not considering cases here when the solution is irreg-
ular first in the fourth derivative (or higher still) since the errors due to the interface
then become negligible compared to standard second order discretization errors, and
no interface correction procedure is called for.

2.1. Problem 1. Consider the PDE

∂2u

∂x2
+

∂2u

∂y2
+H(u) = 0 (2.1)

where

H(u) =

{
1 if u > 0
0 if u ≤ 0

.

2

We will solve this elliptic free boundary problem over −4 ≤ x ≤ 4, −4 ≤ y ≤ 4 with
boundary conditions (BC) along the four sides that match the analytic solution

u(x, y) =

{
1− r2/4 if r < 2
2 ln(2/r) if r ≥ 2

, (2.2)

where r =
√

x2 + y2.

2.2. Problem 2. Consider the PDE

∂2u

∂x2
+

∂2u

∂y2
+ u+ = 0 (2.3)

with

u+ =

{
u if u > 0
0 if u ≤ 0

.

In this case, the analytical solution is

u(x, y) =

{
J0(r) if r < rc

A ln(rc/r) if r ≥ rc
. (2.4)

The radius r is defined as before, rc ≈ 2.404826 is the first zero of J0(r), and A =
−[r d

dr
J0(r)]r=rc = rcJ1(rc) ≈ 1.248459.

3. Concept behind the free boundary correction procedure. We start
by considering Problem 1, and assume at first that we know both u(x, y) and the
location of the free boundary (along which u = 0). Standard FD2 approximations will
be locally second order accurate (in the grid spacing h) whenever the free boundary
does not cut across any of the four legs of the 5-point FD2 stencil. Consider next the
situation in Figure 3.1 and let uk denote the u-value at node k, k = 0, 1, . . . , 4. We
have in this case u0 < 0, and the standard FD approximation becomes

(u1 + u2 + u3 + u4 − 4u0)
1

h2
= 0. (3.1)

Locally approximating the free boundary by a straight line, we can introduce the
(ξ, η)-system that is also shown in the figure. In this system, the PDE simplifies to

uξξ =

{
0 where ξ < 0
−1 where ξ > 0

. (3.2)

The values of u at the nodes 1 and 2 are therefore smaller than what they otherwise
would have been by the amounts 1

2
d21 and 1

2
d22, respectively, where d1 and d2 are

the distances by which these nodes fall outside the free boundary. If we subtract
1

2h2
d21 +

1

2h2
d22 from the right hand side (RHS) of (3.1), local second order accuracy

becomes restored. If only one leg of a stencil extends across the free boundary, we
similarly need only one correction term of this kind. If the stencil center falls in the
region where u > 0, any stencil leg that extends across the free boundary can likewise
be corrected by just reversing the sign of the correction term. All that needs to be
kept track of is therefore the distances between the free boundary and any nodes that
fall on the other side of it relative to the stencil’s center point (or some approximations
for these distances).

3

F��. 3.1. Schematic illustration of a FB cutting across two legs of a 2-D 5-point stencil. The
nodes marked 1 and 2 fall here on the opposite side of the FB than the stencil center point (node
0).

4. Calculation of the finite difference (FD) residual if the correct PDE
solution and the free boundary are given. The top row of subplots in Figure
4.1 displays, from left to right, (a) the analytic solution (2.2) (with the free boundary
marked), (b) the analytic Laplacian at all node points (taking the value −1 when
r < 2, zero otherwise), and (c) the numerical Laplacian, as obtained by applying
the 5-point stencil to the analytic solution at all node points. Superficially, the two
last plots look quite similar, but the first subplot in the bottom row (d) reveals that
they in fact differ quite dramatically and in a highly irregular manner along the free
boundary. Subplot (e) displays what the correction procedure above tells that the
RHS ought to have been adjusted with in order to account for the free boundary. The
excellent agreement between the latter two results is confirmed in subplot (f), which
shows their difference. As noted in the figure caption, the interface errors have in this
case been reduced by a factor of around 20.

