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THRESHOLD OF FRONT PROPAGATION IN NEURAL FIELDS:
AN INTERFACE DYNAMICS APPROACH\ast 

GR\'EGORY FAYE\dagger AND ZACHARY P. KILPATRICK\ddagger 

Abstract. Neural field equations model population dynamics of large-scale networks of neu-
rons. Wave propagation in neural fields is often studied by constructing traveling wave solutions
in the wave coordinate frame. Nonequilibrium dynamics are more challenging to study, due to the
nonlinearity and nonlocality of neural fields, whose interactions are described by the kernel of an
integral term. Here, we leverage interface methods to describe the threshold of wave initiation away
from equilibrium. In particular, we focus on traveling front initiation in an excitatory neural field.
In a neural field with a Heaviside firing rate, neural activity can be described by the dynamics of the
interfaces, where the neural activity is at the firing threshold. This allows us to derive conditions for
the portion of the neural field that must be activated for traveling fronts to be initiated. Explicit
equations are possible for a single active (superthreshold) region and special cases of multiple discon-
nected active regions. The dynamic spreading speed of the excited region can also be approximated
asymptotically. We also discuss extensions to the problem of finding the critical spatiotemporal input
needed to initiate waves.
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1. Introduction. Traveling waves are ubiquitous in nature, arising in a wide
variety of biological processes, including epidemics [26], actin polymerization [1], and
evolution [38]. These processes are usually modeled by nonlinear partial differential
equations (PDEs) that combine nonlinear local interactions and spatial dynamics like
diffusion [35]. Such continuum equations can yield traveling wave solutions in closed
form, so the effect of model parameters on wave dynamics can be quantified in detail.
For instance, neural field models describe large-scale dynamics of nonlocally connected
networks of neurons, and their constituent functions can be tuned to produce a multi-
tude of spatiotemporal solutions [7]. Such results can be connected to coherent neural
activity patterns observed in cortical slice and in vivo experiments [28, 29, 37].

Large-scale neural activity imaged using voltage sensitive dye exhibits myriad
forms of propagating neural activity in different regions of the brain [41, 43]. For
instance, sensory inputs can nucleate traveling waves in olfactory [16] and visual cor-
tices [27]. Waves may propagate radially outward from the site of nucleation [23], with
constant direction as plane waves [44], or rotationally as spiral waves [29]. Sufficiently
large amplitude sensory stimuli can initiate traveling waves of neural activity, but the
threshold for initiation is difficult to identify [39]. A recent study has shown that if
two visual stimuli are presented sufficiently close together in time, only a single wave
is generated [25]. This suggests there is an internal state-dependent threshold that
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shapes the time and stimulus amplitude necessary for wave initiation. In this work,
we analyze a neural field model to understand how such propagation thresholds can
be defined in a large-scale network of neurons.

Neural field equations provide a tractable model of coherent neural activity, which
can be used to relate features of a network to the activity patterns it generates [7, 9].
The building blocks of a neural field are excitatory neurons, which activate their neigh-
bors, and inhibitory neurons, which inactivate their neighbors. Wilson and Cowan
showed that a localized stimulus to an excitatory/inhibitory neural field can produce
outward propagating traveling waves [42], and Amari constructed such solutions as-
suming a high gain firing rate function [2]. Following this seminal work, Ermentrout
and McLeod used a continuation argument to prove the existence of traveling fronts
in a purely excitatory neural field [19]. Subsequent studies of neural fields have built
on this work by incorporating propagation delays or spatial heterogeneity and by
adding variables representing slow processes like adaptation [20, 21, 30, 31, 36]. A
wide variety of spatiotemporal patterns emerge including Turing patterns [8], travel-
ing pulses [12, 22, 36], breathers [24], and self-sustained oscillations [31, 40]. However,
most previous work focuses on construction of solutions and local dynamics near equi-
libria, addressed via linear stability or perturbation theory [13, 30, 34]. Nonequilib-
rium dynamics are less tractable in these infinite-dimensional systems, and so there
are few results exploring the outermost bounds of equilibrium solutions' basins of
attraction.

In the present study, we characterize the basins of attraction of the stationary
solutions of an excitatory neural field. We focus on a scalar neural field model that
supports traveling front solutions [19, 36]:

(1)

\Biggl\{ 
\partial tu(x, t) =  - u(x, t) +

\int 
\BbbR w(x - y)H(u(y, t) - \kappa )dy + I(x, t), t > 0, x \in \BbbR ,

u(x, 0) = u0(x), x \in \BbbR ,

where u(x, t) is the total synaptic input at location x \in \BbbR and time t > 0 and w(x - y)
is a kernel describing synaptic connections from neurons at location y to those at x.
Our results can be extended to the case x \in \BbbR 2, as we will show in a subsequent
paper. We assume the kernel w(x) is even, w(x) = w( - x); decreasing in | x| > 0;
positive, w(x) > 0; and has a bounded integral,

\int 
\BbbR w(x)dx < \infty . For simplicity, we

consider a normalized kernel
\int 
\BbbR w(x)dx = 1, but this is not necessary. To calculate

explicit results, we consider the exponential kernel [6, 36]

w(x) =
1

2
e - | x| .(2)

Nonlinearity in (1) arises due to the Heaviside firing rate function [13, 19]

H(u - \kappa ) =

\biggl\{ 
1, u \geq \kappa ,
0, u < \kappa ,

allowing us to determine dynamics of (1) by the threshold crossings u(xj(t), t) = \kappa ,
yielding interface equations [10, 15]. Note that the analysis presented herein relies
strongly on the assumption of a step nonlinearity, but see [14] for methods of approx-
imating wave solutions in neural fields with steep sigmoid nonlinearities, which could
be extended to derive the interface equations.

Our analysis focuses on the case of (1) for which traveling fronts propagate out-
ward, so active regions (u(x, t) \geq \kappa ) invade inactive regions (u(x, t) < \kappa ). As a
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consequence, throughout the manuscript we assume \kappa \in (0, 1/2). We derive this con-
dition explicitly in section 2. The central focus of our work is to examine how the
long term dynamics of (1) are determined by the initial condition u(x, t) = u0(x). For
simplicity, we restrict 0 \leq u0(x) \leq 1 for all x \in \BbbR . We also examine the impact of
external inputs I(x, t), determining how they shape the long term behavior of (1).

Several previous studies have shown that traveling front solutions to (1) can be
constructed [6, 19, 36]. Importantly they coexist with the two stable homogeneous
states, u \equiv 0 and u \equiv 1. Thus, some initial conditions u0(x) will decay (u \rightarrow 0),
but others will propagate (u \rightarrow 1) as t \rightarrow \infty . Our work addresses the following
question: What conditions on u0(x) and (1) determine limt\rightarrow \infty u(x, t)? Note that in
section 2, we explicitly construct a family of unstable intermediate stationary solu-
tions, including single bumps and periodic patterns. While it is tempting to consider
these solutions separatrices between the quiescent state (u \equiv 0) and the emergence of
two counter-propagating fronts, this picture of the full dynamics of (1) is incomplete.
One can easily construct initial conditions u0(x) whose long term dynamics cannot
be resolved by simply examining properties of these intermediate solutions. A related
point is that intuition gained from analyzing the equivalent problem in nonlinear PDE
models (whose interactions are local) [17, 45] does not readily extend to the analysis
of neural fields (which are nonlocal). To distinguish cases that lead to decay versus
propagation, we project the neural field equation (1) dynamics to equations for the
interfaces xj(t), where u(xj(t), t) = \kappa .

Our paper proceeds as follows. In section 2, we summarize the classes of entire
solutions to (1), which are relevant for our analysis, noting there are (i) homogeneous
states, u(x, t) \equiv \=u \in \{ 0, 1\} ; (ii) a family of unstable stationary solutions, u(x, t) =
UL(x) with period L; and (iii) traveling waves, u(x, t) = Uf (x - ct). Next, in section
3, we analyze the nonequilibrium dynamics of (1) using interface equations for the
case in which u0(x) \geq \kappa on a single active region x \in [x1, x2], which allows us to
classify the threshold between propagation (u \rightarrow 1) and failure (u \rightarrow 0). Our reduced
interface equations also allow us to calculate the timescale of the transient dynamics
as they approach equilibrium. In addition, we discuss requirements on an external
stimulus I(x, t) necessary to activate a traveling wave. In section 4, we derive interface
equations for (1) for multiple (N > 1) active regions u0(x) for x \in \cup N

n=1[x2n - 1, x2n].
Some explicit results are possible in the casesN \rightarrow \infty andN = 2, showing interactions
between active regions impact the propagation threshold. Our analysis provides a tool
for linking initial conditions of spatially extended neural field equations away from
equilibrium to their eventual equilibrium state.

