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Facilitating spin squeezing generated by collective dynamics with single-particle decoherence
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We study the generation of spin squeezing in arrays of long-lived dipoles subject to collective emission,
coherent drive, elastic interactions, and single-particle relaxation. It is found that not only does single-particle
relaxation not necessarily degrade the squeezing generated in the collective dynamics, but the interplay of single-
particle and collective effects can in fact facilitate the generation of squeezing in a specific parameter regime.
This latter behavior is connected to the dynamical self-tuning of the system through a dissipative phase transition
that is present in the collective system alone. Our findings will be applicable to next-generation quantum sensors
with an eye towards atomic clocks in cavity-QED setups and trapped ion systems.
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Introduction. The preparation of entangled and nonclas-
sical quantum states is a vital task for many quantum
technologies, including metrology [1] and quantum informa-
tion [2,3]. Conventional protocols generate entanglement via
coherent dynamics and seek to minimize the decoherence
induced by couplings to the environment [4,5]. However, it
has been established that dissipation can itself be a power-
ful resource for entanglement generation under appropriate
conditions. In particular, quantum reservoir engineering has
established the potential to generate pure entangled steady
states by carefully tailored couplings between the system and
environment [6–12].

While these engineered dissipative systems can lead to rich
physics, their realization is difficult. Ultracold atoms coupled
to optical cavities and trapped ion arrays are emerging as a
convenient platform where both coherent and dissipative dy-
namics can be engineered with great controllability [13–28].
In fact, these systems have garnered tremendous theoretical
attention for many years [29–42] given the emergent new
behaviors, critical phenomena, and quantum phases of mat-
ter that they can feature. For example, nonequilibrium phase
transitions in collective models, featuring entangled steady
states around critical points, have been identified as an appeal-
ing resource for quantum metrology [34,39–42]. However, a
drawback is that the timescales required to reach the steady
state are typically extremely long [30,34], specifically with
respect to common experimental sources of technical noise
and single-particle decoherence which are often neglected
in the theoretical models. In view of this, the widely held
expectation is that single-particle decoherence will strongly
limit any entanglement generated by the collective dynamics.

Here, we demonstrate that the introduction of single-
particle decoherence in a collective driven-dissipative system,
featuring a nonequilibrium phase transition, is not necessarily
detrimental but instead can facilitate, under the restriction
of fixed parameters, the generation of states with enhanced

metrological utility relative to the steady state of the collective
dynamics alone.

The mechanism driving this phenomenon is the destruction
of collective coherence due to single-particle decoherence,
which dynamically reduces the effective particle number, al-
lowing the system to dynamically traverse the corresponding
nonequilibrium phase diagram [see Fig. 1(a)], and in turn
access regimes that may display large transient squeezing.
While our analysis of this phenomenon is framed from a
cavity-QED perspective, we note that similar conclusions can
be drawn in more general models including arrays of trapped
ions [24,25,39,43] and superconducting qubits [44,45].

Model. We consider an ensemble of N atoms in an optical
lattice supported by a standing-wave optical cavity, illustrated
in Fig. 1(b). A single common mode of the cavity couples
two internal states of the atoms, |↑〉 and |↓〉, which encode
a spin-1/2 degree of freedom. To realize coherent driving of
the dipoles the cavity is pumped with an external coherent
field that is resonant with the atomic transition, and upon
adiabatic elimination of the intracavity field [46] (which we
assume evolves rapidly compared to relevant timescales) the
dynamics of the atomic degrees of freedom can be described
by a master equation for the atomic density operator ρ̂ [34],

∂ρ̂

∂t
= − i

h̄
[Ĥ, ρ̂] + Lc[ρ̂] + Ls[ρ̂], (1)