5. Calculation of the PDE solution if the free boundary is given. We
next assume that only the free boundary is given, but not the solution u(x, t). Based
of knowing the free boundary, we can trivially detect when one or two legs of a
stencil extends across it and adjust the PDE’s right hand side accordingly. Figure
5.1 shows in subplot (a) the FD2 solution to the PDE if the corrections are not
made, and in subplot (b) its difference to the analytical solution (2.2). With the
correction included, subplot (c) shows that the errors due to the free boundary have
been virtually eliminated. The discrepancies that remain come from standard second
order truncation errors in the smooth regions. In Figure 5.2, we display the solution
errors, in max norm over all the node points when we, instead of a 32× 32 grid, use
n× n grids, where n ranges from 5 to 401. Without correction, the error is seen to
be highly erratic, roughly following an O(h1.5) trend. It would have been O(h1) had
it not been for the cancellations due to the randomly varying signs of the errors, as
seen in Figure 4.1 (d). This is because, without cancellations, errors of size O(1) at
O(1/h) locations (where the free boundary crosses legs of the FD2 stencil) would cause
comparable inaccuracies as O(h)-sized errors at O(1/h2) (i.e. at all) node locations.
If a Poisson equation right hand side is increased (or decreased) uniformly by O(h),

4

-4
-2

0
2

4

-4
-2

0
2

4

-2

-1

0

1

x

a. True solution u(x,y)

y -4 -2 0 2 4
-4-2024

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

x

b. Exact Laplacian of u(x,y)

y -4 -2 0 2 4
-4-2024

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

x

c. Numerical Laplacian of u(x,y)

y

-4 -2 0 2 4
-4-2024

-0.5

0

0.5

x

d. Errors in numerical Laplacian

y -4 -2 0 2 4
-4-2024

-0.5

0

0.5

x

e. Predicted errors

y -4 -2 0 2 4
-4-2024

-0.5

0

0.5

x

f. Difference between errors

y

F��. 4.1. The true solution to Problem 1 on a 32× 32 grid; Laplacians and residuals without
and with the correction procedure. The maximum magnitudes of the entries in subplots d and f are
0.434 and 0.020, respectively, corresponding an error reduction by a factor of about 20.

the solution will also be perturbed to the same order.

With the correction approach in place, the solid curve in Figure 5.2 very clearly
shows the error trend to instead be O(h2), just as would have been the case if no free
boundary had been present. To reach an error level of 10−3, n ≈ 100 suffices when
the correction method is used vs. n ≈ 1000 otherwise - a saving with a factor of 100
in total number of nodes.

6. Adjusting the free boundary to minimize the residual. The numer-
ical algorithm. When the free boundary is given, we saw in the last section how we
then readily can calculate the full solution u(x, y). In particular, it is then easy (for
example with Matlab’s interp2 routine) to inspect u along the free boundary. Ide-
ally, in the absence of errors in both the free boundary location and in the numerical
FD2 approximation, this ought to produce a perfectly zero result. When using the
analytically correct free boundary, the subplots of Figure 6.1 show the numerically
obtained values along it (displayed at equispaced angles, as seen from the origin) when
n = 21, 81, 321. In each case, the solid curve shows the result with the free boundary
correction in use, and the dashed curve without it. A thin dotted line marks the
desired zero error level. The errors without the correction procedure are far greater
than with it.

We are now ready to describe our proposed strategy for when neither the solution

5

-4
-2

0
2

4

-4
-2

0
2

4

-2

-1

0

1

x

a. Solution without correction

y
-4 -2 0 2 4
-4-2024

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

x

b. Error without correction

y -4 -2 0 2 4
-4-2024

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

x

c. Error with correction

y

F��. 5.1. Numerical solution to Problem 1 when the FB is given; errors without and with the
correction procedure.

10
0

10
1

10
2

10
3

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

n-1 : The number of subintervals along each side

S
ol

ut
io

n
er

ro
r

in
 m

ax
 n

or
m

Without correction
With correction
Order 1.5
Order 2

F��. 5.2. Max norm errors when solving Problem 1 with the FB location given. The step size
h satisfies h = 8/(n− 1).

u(x, y), nor the free boundary are provided. The only two components that are needed
are:

• A routine which, given a guess for the free boundary, returns the residual
(accurate computed values of u(x, y)) along it.