2. Entire solutions of the excitatory neural field. We begin by summariz-
ing the relevant entire solutions of the neural field equation (1) for I(x, t) \equiv 0. By
entire solutions, we mean solutions of (1) which are defined for all time t \in \BbbR , which
include traveling waves and three types of stationary solutions:

(i) the two homogeneous states u = 0 and u = 1, which are both locally stable;
(ii) an unstable symmetric one bump solution Ub;
(iii) a family of periodic solutions UL which are all unstable.
Homogeneous states (i) are locally stable, attracting almost all initial conditions

(Figure 1A, B), whereas the other stationary states, (ii) and (iii), separate some initial
conditions into those that propagate and those that decay (Figure 1B). However,
multimodal initial conditions cannot be characterized using local analysis (Figure
1C). Our analysis in sections 3 and 4 will emphasize the nonequilibrium dynamics
away from entire solutions, exploring conditions necessary for attraction to one of
the two homogeneous states. Traveling waves and stationary solutions have been
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Fig. 1. Long term behavior of initial conditions u0(x) for (1) in one dimension. (A) Entirely
subthreshold (superthreshold) initial conditions decay (grow). If u0(x) < \kappa for all x, then u \rightarrow 0
as t \rightarrow \infty (u<), whereas if u0(x) \geq \kappa for all x, then u \rightarrow 1 as t \rightarrow \infty . (B) Initial conditions
below (above) the unstable bump Ub(x) decay (grow). If u0(x) < Ub(x) for all x, then u \rightarrow 0 as
t \rightarrow \infty (u<), whereas if u0(x) > Ub(x) for all x, then u \rightarrow 1 as t \rightarrow \infty . (C) Characterization
of limt\rightarrow \infty u(x, t) is less straightforward for multimodal initial conditions. Even though each active
region (A1 and A2, where u0(x) \geq \kappa ) is narrower than the unstable bump Ub(x), this initial condition
could lead to propagation due to nonlocal interactions.

characterized in detail in previous works, so we will simply state key formulas rather
than carrying out derivations [2, 5, 7, 9, 11, 18, 24, 32].

2.1. Bump solution. Stationary bumps u(x, t) = Ub(x), with a single active
region Ub(x) \geq \kappa for x \in [x1, x2], centered at x = 0, so x \in [ - b, b] take the form

Ub(x) =

\int b

 - b

w(x - y)dy = W (x+ b) - W (x - b),(3)

where we have defined the antiderivative of the weight kernel

W (x) =

\int x

0

w(y)dy.(4)

The threshold condition Ub(\pm b) = W (2b) = \kappa can be solved to identify the unique
bump half-width b: b0(\kappa ) = W - 1(\kappa )/2 for any \kappa \in (0, 1/2). Local stability analysis
can be used to show Ub is linearly unstable [2, 24].

2.2. Periodic solutions. There are also L-periodic stationary solutions UL(x)
with an infinite number of superthreshold regions \cup \infty 

n= - \infty [ - b+nL, b+nL], under the
restriction 2b < L, which take the form [32]

UL(x) =
\sum 
n\in \BbbZ 

\int b+nL

 - b+nL

w(x - y)dy =
\sum 
n\in \BbbZ 

(W (x+ b+ nL) - W (x - b+ nL)) .(5)

Applying any threshold condition, UL(\pm b+ nL) = \kappa , we obtain an implicit equation
for the region half-widths b given by

\kappa =
\sum 
n\in \BbbZ 

(W (2b+ nL) - W (nL)) := WL(b),(6)

which can be inverted for \kappa \in (0, 1) and L > 0 to obtain the unique solution

bL(\kappa ) = W - 1
L (\kappa ) \in (0, L/2) .

A local analysis can be used to show that UL is linearly unstable [32].
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Fig. 2. Phase portrait of (7), describing stationary solutions of (1) with an exponential kernel,
(2) with \kappa \in (0, 1/2). Solid black horizontal and blue diagonal lines are nullclines of U and U \prime ,
respectively. Homogeneous states \=U = 0, 1 occur at their intersection. Homoclinic orbits arise
about the point (U,U \prime ) = (\kappa , 0), crossing the threshold \kappa twice. The single bump Ub (red outer
trajectory) forms a separatrix, bounding all other nontrivial stationary solutions. There exists an
infinite number of periodic solutions UL inside (green inner trajectories), whose orbits shrink as L
is decreased from infinity.

2.3. An illustrative example: Exponential weight kernel. For an expo-
nential weight kernel, (2), the Fourier transform of w is \^w(k) = 1/(1+k2) for k \in \BbbR , so
convolution by w corresponds to the operator (I - \partial xx)

 - 1. As a consequence, any sta-
tionary solutions of (1) are solutions of the piecewise-smooth second order differential
equation, U(x) - U \prime \prime (x) = H(U(x) - \kappa ), which can be written as

(7)

\Biggl\{ 
U \prime (x) = V (x),

V \prime (x) = U(x) - H(U(x) - \kappa ).

The complete phase portrait of (7) is given in Figure 2 from which we recover the
existence of a unique symmetric bump solution and a family of periodic solutions.

2.4. Traveling fronts. To construct traveling wave solutions, we introduce the
traveling wave coordinate \xi = x - ct, where c denotes the wave speed, and integrate
the corresponding equation to yield [6, 13, 36]

Uf (\xi ) = e\xi /c

\Biggl[ 
\kappa  - 1

c

\int \xi 

0

e - y/c(W\infty  - W (y))dy

\Biggr] 
.

Assuming c > 0 (for \kappa \in (0, 1/2)) and requiring boundedness implies

\kappa =
1

c

\int \infty 

0

e - y/c(W\infty  - W (y))dy,(8)

and so the traveling front solution will be of the form

Uf (\xi ) =
1

c

\int \infty 

0

e - y/c(W\infty  - W (y + \xi ))dy.(9)

Equation (8) relates the wavespeed c to the threshold \kappa and kernel w(x) and can be
rearranged along with integration by parts to yield a simpler implicit equation for c,\int \infty 

0

e - y/cw(y)dy = W\infty  - \kappa .(10)
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Since W\infty = 1/2, (10) will only have a solution with corresponding c \in (0,\infty ) if
\kappa \in (0, 1/2), since the integral on the left-hand side is positive and bounded from
above by W\infty . Local stability has been studied previously [13], demonstrating the
wave solution Uf is marginally stable to perturbations that shift its location.

This concludes our analysis of entire solutions to (1) in the case I \equiv 0. Guided
by the fact that the homogeneous solutions \=u \equiv 0, 1 are stable, and the intermediate
bump Ub(x) and periodic solutions UL(x) are unstable, we generally expect initial
conditions u0(x) to either be attracted to \=u \equiv 0 or \=u \equiv 1 as t \rightarrow \infty . In the next
section, we demonstrate a means of determining the fate of unimodal initial conditions
using interface equations.

3. Nonequilibrium dynamics of a single active region. In this section, we
identify conditions on u0(x) with a single active region (u0(x) \geq \kappa for x \in [x1, x2]),
so the solution to (1) propagates (assuming I(x, t) \equiv 0). In what follows, we as-
sume 0 \leq u0(x) \leq 1 is unimodal, u\prime 

0(x0) = 0, and u\prime 
0(x) \gtrless 0 for x \lessgtr x0, ensuring

there are no more than two interfaces for t > 0. First, we derive results for even
u0(x) = u0( - x), and then we extend to asymmetric u0(x). Initial conditions can be
separated into subthreshold ones that lead to decay and superthreshold ones that lead
to propagation. Lastly, we identify conditions on the external input I(x, t) to (1) that
ensure propagation when u0(x) \equiv 0.

3.1. Interface equations and criticality: Even symmetric case. Symme-
try of (1) with I \equiv 0 ensures solutions with even initial conditions are always even, so
the active region A(t) = \{ x \in \BbbR | u(x, t) \geq \kappa \} is symmetric for t > 0. The dynamics
of the symmetric active region A(t) = [ - a(t), a(t)] can be described with interface
equations for the two points x = \pm a(t) (see [2, 15]). We start by rewriting (1) as

\partial tu(x, t) =  - u(x, t) +

\int 
A(t)

w(x - y)dy,(11)

which can be further simplified:

\partial tu(x, t) =  - u(x, t) +W (x+ a(t)) - W (x - a(t)).