Ĥ = h̄χ Ĵ+Ĵ− + h̄�Ĵx, (2)

where Ĵα = ∑N
i=1

1
2 σ̂ α

i for α = x, y, z, σ̂ α
i are the Pauli opera-

tors on the Hilbert space for each spin i = 1, 2, . . . , N , and
Ĵ± = Ĵx ± iĴy are collective raising and lowering operators.
The first term in Ĥ corresponds to a collective exchange
interaction realized by detuning the cavity from the atomic
transition and characterized by χ , and the second to a co-
herent drive characterized by �. The dissipative part of
Eq. (1) includes a collective decay term with rate � given by
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FIG. 1. (a) Steady-state phase diagram of an ensemble of N
spin-1/2 particles subjected to a coherent drive with Rabi frequency
� = Nϒ/2, collective emission at rate �, collective spin-exchange
interactions χ , and single-particle relaxation at rate γs. This system
can be engineered using an optical cavity (b) or trapped ion arrays.
The spin-1/2 is encoded in a pair of electronic states, while the
collective dissipation and global spin-spin interactions are mediated
by spin-1/2’s exchanging virtual bosons through a common mode.
In the absence of single-particle relaxation, the system undergoes a
nonequilibrium phase transition (superradiant to normal) signaled by
a change in the total steady-state atomic inversion, which serves as an
order parameter. Approaching the transition point from the superra-
diant phase [points (i) and (ii)], the coherent drive (in the x̂ direction)
and collective emission combine to generate spin squeezing along x̂,
as shown in (c) and (d). In the normal phase no squeezing is observed
[point (iii)]. For all three graphs in (c), N = 2000 and all spins are
initially polarized along −x̂. (d) explicitly displays the Bloch sphere
overlaid with a squeezed collective spin distribution of the steady
state (pink). Note that this is for illustrative purposes, and that the
actual position and orientation of the squeezing can vary with param-
eters. Introducing finite γs allows the system to dynamically traverse
the phase diagram [red arrow in (a)] and enhances the achievable spin
squeezing in the striped region of (a).

Lc[ρ̂] = �L(Ĵ−)[ρ̂] arising due to leakage of the intracavity
field via the mirrors. Both χ and � are proportional to the
single-particle cooperativity of the cavity [47]. We also in-
clude a single-particle relaxation channel with rate γs given by
Ls[ρ̂] = γs

∑N
i=1 L(σ̂−

i )[ρ̂], where the Lindblad superoperator
is L(Ô)[ρ̂] = Ôρ̂Ô† − {Ô†Ô, ρ̂}/2 for a given operator Ô.
This term accounts for the finite lifetime of the excited state
of the transition induced from natural spontaneous emission
or other systematic effects such as light scattering [48]. Other
types of single-particle decoherence (e.g., dephasing) would
result in similar behavior, though we only consider single-
particle relaxation here.

Collective physics. Before discussing the effects of single-
particle relaxation, we review the behavior of the collective
system when γs = 0. As the dynamics is entirely de-
scribed by collective operators, then the total spin operator
Ĵ2 = Ĵ2

x + Ĵ2
y + Ĵ2

z is conserved during evolution. Conse-
quently, if we restrict ourselves to initializing the atoms in
a coherent spin state [49], which is an eigenstate of Ĵ2 with

eigenvalue J (J + 1) with J = N/2, then the available Hilbert
space in which the dynamics and steady state exist is greatly
reduced to only N + 1 states (relative to 2N for N spin-1/2’s).
With this simplification, an analytic solution is available for
the steady-state density operator ρ̂ss [30,34] from which all
relevant collective spin observables can be computed. Pre-
vious work [30,34] has demonstrated that as a function of
ϒ ≡ (2�/N ) and for large N , the steady state exhibits a
nonequilibrium second-order phase transition in the thermo-
dynamic limit, described by an abrupt change in behavior of
the order parameter 〈Ĵz〉 at a critical value given by

ϒc =
√

�2 + 4χ2. (3)