• An optimization routine, such as Matlab’s fminimax, that can be used to
automatically vary the parameters describing the free boundary location in

6

0 2 4 6
-0.02

0

0.02

0.04

0.06

0.08
n = 21

u-
va

lu
es

 a
lo

ng
 fr

ee
 b

ou
nd

ar
y

Angle relative to x-axis
0 2 4 6

-6

-4

-2

0

2

4

6
x 10

-3 n = 81

u-
va

lu
es

 a
lo

ng
 fr

ee
 b

ou
nd

ar
y

Angle relative to x-axis
0 2 4 6

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
x 10

-3 n = 321

u-
va

lu
es

 a
lo

ng
 fr

ee
 b

ou
nd

ar
y

Angle relative to x-axis

F��. 6.1. Values of u(x, y) along the free boundary (here parametrized by the angle in polar
coordinates). Dashed line: without the correction, solid line: with correction. The ideal curves
should be identically zero - marked by a dotted line. As before, n denotes the number of nodes along
each side.

such a way that this residual gets minimized.

Since a free boundary tend to be very smooth in the present problem class, some
8-12 free parameters usually suffices to describe it well (e.g. Fourier coefficients if the
free boundary is represented in polar form, or sample points along the free boundary
in case we use periodic splines). We smooth out the high frequency noise in the
residuals (the ‘jitter’ in the solid curves in Figure 6.1) and then sample the smoothed
residual at a somewhat larger set of points than the number of free parameters used to
represent the free boundary. This setup is perfectly suited for the fminimax routine,
with the option set to minimize in max norm.

Effective multivariate optimization is a very non-trivial task for which very sophis-
ticated library routines are readily available, with many choices provided in Matlab’s
optimization and genetic algorithm tool boxes. The main alternative to using fmin-
imax would seem to be to create a scalar-valued residual at each iteration (rather
than the vector-valued residual we are using and which returns of the values of the
computed u(x, y) at a relatively large number of sample points along the free bound-
ary). A natural choice for such a scalar residual would be to form the 2-norm (or
the infinity norm) of our vector valued residual. Although we have not exhaustively
explored the effectiveness such scalar residual-based optimizers in the present context
(especially since they typically require ‘fine tuning’ of a large number of parameters
in order to be most effective), the preliminary tests we have carried out do not seem
encouraging. The full vector residual we have available at each iteration contains a
large amount of information which fminimax puts to very effective use, but which
is totally lost whenever the residual vector is condensed into a single scalar quantity
before being presented to the numerical optimizer.

7. Numerical tests.

7.1. Results for Problem 1. Figure 7.1 shows how the resulting errors both in
free boundary position and for u(x, y) (both in max norm, compared to the analytical
results) vary with n. The present procedure clearly solves the free boundary problem
to full second order accuracy. We do not include any results here for the uncorrected
FD2 scheme, since the residual then varies so erratically with small changes in free

7

10
0

10
1

10
2

10
3

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

n-1 : The number of subintervals along each side

E
rr

or
s

in
 m

ax
 n

or
m

Free boundary position
Solution u(x,y)
Order 1.5
Order 2

F��. 7.1. Max norm errors in FB position and in solution u(x,t) for the corrected FD2 scheme.
The step size is h = 8/(n− 1). The lines marking the slopes O(h1.5) and O(h2) are the same as in
Figure 5.2.

boundary position that fminimax either fails to converge, or becomes quite ineffective.
With the correction procedure included, the fminimax procedure proved to be highly
effective in terms of the number of function evaluations it requires. For its default
error tolerance of 10−6, and a reasonably good initial guess, it typically converges
in 40-100 iterations (almost independently of n). In most applications, one is not
interested in solving a single free boundary problem in complete isolation, but rather
a sequence of such problems for which some physical parameters vary in a gradual
manner. In such cases, good initial guesses are readily available, and 20-60 iterations
may be more typical. Figure 7.2 illustrates that there is some convergence penalty,
but not a particularly serious one, if the initial guess deviates significantly from the
true solution.