Equation (11) remains well defined even in the case where a(t) vanishes. We can
describe the dynamics of the two interfaces by the implicit equations

u(\pm a(t), t) = \kappa .(12)

Differentiating (12) with respect to t, we find the total derivative is

\pm \alpha (t)a\prime (t) + \partial tu(\pm a(t), t) = 0,(13)

where we define a\prime (t) = da(t)
dt and \pm \alpha (t) = \partial xu(\pm a(t), t). The symmetry of (13) allows

us to reduce to a single differential equation for the dynamics of a(t):

a\prime (t) =  - 1

\alpha (t)
[W (2a(t)) - \kappa ] ,(14)

where we have substituted (11) at a(t) for \partial tu(a(t), t). Equation (14) is not well
defined for \alpha (t) = 0, but we will show how to circumvent this difficulty. Furthermore,
we can obtain a formula for \alpha (t) by defining z(x, t) := \partial xu(x, t) and differentiating
(11) with respect to x to find [15]

\partial tz(x, t) =  - z(x, t) + w(x+ a(t)) - w(x - a(t)),
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which we can integrate and evaluate at a(t) to find

\alpha (t) = u\prime 
0(a(t))e

 - t + e - t

\int t

0

es [w(a(t) + a(s)) - w(a(t) - a(s))] ds.(15)

Thus, we have a closed system describing the evolution of the right interface a(t)
of the active region A(t), given by (14) and (15), along with the initial conditions
a(0) = \ell and \alpha (0) = u\prime 

0(\ell ) < 0, as long as \alpha (t) < 0. Criticality occurs for initial
conditions such that a\prime (t) = 0, which means W (2\ell ) = \kappa , i.e., for \ell = b = W - 1(\kappa )/2,
so the critical \ell is precisely the half-width of the unstable stationary bump solution
Ub(x) defined in (3).

Propagation. If \ell > W - 1(\kappa )/2, then a\prime (t) > 0 and, due to the monotonicity of
w and (15), \alpha (t) < 0 for all time t > 0 so limt\rightarrow \infty a(t) = \infty , and the active region
A(t) expands indefinitely. As a consequence, for any compact set K = [ - k, k] with
k > 0 given and any \epsilon > 0, we can find t\ast > 0 large enough such that K \subset A(t\ast ) and

| W (x+ a(t\ast )) - W (x - a(t\ast )) - 1| \leq \epsilon \forall x \in K,

so that for any equal or later time s \geq t\ast we have

| W (x+ a(s)) - W (x - a(s)) - 1| \leq \epsilon \forall x \in K.

We can solve for u(x, t) starting for time t\ast to obtain

u(x, t) = u(x, t\ast )e
t\ast  - t + e - t

\int t

t\ast 

es (W (x+ a(s)) - W (x - a(s))) ds.

Using the fact that any solution is continuous, we have that | u(x, t\ast )| \leq M for all
x \in K. As a consequence, we get that for all x \in K,

| u(x, t) - 1| =
\bigm| \bigm| \bigm| \bigm| (u(x, t\ast ) - 1)et\ast  - t + e - t

\int t

t\ast 

es (W (x+ a(s)) - W (x - a(s)) - 1) ds

\bigm| \bigm| \bigm| \bigm| 
\leq (1 +M)et\ast  - t + \epsilon .

This implies that limt\rightarrow \infty | u(x, t)  - 1| = 0 for all x \in K. As a consequence, the
solutions of (1) locally uniformly converge to the homogeneous state u \equiv 1 as t \rightarrow \infty 
(Figure 3A). Thus, we have propagation of u \equiv 1 into u \equiv 0 as time evolves.

Extinction. If \ell < W - 1(\kappa )/2, then a\prime (t) < 0 and 0 < a(t) < \ell on t \in (0, t0). By
continuity, there exists a finite t0 > 0 such that a(t0) = 0, at which point the interface
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Fig. 3. Long term behavior of u(x, t) depends only on how the initial interface location
a(0) = \ell compares to the bump half-width, b = W - 1(\kappa )/2. (A) If \ell > b, propagation occurs
and limt\rightarrow \infty u(x, t) \equiv 1 for all x \in K = [ - k, k] for k < \infty . This follows from the fact that for any
K, we can find a time t\ast for which u(x, t\ast ) > \kappa for all x \in K. (B) If \ell < b, eventually u(x, t) < \kappa ,
right after the time t0 when u(0, t0) = \kappa , and so limt\rightarrow \infty u(x, t) \equiv 0. (C) If \ell = b, stagnation occurs
and limt\rightarrow \infty u(x, t) = Ub(x).
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dynamics, (14) and (15), breaks down. We know this because W (2a(t)) - \kappa < 0 and
decreases as a(t) decreases. Note also that for t \in (0, t0) we consistently have \alpha (t) < 0.
Inspecting (15) shows that limt\rightarrow t - 0

\alpha (t) = 0 since u\prime 
0(0) = 0. Thus, at time t = t0, we

have 0 \leq u(x, t0) \leq \kappa , and for t \geq t0, \partial tu(x, t) =  - u(x, t), so u(x, t) = et0 - tu(x, t0)
for t \geq t0, and limt\rightarrow \infty u(x, t) \equiv 0, uniformly on x \in \BbbR (Figure 3B).

Stagnation. If \ell = W - 1(\kappa )/2 =: b0, then a\prime (t) = 0 for all time assuming \alpha (t) <
0, implying a(t) \equiv b0. Plugging into (15) yields \alpha (t) with \alpha (t) = (w(2b0) - w(0))(1 - 
e - t) + u0(b0)e

 - t < 0. As a consequence, a(t) = b0 for all time and limt\rightarrow \infty \alpha (t) =
w(2b0) - w(0). Furthermore, we can explicitly solve for

u(x, t) = W (x+ b0) - W (x - b0) + e - t [u0(x) - W (x+ b0) +W (x - b0)] ,

so limt\rightarrow \infty u(x, t) \equiv Ub(x), uniformly on \BbbR . We call this case stagnation as the active
region remains fixed for t > 0 (Figure 3C).

To summarize, we have shown the following result.
Starting with smooth unimodal even initial conditions, u0(x) = u0( - x), with a

single active region, u0(x) \geq \kappa for | x| \leq \ell and u0(x) < \kappa elsewhere, \ell > 0 satisfying
u\prime 
0(x) \gtrless 0 for x \lessgtr 0, the fate of the solutions u(x, t) to the Cauchy problem, (1), falls

into three cases:
(i) If \ell > W - 1(\kappa )/2, then u \rightarrow 1 locally uniformly on \BbbR as t \rightarrow +\infty .
(ii) If \ell < W - 1(\kappa )/2, then u \rightarrow 0 uniformly on \BbbR as t \rightarrow +\infty .
(iii) If \ell = W - 1(\kappa )/2, then u \rightarrow Ub uniformly on \BbbR as t \rightarrow +\infty .

3.2. Interface equations and criticality: Asymmetric case. We can ex-
tend our analysis to unimodal but asymmetric initial conditions, u0(x) \not = u0( - x).
Conditions can be stated in terms of the active region of the initial condition A(0) =
[\=x1, \=x2], where u0(x) \geq \kappa . The active region of u(x, t) is now defined A(t) = [x1(t),
x2(t)] with associated spatial gradients \alpha j(t) = \partial xu(xj(t), t) for j = 1, 2. Carrying
out a derivation of the interface dynamics then yields [15, 33]

x\prime 
j(t) =  - 1

\alpha j(t)
[W (x2(t) - x1(t)) - \kappa ] ,(16a)

\alpha j(t) = u\prime 
0(xj(t))e

 - t + e - t

\int t

0

es [w(xj(t) - x1(s)) - w(xj(t) - x2(s))] ds,(16b)

along with initial conditions xj(t) = \=xj and \alpha j(0) = u\prime 
0(\=xj) for j = 1, 2, now requiring

\alpha 1(t) > 0 and \alpha 2(t) < 0. Criticality occurs for initial conditions such that x\prime 
j(t) = 0,

which means W (\=x2  - \=x1) = \kappa , so the critical width 2b0 := W - 1(\kappa ) is precisely
the width of the stationary bump Ub(x). Similar to our findings in the symmetric
case, we can show (i) propagation occurs if \=x2  - \=x1 > 2b0; (ii) extinction occurs for
\=x2  - \=x1 < 2b0; and (iii) stagnation occurs for \=x2  - \=x1 = 2b0.