The critical point separates a superradiant phase for ϒ < ϒc

characterized by nonzero inversion |〈Ĵz〉| > 0, and a normal
phase for ϒ > ϒc with zero inversion 〈Ĵz〉 = 0 [see Fig. 1(a)].
The critical point ϒc also delineates regions in the phase dia-
gram for which the steady state of the atomic ensemble is spin
squeezed. The squeezing is characterized by the parameter
[50]

ξ 2 = min
n⊥

N
(
�Ĵn⊥

)2

∣∣〈Ĵ
〉∣∣2 , (4)

where 〈Ĵ〉 = (〈Ĵx〉, 〈Ĵy〉, 〈Ĵz〉) defines the collective Bloch vec-
tor, n⊥ is a unit vector orthogonal to 〈Ĵ〉, and (�Ĵn⊥ )2 =
〈(Ĵ · n⊥)

2〉 − 〈Ĵ · n⊥〉2
is the variance of the collective spin

operator in the direction of n⊥. Squeezing, ξ 2 < 1, is an en-
tanglement witness and quantifies the utility of the spin state
for quantum sensing applications [51].

Figure 1(c) illustrates that just below ϒc the steady state
is squeezed, due to the finely balanced competition of the
coherent drive and the nonlinear dynamics induced by the
collective dissipation [see Fig. 1(d)]. Specifically, as ϒ ap-
proaches the threshold ϒc from below [curves (i) and (ii)],
the system relaxes into an increasingly squeezed state with
ξ 2 < 1. However, for ϒ > ϒc the squeezing is abruptly lost
beyond an early transient. It should be noted that for ϒ < ϒc

a careful selection of initial conditions becomes necessary
to reach the squeezed steady state quickly, and to avoid an
oscillatory phase known to exist near the critical point when
|χ | > 0 [34]. It is also important to note that the squeezing is
predominantly in the azimuthal direction for small χ/� < 1
[see Fig. 1(d) and Ref. [47]].

Effects of single-particle relaxation. When γs �= 0, the
collective Ĵ2 symmetry is broken by the single-particle de-
coherence. This means the dynamics are free to explore a
larger portion of the full Hilbert space of 2N states, compared
to the limited N + 1 states of the collective model. Due to
this increased complexity, an analytic formula for the steady
state is not available. However, a mean-field analysis can
give useful insight into the steady-state phase diagram of
the system, including the position of critical transitions and
transient behavior. These predictions can be confirmed by
efficient numerical simulation [52–54] of the full quantum dy-
namics described by the master equation [Eq. (1)], which also
allows us to investigate quantum features such as spin squeez-
ing. In the mean-field approximation, we generate equations
of motion for the expectation values 〈σ̂ α

i (t )〉 (identical for
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FIG. 2. (a) Squeezing vs time for N = 2000, χ/� = 0, ϒ/ϒc =
0.9, and a range of γs/�. Solid lines indicate squeezing ξ 2(t ) and
dashed lines the corresponding time-dependent effective system size
N eff (t ) (matching colors). The horizontal black line corresponds to
the critical effective particle number Nc = 2�/ϒc for which the tran-
sition between superradiant and normal phases occurs. (b) Squeezing
ξ 2(t ) (solid) and effective system size N eff (t ) (dashed) computed
from two individual trajectories of the numerical method with
γs/� = 4. For each trajectory, N eff (t ) crosses the horizontal line for
Nc near the point where its corresponding ξ 2(t ) reaches a minimum.
In each panel, all spins are initially polarized along −x̂.

all particles due to permutational symmetry) from Eq. (1)
and assume that all higher-order expectations factorize, i.e.,
〈σ̂ α

i (t )σ̂ β
j (t )〉 = 〈σ̂ α

i (t )〉〈σ̂ β
j (t )〉 for i �= j [47].