Each iteration (residual calculation) requires only the solution of a single FD2-
discretized Poisson equation. A large number of effective Poisson solvers are readily
available for this task. In the present work, we used sparse Gaussian elimination (as
implemented through Matlab’s ”\” operator), but any other standard approach, such
as GMRES, multigrid solvers, etc., would also have worked perfectly well. When
using sparse Gaussian elimination, the system can be LU -factorized once and for all,
making the repeated solutions extremely fast. Iterative methods can utilize the fact
that the solutions will differ very little between successive calls from the fminimax
routine.

8

-4 -2 0 2 4
-4

-2

0

2

4

98

x

y

-4 -2 0 2 4
-4

-2

0

2

4

86

x
y

-4 -2 0 2 4
-4

-2

0

2

4

86

x

y

-4 -2 0 2 4
-4

-2

0

2

4

74

x

y

-4 -2 0 2 4
-4

-2

0

2

4

122

x

y

-4 -2 0 2 4
-4

-2

0

2

4

62

x

y

F��. 7.2. The numer if iterations (residual evaluations) required for Test Problem 1 when
starting with various initial free boundary approximations (solid curves). This test was carried out
with an n = 81 grid, and fminimax converged in all cases to its default precision of 10−6.

7.2. Results for Problem 2. There are three main differences compared to
Problem 1:

• Equation (3.2) becomes in this case replaced by

uξξ =

{
0 where ξ < 0
−u where ξ > 0

. (7.1)

Further noting that u here can be closely approximated by |▽u|ξ (with ▽u
denoting the local gradient of u), the correction for a node k on the opposite

side to the free boundary than the stencil center point becomes now |▽u|
6h2

d3k
instead of previously 1

2h2
d2k.

• Some rough approximation of |▽u| is needed. The whole numerical procedure
is iterative, and the result from a previous iteration is easily of sufficient accu-
racy (doing no boundary correction at all produces second order of accuracy
in this case, so already a first order accurate approximation to the correction
is enough to bring the boundary-caused errors well below the regular FD2
error level).

• Another consequence of the −u term in (7.1) is that the weight at the center
point of the 5-point stencil becomes slightly modified for nodes inside the
free boundary. Again, this is easily accommodated for by standard numerical

9

-4
-2

0
2

4

-4
-2

0
2

4

-1

-0.5

0

0.5

1

x

a. True solution u(x,y)

y -4 -2 0 2 4
-4-2024

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

x

b. Exact Laplacian of u(x,y)

y -4 -2 0 2 4
-4-2024

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

x

c. Numerical Laplacian of u(x,y)

y

-4 -2 0 2 4
-4-2024

-20

-15

-10

-5

0

5

x 10
-3

x

d. Errors in numerical Laplacian

y -4 -2 0 2 4
-4-2024

-20

-15

-10

-5

0

5

x 10
-3

x

e. Predicted errors

y -4 -2 0 2 4
-4-2024

-20

-15

-10

-5

0

5

x 10
-3

x

f. Difference between errors

y

F��. 7.3. The counterpart to Figure 4.1, but for Problem 2.

Poisson solvers.

Figure 7.3 shows the same information for Problem 2 as what Figure 4.1 displayed
for Problem 1 The errors in the (uncorrected) numerical Laplacian along the free
boundary are now much smaller in size (the solution u(x, t) is discontinuous first in the
third derivative, rather than in the second derivative for Problem 1) and they do not
oscillate in sign. The correction scheme is again seen to provide excellent predictions
for the FD2 scheme’s errors along the free boundary and, with it eliminated, subplot
(f) shows that regular truncation errors in the smooth regions then totally dominate
any free boundary induced errors.

Figure 7.4 corresponds to Figure 5.2 for Problem 1. Even without the free bound-
ary correction, the errors are this time on the O(h2) level. Because they are of one
sign only (cf. Figure 7.3 d), they happen to partly balance out the errors seen in
the center region. Hence we actually see in Figure 7.4 slightly smaller errors without
the correction than with it (top two curves). However, there is a lot more fine-scale
jitter in the uncorrected case, making Richardson extrapolation much less reliable.
When we look at the extrapolated curves in Figure 7.4 (based on meshes with grid
sizes h and 2h), it becomes clear that the present correction procedure combined with
extrapolation is by far the most effective option.