3.3. Asymptotic results. As demonstrated, we can predict the long term dy-
namics of (1) based on the initial condition u0(x) and a subsequent analysis of the
interface dynamics. The interface equations also allow us to derive convenient asymp-
totic approximations to the speed of propagating solutions and the time to extinction
of decaying solutions. To do so, we truncate the interface system, (14) and (15), to
leading order in the symmetric case.

Long term propagation speed. For propagating solutions, we know
limt\rightarrow \infty a(t) = +\infty . Assuming the interface propagates at constant speed a(t) \sim 
ct + a0 in the limit t \rightarrow \infty , self-consistency is enforced by plugging into (15) and
evaluating
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lim
t\rightarrow \infty 

\alpha (t) = lim
t\rightarrow \infty 

\biggl[ 
u\prime 
0(a(t))e

 - t +

\int t

0

e - (t - s) [w(c(t+ s) + 2a0) - w(c(t - s))] ds

\biggr] 
=  - lim

t\rightarrow \infty 

\int t

0

e - (t - s)w(c(t - s))ds =  - 1

c

\int \infty 

0

e - y/cw(y)dy := \=\alpha .

Differentiating (9) for Uf (\xi ) and plugging in \xi = 0, we obtain the same formula, so
\=\alpha = U \prime 

f (0), the gradient of the traveling front solution at the threshold \kappa . Plugging
into (14) along with our assumption a(t) = ct + a0, we find an implicit equation for
c,

\int \infty 
0

e - y/cw(y)dy = W\infty  - \kappa , which matches (10).
Time to extinction. To approximate the extinction time t0 when a(t0) = 0 in

the case \ell < W - 1(\kappa )/2, we work in the limit 0 < \ell \ll 1. As 0 < a(t) < \ell for time
t \in (0, t0), a Taylor expansion of (14) and (15) in 0 < a(t) \ll 1 implies \alpha (t) and t0 are
small too. In this case, we can approximate \alpha (t) \approx u\prime \prime 

0(0)\ell , using the leading order
term in (15), so plugging into (14) and integrating we can estimate

\ell 

\kappa 
\approx t0

\ell | u\prime \prime 
0(0)| 

\Rightarrow t0 \approx \ell 2| u\prime \prime 
0(0)| /\kappa as \ell \rightarrow 0.(17)

3.4. Critical stimulus for activation. We now consider the impact of spa-
tiotemporal inputs I(x, t) on the long term dynamics of (1) when u0(x) \equiv 0. This
may be more biologically realistic than assuming arbitrary initial conditions, as waves
are often initiated experimentally in cortical tissue by applying an external stimu-
lus [16, 23, 44]. To provide intuition, we first construct stationary solutions assuming
I(x, t) \equiv I(x) is unimodal (I \prime (0) = 0 and I \prime (x) \gtrless 0 for x \lessgtr 0), positive I(x) > 0,
and even I(x) = I( - x). When maxx\in \BbbR I(x) = I(0) > \kappa , we show that if there
are any stationary bump solutions, the one with minimal half-width bmin is linearly
stable. Subsequently, we derive conditions for a brief stimulus lasting a time t1,
I(x, t) = I(x)\chi [0,t1] (\chi [0,t1] = 1, t \in [0, t1], 0 otherwise) that ensure propagation of
solutions for times t > t1. We show that (i) there must be no stationary bump solu-
tions to (1) with I(x, t) = I(x) and (ii) the active region at t = t1 must be wider than
that of the critical bump Ub(x) of the input-free system.

Stationary bump solutions to (1) for I(x, t) \equiv I(x) with a single active region
have the form Ub(x) = W (x+ b) - W (x - b) + I(x). The threshold condition

Ub(\pm b) = W (2b) + I(b) = G(b) = \kappa (18)

defines an implicit equation for the half-width b. An algebraic argument can be used
to show that if there are solutions b to (18), they will all be less than the solution to
the input-free case I \equiv 0: b < b0 = W - 1(\kappa )/2. See Figure 4A for illustration. Local
analysis can be used to show that the sign of G(b) determines the stability of a bump
of half-width b (G(b) < 0: stable; G(b) > 0: unstable), and if there are any solutions
to (18), the minimal one bmin will be stable or marginally stable [24].

We now demonstrate that for a spatiotemporal input, I(x, t) = I(x)\chi [0,t1], to
generate propagation, (i) equation (18) must have no solutions, and (ii) t1 must be
large enough so the active region A(t) = [ - a(t), a(t)] satisfies a(t1) > b0, where b0
solves (18) for I \equiv 0. Starting from u0(x) \equiv 0, we know initially, the dynamics
obeys \partial tu(x, t) =  - u(x, t)+ I(x, t), so u(x, t) = I(x)(1 - e - t) during this phase. This
formula determines the lower bound on the stimulus time t0 < t1 needed to generate
a nontrivial active region, A(t) \not = \varnothing . This time is given by solving

max
x\in \BbbR 

u(x, t0) = I(0)(1 - e - t0) = \kappa \Rightarrow t0 = ln

\biggl[ 
I(0)

I(0) - \kappa 

\biggr] 
.
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Fig. 4. Conditions for propagation driven by the input I(x, t) = I(x)\chi [0,t1], when u(x, 0) \equiv 
0. (A) For symmetric, unimodal, and positive profile I(x) with I(0) > \kappa , propagation will only
occur if G(b) = W (2b) + I(b) = \kappa has no solutions, which occurs for sufficiently wide I(x) (note
inset). If solutions to (18) exist, the minimal one will be linearly (bs) or marginally (bm) stable.
Corresponding unstable solutions bu will typically be close to b0, the solution to W (2b0) = \kappa . (B)
For I(x) such that G(bs) = \kappa for some bs, u(x, t1) \approx Ubs (x) for large enough t1 with active region
[ - a1, a1] for a1 := a(t1) < b0, so limt\rightarrow \infty u(x, t) \equiv 0. (C) Here, I(x) is chosen such that G(b) = \kappa 
has no solutions. Taking te such that ue = u(x, te) satisfies u(\pm ae, te) = \kappa with ae < b0, then
limt\rightarrow \infty u(x, t) \equiv 0. On the other hand, for tp such that up = u(x, tp) satisfies u(\pm ap, tp) = \kappa with
ap > b0, then u(x, t) propagates as t \rightarrow \infty .

If t1 \leq t0, then the long term dynamics of the solution is u(x, t) = I(x)(1 - e - t1)e - (t - t1)

for t > t1, and limt\rightarrow \infty u(x, t) \equiv 0. Note if I(0) < \kappa , then u(x, t) < \kappa for all t > 0.
If t1 > t0, then for t0 < t < t1, we can derive the interface equations for

u(\pm a(t), t) = \kappa , which are

a\prime (t) =  - 1

\alpha (t)
[W (2a(t)) - \kappa + I(a(t))] ,(19a)

\alpha (t) = e - t

\int t

t0

es [w(a(t) + a(s)) - w(a(t) - a(s)) + I \prime (a(s))] ds(19b)

with initial conditions a(t0) = 0 and \alpha (t0) = 0, so a\prime (t0) diverges. Despite the
singularity, we can show that a\prime (t) is integrable for | t  - t0| \ll 1 and a(t), \alpha (t) \propto \surd 
t - t0. We desingularize (19) with the change of variables \tau =  - 

\int t

t0
ds

\alpha (s) [3, 4], so

the differential equation for \~a(\tau ) in the new coordinate frame is

d\~a

d\tau 
(\tau ) = W (2\~a(\tau )) - \kappa + I(\~a(\tau ))(20)

with \~a(0) = 0. Since we know \alpha (t) < 0 for t > t0, then \tau will be an increasing function
of t, so we refer now to \tau 1 := \tau (t1) and note 0 = \tau (t0). Because I(0)  - \kappa > 0 by
assumption, we have d\~a

d\tau (\tau ) > 0 for all \tau where it is defined.
There are three remaining cases now, which depend on the existence of solutions to

(18) and the time \tau 1 > 0: (I) equation (18) has at least one solution, and propagation
does not occur; (II) equation (18) has no solutions, but \tau 1 \leq \tau c, the time at which
\~a(\tau c) = b0 for I(x, \tau ) \equiv I(x), and propagation does not occur; (III) equation (18) has
no solutions, and \tau 1 > \tau c, so propagation occurs. We now treat these three cases in
detail.

Case I: minx\in \BbbR G(x) \leq \kappa . Here, (18) possesses at least one solution. By our
assumption I(0) > \kappa , this solution bmin is linearly or marginally stable, as mentioned.
Equation (20) implies d\~a

d\tau > 0 for all \tau < \tau 1, but
d\~a
d\tau vanishes at \~a = bmin, so \~a(\tau ) <

bmin < b0 for all \tau < \tau 1. Thus, once \tau = \tau 1, the dynamics is described by the
extinction case detailed in section 3.1, and limt\rightarrow \infty u(x, t) \equiv 0 (Figure 4B).