The mean-field analysis indicates that many of the qual-
itative features of the collective physics, particularly the
steady-state behavior, remain when single-particle relaxation
is included. Specifically, for γs �= 0 there is a critical point
ϒ ′

c ≡ ϒc/
√

2 delineating superradiant and normal phases
characterized by the long-time limit of collective observables.
Moreover, numerical simulations of the full quantum dynam-
ics reveal that ϒ ′

c also marks the boundary between a squeezed
steady state in the superradiant phase and the absence of
long-time squeezing in the normal phase [47]. This transition
is illustrated in Fig. 1(a).

Impact on squeezing. We now turn our focus to a quantita-
tive analysis of the effects of decoherence on the achievable
spin squeezing, both in the steady state and in the tran-
sient dynamics. Naively, one might expect that single-particle
relaxation only leads to a degradation of the squeezing gener-
ated by the collective dynamics [55]. Between ϒ ′

c < ϒ < ϒc

[striped region (ii), Fig. 1(a)] we find appreciable squeezing
develops in the transient dynamics on a timescale for which
both collective and single-particle effects are relevant. In par-
ticular, the predicted squeezing exceeds what is seen in the
collective steady state for γs = 0.

Figure 2(a) illustrates the spin-squeezing dynamics in this
region ϒ ′

c < ϒ < ϒc for several values of γs/� and in the
absence of elastic interactions (χ/� = 0). We observe that, as
expected, squeezing does not persist in a steady state as it does
in the purely collective case (γs/� = 0). However, we see that
squeezing still develops and persists at timescales ∼1/γs, and
that it exceeds the purely collective steady-state squeezing for
χ = 0 and the same values of ϒ/ϒc. The results of the figure
indicate that the achievable spin squeezing remains relatively
robust to the precise value of γs/�. Instead, the magnitude
of γs effectively only controls the timescales over which the
enhanced squeezing is obtained (i.e., it controls the rate at
which we dynamically traverse the related collective steady-
state phase diagram—which ultimately sets the bound on the
achievable squeezing).

Squeezing mechanism. The transient squeezing for ϒ ′
c <

ϒ < ϒc occurring at timescales ∼1/γs can be understood
within the framework of the collective steady state. Specif-
ically, the enhancement can be understood as a subtle
consequence of the destruction of collective coherence by
single-particle dissipation. We argue that reducing the col-
lective coherence leads to an effective increase of ϒ over
time [ϒ → ϒeff(t )], which allows the system to dynamically
traverse the collective phase diagram into regions with higher
spin squeezing.

Our argument is illustrated by plotting in Fig. 2(a) the time
evolution of an effective atom number related to the total spin
Ĵ2 as Neff(t ) ≡ 2

√
(1/4) + 〈Ĵ2〉(t ) − 1. For γs = 0 we have

Neff(t ) = N , but for γs > 0 we observe the effective system
size decays, Neff(t ) � N , making ϒeff(t ) ≡ 2�/Neff(t ) grow
over time even though the coherent drive remains constant.

One can therefore dynamically approach and even cross
the critical point ϒc as the system evolves. This is confirmed
by the strong correlation between the timing of the cross-
ing of the threshold atom number, Neff(t∗) [determined from
ϒeff(t∗) = ϒc and indicated by a dashed horizontal line in
Fig. 2] and the loss of squeezing for t > t∗ for the different
γs. This provides evidence that squeezing is dynamically lost
as the system effectively transitions from the superradiant to
normal phases, corresponding to the crossover from squeezed
to unsqueezed regimes in the collective model.