The fminimax optimization applies again without any difficulties, producing ac-
curacy results completely analogous to the residual results just shown in Figure 7.4.

10

10
0

10
1

10
2

10
3

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

n-1 : The number of subintervals along each side

S
ol

ut
io

n
er

ro
r

in
 m

ax
 n

or
m

Without correction
With correction
Order 2
Order 3.5

F��. 7.4. Max norm errors when solving Problem 2 with the FB location given. The step size h
satisfies h = 8/(n−1).The top two curves show corrected and the uncorrected FD2 results. The two
jagged curves show the previous results following a standard Richardson extrapolation. The trends
for increasing n (decreasing h) seem now to agree well with O(h2) and O(h3.5), respectively.

8. Generalization to other PDEs in 2-D and in 3-D. The proposed cor-
rection procedure, together with the use of fminimax, generalizes immediately to the
wider class of problems that was referred to in (1.1), (1.2), as well as to PDEs in more
than two space variables. The cases of 2-D and 3-D are discussed separately below.

8.1. 2-D cases. In the general 2-D case, the differential operator L takes the
form

L = a(x, y)
∂2u

∂x2
+ b(x, y)

∂2u

∂x∂y
+ c(x, y)

∂2u

∂y2
+ d(x, y)

∂u

∂x
+ e(x, y)

∂u

∂y
. (8.1)

Locally within each stencil, we can (to the required leading order of accuracy) re-
place all the variable coefficients with constant coefficients based on the values at
the stencil’s center point. Referring to Figure 3.1, the (ξ, η)-system is translated a
small amount (which is of no consequence) and then rotated an angle θ relative to
the (x, y)-system. The rotation transforms the operator to

(a cos2 θ+b cos θ sin θ+c sin2 θ)
∂2u

∂ξ2
+(· · ·)

∂2u

∂ξ∂η
+(· · ·)

∂2u

∂η2
+(· · ·)

∂u

∂ξ
+(· · ·)

∂u

∂η
. (8.2)

It suffices here to consider the case of Test Problem 1, in which a constant of one
enters the PDE the moment the free boundary is crossed (the analysis for second case

11

is entirely equivalent). The change we encounter in u will then, to leading order, be
equivalent to the deviation from identical zero encountered for the ODE

(a cos2 θ + b cos θ sin θ + c sin2 θ) uξξ + 1 = 0 (8.3)

with the initial conditions u(0) = u′(0) = 0. Compared to (3.2), the only difference
is the presence of a constant scalar multiplier

M = (a cos2 θ + b cos θ sin θ + c sin2 θ) . (8.4)

In the Laplace case, a = c = 1 and b = 0. M evaluates then to one for all values of
θ, and this multiplier could consequently be ignored. In other cases (independently
of the character of the nonlinear term), the corrections we use should just be divided
by this factor M relative to their values in the Laplace operator case. Since we, at
each stage of our iterations, have an approximation available for the location of the
free boundary, the values for θ are immediately available.

While iterating, we also have approximations for u(x, y) available. Even right
across an interface, the first derivatives of u(x, y) are continuous, and u(x, y) can
therefore locally be well approximated by a plane. This offers us another convenient
opportunity for approximating θ and thereby for computing the quantity M . Using
local centered finite differences within the stencil, we obtain readily approximations

δx for ∂u/∂x and δy for ∂u/∂y. It then holds that cos θ = δx/
√

δ2x + δ2y and sin θ =

δy/
√

δ2x + δ2y, providing us with the alternative approximation

M = (a δ2x + b δxδy + c δ2y)/(δ
2
x + δ2y). (8.5)

This formulation is equivalent to equation (15) in [9] (where it was stated without
any derivation; Figures 7-9 in that reference illustrated its accuracy).