Case II: minx\in \BbbR G(x) > \kappa and \tau 1 \leq \tau c. Here (18) has no solutions, but \~a(\tau ) will
not grow large enough for propagation to occur once the input I(x, \tau ) is terminated.
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This is due to the condition \tau 1 \leq \tau c, where we can define the critical time \tau c as the
time when \~a(\tau c) = b0 = W - 1(\kappa )/2 as\int W - 1(\kappa )/2

0

da

W (2a) - \kappa + I(a)
=  - 

\int tc

t0

dt

\alpha (t)
:= \tau c.(21)

By definition \~a(\tau 1) \leq b0, so once \tau = \tau 1, the dynamics is described by (a) the
extinction case in section 3.1 if \tau 1 < \tau c, so limt\rightarrow \infty u(x, t) \equiv 0, or (b) the stagnation
case in section 3.1 if \tau 1 = \tau c, so limt\rightarrow \infty u(x, t) \equiv Ub(x) (Figure 4C).

Case III: minx\in \BbbR G(x) > \kappa and \tau 1 > \tau c. Finally, we describe the case ensuring
propagation for t \rightarrow \infty . Requiring \tau 1 > \tau c with (21), we have that \~a(\tau 1) > b0. After
\tau = \tau 1, the dynamics is described by the propagation case in section 3.1, so the
homogeneous state u \equiv 1 is locally uniformly propagating as t \rightarrow \infty (Figure 4C).

3.5. Explicit results for exponential kernel. Lastly, we demonstrate the
results derived above using the exponential kernel, (2). The form of the interface
equations for symmetric initial conditions and I \equiv 0 are

a\prime (t) =  - 1

2\alpha (t)

\Bigl[ 
1 - e - 2a(t)  - 2\kappa 

\Bigr] 
,(22a)

\alpha (t) = u\prime 
0(a(t))e

 - t  - e - t - a(t)

\int t

0

es sinh(a(s))ds.(22b)

First, note the critical half-width b0 is given by a\prime (t) = 0, which here is b0 =
 - 1

2 ln [1 - 2\kappa ], so if a(0) > b0, propagation occurs. We demonstrate the accuracy
of this boundary in predicting long term dynamics by comparing with numerically
computed boundaries in Figure 5A. Note that in the case of propagation, in the limit
t \gg 1, we can approximate a(t) \approx ct + a0, and the asymptotic approximation in
section 3.3 yields c

2(c+1) =
1
2  - \kappa , which we rearrange to yield [6, 19, 36]

c =
1

2\kappa 
[1 - 2\kappa ] , \=\alpha =  - 2\kappa 

1 - 2\kappa 
\cdot 1 - 2\kappa 

2
=  - \kappa .

To quantify the timescale of approach to the asymptotic dynamics, we study the
evolution of perturbations to the long term wavespeed c, a(t) = ct + a0 + \phi (t) and
assuming \alpha (t) \approx  - \kappa . Plugging into (22), and truncating assuming \phi (t) and e - 2a0 are
of similar order, we find

2\kappa \phi \prime (t) = e - 2(ct+a0) \Rightarrow \phi (t) =  - e - 2a0

4\kappa c
e - 2ct,

and a(t) approaches the propagation speed c at rate 2c. We compare this result to our
findings from numerical simulations in Figure 5B. We save a higher order asymptotic
analysis for future work. In addition, we can compute the asymptotic extinction time
for the case in which u0(x) = \scrU e - x2/(2\sigma 2), so | u\prime \prime 

0(0)| = \scrU /\sigma 2 and \kappa = u0(\ell ) implies

\ell = \sigma 
\surd 
2
\sqrt{} 
ln(\scrU /\kappa ) \Rightarrow t0 \approx \ell 2e\ell 

2/(2\sigma 2)/\sigma 2,

which agrees with numerical simulations for small enough \ell (Figure 5C).
The critical stimulus for activation was determined for a general weight kernel in

section 3.4. Note that the main conditions are that (18) has no solutions and that
the stimulus remains on for a time t > tc, where tc is defined by the relation in (21).
For an exponential weight kernel, (2), and exponential input I(x) = I0e

 - | x| /\sigma (see
also [24]), (18) becomes \kappa = (1 - e - 2b)/2 + I0e

 - b/\sigma = G(b), so

G\prime (b) = e - 2b  - I0
\sigma 
e - b/\sigma = 0 \Rightarrow b\ast = \sigma ln [I0/\sigma ] /(1 - 2\sigma )
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+
. (B) Instantaneous speed of interface a\prime (t) \rightarrow c(\kappa ) in numerical
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estimate a\prime (t) \approx c - c1e - 2ct (solid line) for best fit c1. (C) Extinction time t0 \approx \ell e\ell 
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line) estimated for u0(x) = \scrU e - x2/(2\sigma 2) compared with numerical simulations. (D) Critical time \tau c
(in rescaled coordinate \tau =  - 

\int t
t0

ds
\alpha (s)

) the input \~I(x, \tau ) = I0\chi [0,\tau 1]e
 - 5| x| must be on for propagation

to occur, computed from (21) by integrating in a using quadrature (solid line) or computing (1) and
numerically computing the integral in t (circles). As I0 \rightarrow I\ast 0 (\sigma ), the minimal \tau for propagation,
\tau c, blows up.

and also limb\rightarrow 0+ G\prime (b) = 1  - I0/\sigma . Therefore if the input is sufficiently wide, \kappa <
I0 < \sigma and 1/2 < \sigma ; then initially G(b) increases until b\ast > 0, and then it decreases
to 1/2 for large b, so G(b) > \kappa for all b > 0 for sufficiently wide inputs with I0 > \kappa .
In addition, even for I0 > \sigma > 1/2, b\ast < 0, and since we know limb\rightarrow \infty G(b) = 1/2,
G(b) > 1/2 since it must be monotone decreasing for all b > 0. Thus, there are no
stable bump solutions to (18) for sufficiently wide and strong inputs. On the other
hand, if we wish to determine the critical curve I\ast 0 (\sigma ) below which bump solutions to
(18) emerge (assuming I0 > \kappa ), we simultaneously solve G(b) = \kappa and G\prime (b) = 0 to
find the saddle-node bifurcation point

I\ast 0 (\sigma ) = \sigma 
1 - 2\sigma 

1 - 2\kappa 
e(1 - 2\sigma )/(2\sigma ).

Taking I0 \leq I\ast 0 (\sigma ) then ensures the existence of bumps (as in Figure 4A). For I0 >
I\ast 0 (\sigma ), we can also study the impact of the input on the time necessary to reach
a(t) = b0, using the integral over a in (21). We evaluate this numerically in Figure
5D, showing it compares well with estimates we obtain by computing the critical time
tc numerically and then converting to \tau coordinates using the change of variables in
(21). Note that as I0 \rightarrow I\ast 0 (\sigma ), then \tau c \rightarrow \infty .
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4. Multiple active regions. We now turn our attention to the more general
case of multimodal initial conditions. Since this can now lead to multiple disjoint
active regions (where u0(x) \geq \kappa ), we must extend our analysis from section 3 to track
more than two interfaces (see also [33]). While it is difficult to analyze the resulting
system of equations explicitly, we can gain insight by focusing on two specific cases
of u0(x): (a) periodic initial conditions with an infinite number of active regions and
(b) two symmetric active regions. We begin by deriving the interface equations in the
general case.