However, in Fig. 2(a), we observe a small quantitative
disagreement between these timescales. To confirm the idea
that squeezing disappears as a result of ϒeff crossing to the
normal phase and demonstrate that the observed deviation
in the averaged quantities is a result of quantum noise, in
Fig. 2(b) we perform an investigation of individual trajecto-
ries, which mimic a typical experimental realization. We use
these trajectories to simulate the open system dynamics via a
Monte Carlo wave-function method which unravels the evo-
lution of the density matrix [Eq. (1)] into an ensemble of pure
state wave functions evolving accordingly to a non-Hermitian
Hamiltonian. Dissipation is further incorporated within each
of these independent trajectories by stochastic jumps that
project the wave function [47]. As shown in Fig. 2(b), in
a single trajectory squeezing features an abrupt change in
behavior exactly for t > t∗. However, as visible in Fig. 2, the
fact that t∗ varies from trajectory to trajectory explains, on the
one hand, the moderate discrepancy in timescales mentioned
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FIG. 3. (a) Minimum transient spin squeezing (see text for clar-
ification) as a function of normalized drive amplitude ϒ/ϒc and
relaxation rate γs/� with χ/� = 0. The strip below the main panel
shows a magnified view of the γs/� = 0 result for comparison. Note
the break in the vertical axis, which is required since attainable
simulation times cannot capture the squeezing behavior occurring
on timescales of 1/γs when this value is very large. (b) Minimum
transient spin squeezing as a function of the interaction strength χ/�

with fixed ϒ/ϒc = 0.9 and γs/� = 50. Inset: Squeezing vs time for
a selection of values of χ/� and the same ϒ, γs as the main panel.
For (a) and (b) we compute the dynamics using a truncated cumulant
expansion [47] and N = 104. Initial conditions in (a) are the coherent
spin state (CSS) in the −x̂ direction, and in (b) are taken to be the
CSS in the direction of the mean-field steady state (for each χ/�

and ϒ) when γs/� = 0 to account for the rotations that result from
different values of χ/�.

above and, on the other, the net reduction on the optimal
observed squeezing when an average over many trajectories
is taken. The latter is necessary to recover the master equation
results. Related to this last point, we note that these results
indicate that sources of technical noise, such as shot-to-shot
fluctuations in the atom number will need to be kept suffi-
ciently small (i.e., sub-Poissonian) as they can also lead to a
smearing out of the crossover into the superradiant phase and
reduce the achievable squeezing overall.

In Fig. 3(a) we investigate the minimum squeezing ob-
tained in the transient dynamics, after the initial collective
minimum, as a function of the normalized drive amplitude
ϒ and single-particle relaxation rate γs/�. The introduction
of finite γs/� �= 0 clearly improves the attainable squeezing
within the region of ϒ ′

c < ϒ < ϒc relative to the collective
case (γs/� = 0, shown in the lower strip). This improvement
occurs for even relatively small values of γs, although as

γs is increased the best transient squeezing, attained for ϒ

approaching ϒc, gradually degrades. On the other hand, for
ϒ < ϒ ′

c a stable steady state is quickly reached and squeezing
is not enhanced by introducing single-particle decoherence.

While our qualitative understanding of the mechanism
driving squeezing has so far not included a discussion of
the collective exchange interactions, the achievable squeezing
does quantitatively depend on χ for ϒ < ϒ ′

c. This is demon-
strated in Fig. 3(b), where we plot the minimum transient
squeezing as a function of χ/� for γs/� = 50. It is apparent
that increasing the interaction strength χ leads to an apprecia-
ble improvement in the optimal squeezing, particularly in the
region 0 < χ/� � 2. However, the inset of Fig. 3(b) indicates
that an increased interaction strength does not significantly
change the qualitative dynamics of the squeezing, beyond
the generation of an earlier transient (absent in the χ = 0
case). This earlier transient that appears at finite χ might be
useful for some platforms, but on the other hand for purely
metrological applications might be not as practical in cases
such as the cavity setup discussed below [47]. There, although
feasible, technical challenges come up when quenching χ

sufficiently fast to take advantage of the earlier transient
squeezing.