8.2. 3-D cases. From the 2-D discussion above, it is clear that we only need to
consider the second order derivatives in L. Rather than using spherical coordinates
to describe how the interface surface is oriented in the (x, y, z)-coordinate system, it
becomes easier in this case to focus directly on obtaining a generalization of (8.5).
With L locally taking the form

a
∂2u

∂x2
+ b

∂2u

∂y2
+ c

∂2u

∂z2
+ d

∂2u

∂x∂y
+ e

∂2u

∂x∂z
+ f

∂2u

∂y∂z
+ {lower order terms},

one obtains similarly in place of (8.5)

M = (a δ2x + b δ2y + c δ2z + d δxδy + e δxδz + f δyδz)/(δ
2
x + δ2y + δ2z).

The only remaining 3-D issue is the technicality of finding a suitable numerical repre-
sentation of the free surface in terms of a relatively low number of parameters. In case
this surface is approximately spherical in nature, an expansion in spherical harmonics
will provide uniform resolution in the same way as a Fourier expansion does in 2-D
polar coordinates.

9. Conclusions. We have in this study revisited a procedure that was first pro-
posed in 1991 and which already then was shown to strongly reduce FD2 errors in
the vicinity of a free boundary. It has now been combined with minimax optimiza-
tion, producing an effective and easy-to-use approach for solving a wide range of free

12

boundary problems. If the solution features a jump in the second derivative at the
free boundary, full second order accuracy is obtained (in both solution and in the free
boundary location). If the irregularity occurs first in the third derivative, Richardson
extrapolation becomes available, and gives better than third order accuracy. In ei-
ther case, the correction procedure greatly improves the accuracy of the original FD2
scheme or, if a certain accuracy level is required, this level may be reached with a
fraction of the number of node points that otherwise would have been needed.

10. Acknowledgements. The present work was supported by the NSF Grants
DMS-0611681, DMS-0914647 and ATM-0620068. A significant part of the present
work was carried out while the author was a Vising Fellow at OCCAM (Oxford
Centre for Collaborative Applied Mathematics) under support provided by Award
No. KUK-C1-013-04 to the University of Oxford, UK, by King Abdullah University
of Science and Technology (KAUST).

REFERENCES

[1] Bateman, G., MHD instabilities, MIT Press, Cambridge, MA / London (1980).
[2] Borja, R.I. and Kishnani, S.S., On the solution of elliptic free-boundary problems via Newton’s

method, Computer Math. in Appl. Mech. Eng. 88 (1991), 341-361.
[3] Crank, J., Free and moving boundary problems, Clarendon Press, Oxford (1984).
[4] Elcrat, A., Fornberg, B., Horn, M. and Miller, K., Some steady vortex flows past a circular

cylinder, J. Fluid Mech. 409 (2000), 13-27.
[5] Elcrat, A., Fornberg, B. and Miller, K., Some steady axisymmetric vortex flows past a sphere,

J. Fluid Mech. 433 (2001), 315-328.
[6] Fox, L. and Sankar, R., The regula-falsi method for free-boundary problems, IMA J. Appl. Math.

12 (1973), 49-54.
[7] LeVeque, R.J. and Li, Z., The immersed interface method for elliptic equations with discontin-

uous coefficients and singular sources, SIAM J. Numer. Anal. 31 (1994), 1019-1044.
[8] Miller, K., Fornberg, B., Flyer, N. and Low, B.C., Magnetic relaxation in the solar corona, The

Astrophysical Journal, 609 (2009), 720-733.
[9] Fornberg, B. and Meyer-Spasche, R., A finite difference procedure for a class of free boundary

problems, J. Comput. Phys., 102 (1992), 72-77.
[10] Meyer-Spasche, R. and Fornberg, B., Discretization errors at free boundaries of the Grad-

Schlüter-Shafranov equation, Numer. Math. 59 (1991), 683-710.
[11] Saffman, P.G., Vortex Dynamics, Cambridge University Press (1992).
[12] Scardovelli, R. and Zaleski, S., Direct numerical simulation of free-surface and interfacial flow,

Annual Rev. Fluid Mech. 31 (1999), 567-603.

13