4.1. Interface equations: General case. When u0(x) \geq \kappa for multiple dis-
joint active regions, A(0) = \cup N

j=1 [aj(0), bj(0)], the time evolution of A(t) is implicitly
described by

u(aj(t), t) = u(bj(t), t) = \kappa , j = 1, . . . , N,(23)

for an initial time 0 < t < t0. Differentiating (23) with respect to t, we find

\alpha j(t)a
\prime 
j(t) + \partial tu(aj(t), t) = 0, \beta j(t)b

\prime 
j(t) + \partial tu(bj(t), t) = 0, j = 1, . . . , N,(24)

where \alpha j(t) = \partial xu(aj(t), t) and \beta j(t) = \partial xu(bj(t), t). Rearranging (24), applying (11)
for ut, and solving for z = ux as before, we find the following system describing the
evolution of the interfaces (aj(t), bj(t)) and gradients (\alpha j(t), \beta j(t)):

a\prime j(t) =  - 1

\alpha j(t)

\Biggl[ 
N\sum 

k=1

(W (bk(t) - aj(t)) - W (ak(t) - aj(t))) - \kappa 

\Biggr] 
,(25a)

b\prime j(t) =  - 1

\beta j(t)

\Biggl[ 
N\sum 

k=1

(W (bk(t) - bj(t)) - W (ak(t) - bj(t))) - \kappa 

\Biggr] 
,(25b)

\alpha j(t) = e - t

\int t

0

es
N\sum 

k=1

[w(aj(t) - ak(s)) - w(aj(t) - bk(s)))] ds+ u\prime 
0(aj(t))e

 - t,(25c)

\beta j(t) = e - t

\int t

0

es
N\sum 

k=1

[w(bj(t) - ak(s)) - w(bj(t) - bk(s))] ds+ u\prime 
0(bj(t))e

 - t(25d)

for j = 1, . . . , N . The initial conditions u0(aj(0)) = u0(bj(0)) = \kappa close the system.
We expect \alpha j(t) \geq 0 and \beta j(t) \leq 0, since they are at the left and right boundaries
of each active region. For the system (25), there is no straightforward condition that
will ensure propagation in all cases (e.g., see Figure 1C). For N = 1, (25) reduces to
(16); recall we can explicitly compute the condition for propagation.

First note that one could solve (25) much faster numerically than (1), allowing a
computational route to identifying conditions on u0(x) that determine propagation.
We save such computations for future work. Here, we focus on two special choices of
initial conditions that admit explicit analysis: initial conditions that are (a) periodic
and (b) even symmetric with two active regions.

4.2. Periodic initial conditions. We can leverage results on periodic station-
ary solutions derived in section 2.2 along with the analysis for single active regions
in section 3.1 to derive conditions for saturation (u \rightarrow 1) when initial conditions are
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\ell L = bL, stagnation occurs, and limt\rightarrow \infty u(x, t) = UL(x) as in (5).

periodic. For an even and periodic initial condition u(x, 0) = uL(x) of period L,
A(t) = \cup n\in \BbbZ [ - a(t) + nL, a(t) + nL], so by symmetry we can reduce (25) to

a\prime (t) =  - 1

\alpha (t)
[WL(a(t)) - \kappa ] ,(26a)

\alpha (t) = u\prime 
L(a(t))e

 - t + e - t

\int t

0

es
\sum 
n\in \BbbZ 

wn(a(t), a(s))ds,(26b)

where wn(a(t), a(s)) = w(a(t)+a(s)+nL) - w(a(t) - a(s)+nL) and WL(x) is defined
as in (6). Fixing L, the initial condition uL(x) is defined by the single parameter
\ell L := a(0), where uL(\pm \ell L + nL) = \kappa for all n \in \BbbZ . Criticality occurs for \ell L =
bL(\kappa ) = W - 1

L (\kappa ), the half-width of each active region of the periodic solution UL(x)
to (5). The analysis proceeds along similar lines to that given in section 3.1 for the
single active region case yielding the following results (illustrated in Figure 6):

Starting with smooth L-periodic, even initial conditions, uL(x), unimodal on
[ - L/2, L/2], the fate of the solutions u(x, t) to (1) falls into three cases:

(i) If \ell L > W - 1
L (\kappa ), then u \rightarrow 1 uniformly on \BbbR as t \rightarrow +\infty ;

(ii) if \ell L < W - 1
L (\kappa ), then u \rightarrow 0 uniformly on \BbbR as t \rightarrow +\infty ;

(iii) if \ell = W - 1
L (\kappa ), then u \rightarrow UL uniformly on \BbbR as t \rightarrow +\infty .

Asymptotic results. Similar to the single active region case, we can obtain
leading order approximations for the transient dynamics approaching the homoge-
neous states. For periodic initial conditions, we do not obtain traveling waves in
the long time limit. In the case of saturation, we can estimate the time t0 at
which u(x, t0) \geq \kappa , assuming L/2  - a(t), \alpha (t), and t0 are small. We approximate
\alpha (t) \approx u\prime \prime 

L(L/2)(\ell L  - L/2), so t0 \approx (L - 2\ell L)
2u\prime \prime 

L(L/2)/[2 - 4\kappa ].
In the case of extinction, the calculation is quite similar to that presented in sec-

tion 3.3, and we find u(x, t0) \leq \kappa at t0 \approx \ell 2L| u\prime \prime 
L(0)| /\kappa in the limit 0 < \ell L \ll 1.

Exponential kernels. Assuming w(x) is given by (2), we can obtain a simple
implicit expression for the critical half-width bL := W - 1

L (\kappa ). Plugging (2) into (6),
we can simplify the threshold condition UL(\pm b+ nL) = \kappa to the form [32]

(27) \kappa =
sinh(b)

sinh(L/2)
cosh(L/2 - b) := WL(b).

Equation (27) must be solved numerically (Figure 7A), showing bL increases with \kappa 
and L. The formula for UL can also be reduced to yield
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Fig. 7. Stationary periodic solutions UL to (1) with exponential kernel, (2). (A) Half-width
bL of the active region on each period L increases with threshold \kappa and period L, as determined by
(27). (B) Increasing L yields periodic patterns (corresponding to dots in panel A at \kappa = 0.4) with
wider active regions and higher amplitude oscillations, as determined by (28).

UL(x) =

\left\{           
sinh(b)

sinh(L/2)
cosh

\Bigl( 
L
2 + xn

\Bigr) 
, xn \in (b - L, - b),

1 - eL - b  - eb

eL  - 1
cosh(xn), xn \in ( - b, b),

sinh(b)
sinh(L/2)

cosh
\Bigl( 
L
2  - xn

\Bigr) 
, xn \in (b, L - b),

(28)

where we define xn := x  - nL for all n \in \BbbZ (Figure 7B). Note that we obtain the
threshold condition, (27) for UL(\pm b + nL) for all n \in \BbbZ , and as L \rightarrow \infty , UL(x) \rightarrow 
Ub(x).

4.3. Two symmetric active regions. We now consider the case of of bi-
modal even initial conditions u0(x) = u0( - x) with two active regions supported
in [ - \ell 2, - \ell 1] \cup [\ell 1, \ell 2] for 0 < \ell 1 < \ell 2. That is, we have u0(x) \geq \kappa for all x \in 
[ - \ell 2, - \ell 1] \cup [\ell 1, \ell 2] and u0(x) < \kappa elsewhere, with u\prime 

0(x) \gtrless 0 for x \lessgtr \mp \ell 2. We also
ensure a nondegeneracy condition of the derivative of u0 at the boundaries of the
active regions, namely, u\prime 

0(\pm \ell 1,2) \not = 0. These hypotheses on the initial conditions
ensure that, as time evolves, the active regions can be described by the inner inter-
face a(t) := a2(t) =  - b1(t), outer interface b(t) := b2(t) =  - a1(t), outer gradient
\alpha (t) := \alpha 2(t) =  - \beta 1(t), and inner gradient \beta (t) := \beta 2(t) =  - \alpha 1(t). We can there-
fore write the system of interface equations and their gradients, (25), in the following
simpler form:

a\prime (t) =  - 1

\alpha (t)
[W (b(t) - a(t)) - \kappa +W (b(t) + a(t)) - W (2a(t))] ,(29a)

b\prime (t) =  - 1

\beta (t)
[W (b(t) - a(t)) - \kappa +W (2b(t)) - W (b(t) + a(t))] ,(29b)

\alpha (t) = u\prime 
0(a(t))e

 - t + e - t

\int t

0

es [w(a(t) + b(s)) - w(a(t) + a(s))] ds

+ e - t

\int t

0

es [w(a(t) - a(s)) - w(a(t) - b(s))] ds,(29c)

\beta (t) = u\prime 
0(b(t))e

 - t + e - t

\int t

0

es [w(b(t) - a(s)) - w(b(t) - b(s))] ds

+ e - t

\int t

0

es [w(b(t) + b(s)) - w(b(t) + a(s))] ds.(29d)
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The system (29) is closed by the initial conditions a(0) = \ell 1 and b(0) = \ell 2. As opposed
to the single active region case, it is not possible to develop a simple condition on
(\ell 1, \ell 2) that determines whether propagation, extinction, or stagnation occurs in the
long time limit. However, we can still partition the space of initial conditions (\ell 1, \ell 2)
into several cases, for which the long term behavior of (1) is determined by the initial
transient dynamics of (a(t), b(t)). Observe that both W (b(t) + a(t))  - W (2a(t)) > 0
and W (2b(t))  - W (b(t) + a(t)) > 0 for all time whenever they are well defined (i.e.,
as long as 0 < a(t) < b(t)). As a consequence, we can already rule out the trivial case
where \ell 2  - \ell 1 \geq W - 1(\kappa ).