Experimental realization and outlook. The spin model we
have discussed could be realized by coupling an optical cavity
to the narrow linewidth optical clock transitions available in
alkaline-earth atoms [14,15]. We require that κ � g

√
N and

κ � γs (bad cavity limit) with 2g the single-photon Rabi
frequency and κ the cavity linewidth, to ensure that the in-
tracavity field can be adiabatically eliminated and thus realize
the desired spin model [Eqs. (1) and (2)]. In this limit, spin-
spin interactions can be engineered by detuning the cavity
from the atomic transition by �c which leads to a tunable
interaction strength χ = 4g2�c/(4�2

c + κ2). Similarly, the
collective dissipation arises due to photon leakage and is
characterized by � = 4g2κ/(4�2

c + κ2) [14,56]. To ensure
that decoherence is not too large such that it eliminates any
possibility of squeezing, we need to operate in the limit of a
large (effective) collective cooperativity γs � N�. This con-
dition, together with those for κ above, imply we should work
in the hierarchy of energy scales γs � N� � g

√
N � κ to

generate spin squeezing in the cavity platform. The possibility
to operate in this regime has previously been demonstrated
using both the 1S0 - 3P0 transition in 87Sr [14,56] and 1S0 -3P1

transition in 88Sr [15]. The former has a natural linewidth
of γ ≈ 2π × 1 mHz and 2g = 2π × 8 Hz [14]. State-of-the-
art atomic, molecular, and optical (AMO) experiments have
demonstrated a coherence of the 1S0 - 3P0 transition of up
to 1/γs ≈ 10 s [48] which corresponds to γs/� ≈ 200 for
�c = κ = 2π × 150 kHz and thus χ/� ≈ 1. For N ∼ 104

atoms, dissipatively enhanced squeezing of ξ 2 ≈ 9 dB is then
in principle achievable on timescales t ∼ 2 s.

A similar implementation can also be realized in trapped
ion arrays, where a pseudospin-1/2 is encoded in the hyper-
fine states of the ion. As carefully shown in Ref. [43], it is
possible to engineer in a Penning trap the same collective dis-
sipation that is responsible for superradiance in cavity-QED
systems. This is achieved by loading two types of ions (τ and
σ ) into a shared trap. The two species could be, for example,
two different elements, or isotopes of the same element. The
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τ ions are used to sympathetically cool the normal modes
of vibration of the system of ions and generate an effective
phonon loss, analogous to κ in the cavity platform. Further, by
Doppler cooling the τ ions it is possible to introduce couplings
between the normal modes, resulting in a new dressed set of
damped normal modes. The σ ions then serve as the effective
spins that are squeezed through interactions mediated by the
damped phonon modes. The σ ion-phonon coupling can be
engineered using an optical dipole force generated via pairs of
Raman beams. The detuning of the Raman beams can be set
such that predominantly the center-of-mass (c.m.) mode is ex-
cited (i.e., the other mode remains off resonant), such that the
c.m. mode plays the role of the common cavity mode which
mediates both elastic [24] and inelastic collective spin inter-
actions between the ions. Additionally, resonant microwaves
can be used to coherently directly drive the spins [25]. As
analyzed in detail in Ref. [43], using 24Mg+ ions as the τ ions
and 25Mg+ as the σ ions, it should be possible to achieve an
effective � ∼ 2π × Hz in a system of the order of N = 124
σ ions. In this implementation the average single-particle de-
coherence generated by the Raman beams including effective

spontaneous emission, absorption, and dephasing is of the
order of γ̄s ∼ 2π × Hz. In this setup therefore it should be
possible to operate in the regime where N�/γ̄s ∼ 100 and
reach the conditions required for robust spin-squeezing gen-
eration.

In summary, we have identified an intriguing and experi-
mentally relevant situation where spin squeezing can coexist
with relatively large single-particle decoherence as long as
collective decoherence remains the dominant dissipative pro-
cess. We expect our results to have immediate applications
for quantum metrology, specifically in the generation of
squeezing on long-lived optical transitions for next-generation
optical atomic clocks, while also being relevant for quantum
simulation.
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