Class I: \ell \bftwo  - \ell \bfone \geq \bfitW  - \bfone (\bfitkappa ). In this case, we automatically deduce that b\prime (t) > 0
while a\prime (t) < 0 for all time where they are both well defined. This implies that there
exists a finite t\ast > 0 at which we have a(t\ast ) = 0. At this point, the two active
regions merge to form a single active region given at time t = t\ast by [ - b(t\ast ), b(t\ast )]
with 2b(t\ast ) > 2\ell 2 > W - 1(\kappa ) as \ell 2  - \ell 1 \geq W - 1(\kappa ). As a consequence, we are back to
the propagation scenario studied in section 3.1, and we find the associated solution
of the neural field equation (1) obeys u \rightarrow 1 locally uniformly on x \in \BbbR as t \rightarrow +\infty .

Class II. \ell \bftwo  - \ell \bfone < \bfitW  - \bfone (\bfitkappa ). We now discuss the case where \ell 2 - \ell 1 < W - 1(\kappa ).
In order to simplify the presentation, we define the following two quantities:

\scrW 1(\ell 1, \ell 2) := W (\ell 2  - \ell 1) - \kappa +W (\ell 1 + \ell 2) - W (2\ell 1),

\scrW 2(\ell 1, \ell 2) := W (\ell 2  - \ell 1) - \kappa +W (2\ell 2) - W (\ell 1 + \ell 2),

defined for all 0 < \ell 1 < \ell 2. It is crucial to observe that \scrW 1(\ell 1, \ell 2)  - \scrW 2(\ell 1, \ell 2) =
2W (\ell 1 + \ell 2) - W (2\ell 1) - W (2\ell 2) > 0 for any 0 < \ell 1 < \ell 2 by concavity of the function
W on the positive half line. Thus, we only have to consider three cases (see Figure 8).

Case A. If \scrW 1(\ell 1, \ell 2) > \scrW 2(\ell 1, \ell 2) \geq 0, then b\prime (t) > 0 and a\prime (t) < 0 for all time
where they are both well defined. Once again, there must exist t\ast > 0 at which
a(t\ast ) = 0. At that point, the two active regions merge to form a single active region
given at time t = t\ast by [ - b(t\ast ), b(t\ast )] with 2b(t\ast ) > 2\ell 2 > W - 1(\kappa ). Indeed, from
\scrW 2(\ell 1, \ell 2) > 0, we deduce that W (2\ell 2) > W (\ell 1 + \ell 2) - W (\ell 2  - \ell 1) + \kappa > \kappa . And we
are back to the propagation case of section 3.1.

Case B. If 0 \geq \scrW 1(\ell 1, \ell 2) > \scrW 2(\ell 1, \ell 2), then b\prime (t) < 0 and a\prime (t) > 0 for all time
where they are both well defined. As a consequence, there exists some time t\ast > 0,
where a(t\ast ) = b(t\ast ) and such that u(x, t\ast ) \leq \kappa for all x \in \BbbR . As a consequence, this
will lead to the extinction case of section 3.1, and we get that the solutions of the
neural field equation (1) obey u \rightarrow 0 uniformly on \BbbR as t \rightarrow +\infty .

Case C. If \scrW 1(\ell 1, \ell 2) > 0 > \scrW 2(\ell 1, \ell 2), then we are led to study three subcases:
Subcase 1. Both a(t) and b(t) satisfy \scrW 1(a(t), b(t)) > 0 > \scrW 2(a(t), b(t)) for all

t \in [0, t\ast ) where they are well defined, and at time t = t\ast we have a(t\ast ) = 0. Once
more, at this point, the two active regions merge to form a single active region at time
t = t\ast : [ - b(t\ast ), b(t\ast )] with 2b(t\ast ) < 2\ell 2. Thus, it is enough to check that in the limit
t \rightarrow t\ast , we have \scrW 2(a(t), b(t)) \rightarrow W (2b(t\ast ))  - \kappa . Since \scrW 2 does not change sign in
(0, t\ast ), then 0 \geq W (2b(t\ast )) - \kappa , so we obtain either stagnation (when W (2b(t\ast )) = \kappa )
or extinction (when W (2b(t\ast )) < \kappa ), as studied in section 3.1.

Subcase 2. There exists a time t0 > 0, where a(t) and b(t) satisfy \scrW 1(a(t), b(t)) >
0 > \scrW 2(a(t), b(t)) for all t\in [0, t0), and at t = t0 we have a(t0) \not = 0 with\scrW 2(a(t0), b(t0))
= 0 while \scrW 1(a(t0), b(t0)) > 0, in which case we are back to Case A and propagation
occurs.

Subcase 3. There exists a time t1 > 0, where a(t) and b(t) satisfy \scrW 1(a(t), b(t)) >
0>\scrW 2(a(t), b(t)) for all t\in [0, t1), and at t = t1 we have a(t1) \not = 0 with \scrW 1(a(t1), b(t1))
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Fig. 8. Evolution of interfaces for two symmetric bumps having Class II initial conditions:
\ell 2 - \ell 1 < W - 1(\kappa ). Phase portrait of (29) in (a(t),b(t)) is shown in the case of an exponential kernel,
(2), \kappa = 0.45, and the initial condition u0(x), (30). We fix a(0) = \ell 1 = 1/4 and vary b(0) = \ell 2
from 0.5 to 2.25. Some initial conditions (red stars) lead to trajectories (black lines) that propagate,
while other initial conditions (blue stars) lead to extinction. Case A (\scrW 1(\ell 1, \ell 2) > \scrW 2(\ell 1, \ell 2) \geq 0):
a(t) vanishes in finite time with a final value above the nullcline \scrW 2(\ell 1, \ell 2) = 0 (where red line
meets \ell 2 axis), leading to propagation. See corresponding example evolution of u(x, t). Case B
(0 \geq \scrW 1(\ell 1, \ell 2) > \scrW 2(\ell 1, \ell 2)): a(t) and b(t) merge in finite time, leading to extinction. Case
C (\scrW 1(\ell 1, \ell 2) > 0 > \scrW 2(\ell 1, \ell 2)): Three subcases are described in the main text, leading to either
extinction for subcases (1) and (3) or propagation for subcase (2). Green arrows indicate the direction
of the vector field in each subregion. Outer panels demonstrate behavior of the full neural field model,
(1), in the cases A, B, C1, C2, and C3.

= 0 while 0 > \scrW 2(a(t1), b(t1)); in that case we are back to Case B and extinction
occurs.

We illustrate these different scenarios on a specific example in Figure 8 using an
exponential kernel, (2), and the initial condition

(30) u0(x) =
U0

2

\Bigl( 
e - | x+x0| + e - | x - x0| 

\Bigr) 
,

which allows us to specify

x0 =
1

2
ln
\bigl( 
 - 1 + 2 cosh(\ell 1)e

\ell 2
\bigr) 
and U0 = \kappa 

\sqrt{} 
 - 1 + 2 cosh(\ell 1)e\ell 2

cosh(\ell 1)

and ensure that u0(\pm \ell 1,2) = \kappa . Note, for a fixed \ell 1, there is a critical value of \ell 2
at which initial conditions transition from those that lead to extinction (blue stars)
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to those that lead to propagation (red stars) in Figure 8. Corresponding example
simulations of the full neural field equation (1) are also shown.

4.4. Critical spatially periodic stimuli. Finally, we can consider the impact
of spatially periodic inputs I(x, t) = I(x)\chi [0,t1] (I(x) = I(x+L)) on the long term dy-
namics of (1), assuming u0(x) \equiv 0. To make our calculations more straightforward, we
assume that I(x) is even and unimodal on x \in [ - L/2, L/2] with I \prime (0) = I \prime (\pm L/2) = 0.
Our analysis follows similar principles as that performed for unimodal inputs in section
3.4. To ensure propagation, there must be no stationary L-periodic pattern solutions
to (1) with stationary input I(x), and the active region on x \in [ - L/2, L/2] at t = t1
must be wider than bL = W - 1

L (\kappa ).
Stationary periodic patterns exist as solutions to (1) for I(x, t) = I(x) periodic

(I(x) = I(x + L)), even, and unimodal on x \in [ - L/2, L/2]. Adapting our analysis
from section 2.2, we can show they have the form

UL(x) =
\sum 
n\in \BbbZ 

(W (x+ b+ nL) - W (x - b+ nL)) + I(x).

Applying the threshold conditions, UL(\pm b+ nL) = \kappa then yields\sum 
n\in \BbbZ 

(W (2b+ nL) - W (nL)) + I(b) = WL(b) + I(b) = GL(b) = \kappa ,(31)

which defines an implicit equation for the half-width b of each active region. Local
analysis can again be used to show that if there are any solutions to (31), the minimal
one will be stable or marginally stable, since G(x) will be decreasing or at a local
minimum.

We now demonstrate that for a spatiotemporal input, I(x, t) = I(x)\chi [0,t1], to
generate a saturating solution, (i) equation (31) must have no solutions and (ii) t1
must be large enough so the active region A(t) = \cup n\in \BbbZ [ - a(t)+nL, a(t)+nL] satisfies
a(t1) > bL, where bL solves (31) for I \equiv 0. Starting from u0(x) \equiv 0, we know initially
the dynamics obeys \partial tu(x, t) =  - u(x, t) + I(x, t), so the time needed to produce a

nontrivial active region is given by t0 = ln[ I(0)
I(0) - \kappa ], as before. If t1 \leq t0, then the

long term dynamics of the solution is u(x, t) = I(x)(1  - e - t1)e - (t - t1) for t > t1, so
limt\rightarrow \infty u(x, t) \equiv 0. Note if I(0) < \kappa , then u(x, t) < \kappa clearly for all t > 0.

If t1 > t0, then for t0 < t < t1, we can derive the interface equations for
u(\pm a(t), t) = \kappa , similar to (26), finding

a\prime (t) =  - 1

\alpha (t)
[WL(a(t)) - \kappa + I(a(t))] ,(32a)

\alpha (t) = u\prime 
L(a(t))e

 - t + e - t

\int t

0

es

\Biggl[ \sum 
n\in \BbbZ 

wn(a(t), a(s)) + I(a(s))

\Biggr] 
ds(32b)

with initial conditions a(t0) = 0 and \alpha (t0) = 0, so a\prime (t0) diverges. As before, we

can desingularize (32) with the change of variables \tau =  - 
\int t

t0
ds

\alpha (s) , so we can write a

differential equation for \~a(\tau ) in \tau as

d\~a

d\tau 
= WL(\~a(\tau )) - \kappa + I(\~a(\tau ))(33)

with \~a(0) = 0. Since \alpha (t) < 0 for t > t0, \tau will be an increasing function of t, so we
now refer to \tau 1 := \tau (t1) and note \tau (t0) = 0. By assumption I(0)  - \kappa > 0, so d\~a

d\tau > 0
for all \tau where it is defined.
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Fig. 9. Conditions for propagation driven by a spatially periodic input I(x, t) = I(x)\chi [0,t1] with
I(x) = I(x + L) and u(x, 0) \equiv 0. (A) For periodic, even, and positive profile I(x) with I(0) > \kappa ,
propagation only occurs if GL(b) = WL(b) + I(b) = \kappa has no solutions. If solutions to (31) exist,
the minimal one is linearly (bs) or marginally (bm) stable. For inputs I(x) that are monotone
decreasing on x \in (0, L/2), there are only two solutions. (B) If GL(bs) = \kappa is satisfied for some bs,
u(x, t1) \approx ULs (x) for large t1 with active region centered at x = 0 given [ - as, as], where as < bL,
so limt\rightarrow \infty u(x, t) \equiv 0. (C) Here I(x) is chosen so that GL(b) = \kappa has no solutions. If t1 := te,
then ue(\pm ae) := u(\pm ae, te) = \kappa and ae < bL, so limt\rightarrow \infty u(x, t) \equiv 0. However, for t1 := tp with
up(\pm ap) := u(\pm ap, te) = \kappa and ap > bL, limt\rightarrow \infty u(x, t) \equiv 1.

We now discuss the three remaining cases: (I) equation (31) has at least one
solution, so saturation does not occur; (II) equation (31) has no solutions, but \tau 1 \leq \tau c,
the time at which \~a(\tau c) = bL for I(x, \tau ) \equiv I(x), and saturation does not occur; (III)
equation (31) has no solutions, and \tau 1 > \tau c, so saturation occurs.

Case I: minx\in \BbbR G(x) \leq \kappa . Here, (31) has at least one solution. Since we have
assumed I(0) > \kappa , this solution bmin is linearly or marginally stable with respect to
even and odd perturbations. Equation (33) implies d\~a

d\tau > 0 for all \tau < \tau 1, but
d\~a
d\tau 

vanishes at \~a = bmin, so \~a(\tau ) < bmin < b0 for all \tau < \tau 1. Thus, once \tau = \tau 1, the
dynamics is described by the extinction case from section 4.2, and limt\rightarrow \infty u(x, t) \equiv 0
(Figure 9B).

Case II: minx\in \BbbR G(x) > \kappa and \tau 1 \leq \tau c. Here (31) has no solutions, but \~a(\tau ) will
not grow large enough for saturation to occur once I(x, \tau ) = 0, since \tau 1 \leq \tau c. We
define \tau c as the critical time when \~a(\tau c) = bL = W - 1

L (\kappa ), given by the formula\int \bfW  - 1
L (\kappa )

0

da

WL(a) - \kappa + I(a)
=  - 

\int tc

t0

dt

\alpha (t)
:= \tau c.(34)

By definition, \~a(\tau 1) \leq bL, so once \tau = \tau 1, the dynamics is described by either (a) the
extinction case in section 4.2 if \tau 1 < \tau c, so limt\rightarrow \infty u(x, t) \equiv 0, or (b) the stagnation
case in section 4.2 if \tau 1 = \tau c, so limt\rightarrow \infty u(x, t) \equiv UL(x) (Figure 9C).

Case III: minx\in \BbbR G(x) > \kappa and \tau 1 > \tau c. Requiring \tau 1 > \tau c with (34), we have
that \~a(\tau 1) > bL. Thus, after \tau = \tau 1, the dynamics is described by the saturation case
in section 4.2, so limt\rightarrow \infty u(x, t) \equiv 1 (Figure 9C).

5. Discussion. In this paper, we have studied threshold phenomena of front
propagation in the excitatory neural field equation (1) using an interface dynam-
ics approach. Our interface analysis projects the dynamics of the integrodifferential
equations to a set of differential equations for the boundaries of the active regions,
where the neural activity is superthreshold. The interface equations can be used to
categorize initial conditions or external stimuli based on whether the corresponding
long term dynamics of the neural field are extinction (u \rightarrow 0), propagation/saturation
(u \rightarrow 1), or stagnation (u \rightarrow Ustat(x) \not \equiv 0, 1). We considered several classes of initial
conditions, which admit explicit results: (i) functions with a single active region, (ii)
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even and periodic functions with an infinite number of active regions, and (iii) a two-
parameter family of even functions with two active regions. In these particular cases,
the conditions for extinction, propagation/saturation, or stagnation can be expressed
in terms of a few inequalities for the parameters specifying the initial conditions. We
were able to obtain a similar trichotomy when the neural field equation (1) is forced
by a fixed critical stimulus (e.g., unimodal and periodic) over a finite time interval.
Our analysis assumes the nonlinearity in the neural field arises from a Heaviside firing
rate function, so the dynamics of the neural field equation (1) can be equivalently
expressed as differential equations for the spatial locations where the neural activity
equals the threshold of the firing rate function. This work addresses an important
problem in the analysis of models of large-scale neural activity, determining the long
term behavior of neuronal network dynamics that begin away from equilibrium.

There are several natural extensions of this work that build on the idea of devel-
oping critical thresholds for propagation in neural fields using an interface dynamics
approach. For instance, one possibility would be to consider a planar version of (1)
and develop closed form equations for the corresponding interface dynamics of the
contours encompassing active regions as in [15]. In a preliminary analysis, we have
already found that our results developed herein for single active regions can be ex-
tended to the case of radially symmetric initial conditions in two dimensions (2D).
Single stripe and periodic stripe patterns may also admit explicit analysis. However,
there are also a number of other classes of initial condition that do not have a one-
dimensional analogue, which could be interesting to explore, such as spot patterns
and multiple concentric annuli. Employing our knowledge of the one-dimensional
case may shed light on how to develop a theory for threshold phenomena in 2D.
Alternatively, we may also consider neural fields with negative feedback that mod-
els adaptation [4, 22, 28, 31, 36], which are known to generate traveling pulses, spiral
waves, or more exotic phenomena. In this case, the long term behavior of propagating
solutions can be counterpropagating pulses rather than fronts.
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