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1 Introduction

There are a variety of approaches available for numerical solution of ODEs,
including linear multistep (LM), Runge Kutta (RK), Taylor, and extrapolation
methods. For Method-of-lines (MOL) solution of PDEs [5], [23], [24], LM and
RK methods have in the past been dominant. However, in the context that
motivates the present study – fast solution of the 3-D Maxwell’s equations
in the presence of detailed geometries – extrapolation methods appear to be
the most promising approach for reaching high temporal accuracies [11], [16].
This study therefore focuses on improving the understanding of extrapolation
methods for wave equations.

Almost all the difficulties that arise in the numerical solution of Maxwell’s
equations are due to material interfaces or boundaries. When the features of
these are much smaller in size than a typical wave length, one would like to
use small space steps (which are needed to resolve these features) together
with long time steps (which are sufficient to follow the wave’s time evolution).
Such a combination – small space steps and long time steps – will violate the
classical CFL stability condition for explicit methods, often by several orders
of magnitude.

The first time stepping method which overcomes this CFL limitation and
combines a very low cost per time step with unconditional stability was a gen-
eralized alternating direction implicit (ADI) method, introduced in 1999 [29],
[30]. A split step (SS) procedure that was introduced shortly afterwards [15]
also achieves unconditional stability for the 3-D Maxwell’s equations. Since
higher order methods generally turn out to be more economical than lower
order ones, this raised the issue whether the naturally second order ADI ap-
proach could be brought to higher order in time with preserved unconditional
stability, as studied in [16].

In the present study, we explore two enhancement procedures introduced
in [16]: Richardson extrapolation and ‘re-starts’. In Section 2, we describe
the ADI method, as applied to Maxwell’s equations, followed by the ADI-
FDTD test problem, and then review relevant findings from [16]. It transpires
that most convergence/divergence features that are seen for the ADI-FDTD
method can be reproduced even with the very simple ODE

y′ = λ y . (1.1)

In Section 3, we review two ODE solvers (TR and GBS) and compare their
stability domains in Section 4. We then analyze how stability depends on
the order of extrapolation, and on how often in time the extrapolations are
performed (i.e. how many re-starts are done). In the concluding Section 6,
we summarize the main results that have been reached - all supporting the
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viability of Richardson extrapolation as a very valuable enhancement to the
ADI-FDTD procedure.

2 The ADI scheme for the 3-D Maxwell’s equations

2.1 Maxwell’s equations and Alternating direction implicit (ADI) method

In 1873, James Clark Maxwell first formulated what is now known as the
Maxwell’s equations [18]. For a medium with permittivity ε and permeability
µ, and assuming no free charges or currents, the 3-D Maxwell’s equations can
be written as a system of six first-order PDEs:
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(2.1)

Here Ex, Ey, Ez and Hx, Hy, Hz denote the components of the electric and
magnetic fields, respectively. The arguably most straightforward numerical
scheme possible - using centered finite differences for all the derivatives in
space and time - leads, when combined with a suitable staggering of the data
in space and time, to the well-known Yee scheme [27] (proposed in 1966).
Besides its low accuracy (second order), the biggest drawback is that it, like
other fully explicit schemes, is subject to the CFL stability condition, severely
restricting the time steps that can be used in cases where an irregular geometry
forces the use of particularly small space steps. Later improvements of the
Yee scheme includes an interesting way to enhance the accuracy for specific
frequency ranges by means of a ‘non-standard finite difference enhancement’
[4]. The first practical way to largely bypass the CFL limitation for Maxwell’s
equations is the ADI method, which is described next.

The ADI approach has proven to be very successful for parabolic and elliptic
PDEs for the last 50 years. Seminal papers in the area include [9] and [21].
Various similar 3-stage dimensional splittings for the 3-D Maxwell’s equations
have been tried, but have invariably fallen short of the goal of unconditional
time stability. However, a 2-stage splitting introduced in 1999 by Zheng et
al. [29], [30] does achieve the goal. The original way to state this scheme
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introduces a half-way time level n + 1/2 between the adjacent time levels n
and n + 1. We advance our six variables as follows:

Stage 1:
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Stage 2:
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For comments on interpretations and implementations of these equations, see
[11]. For overviews of the recent ADI-FDTD literature, see for ex. [2], [7], [12],
[17], [20], [25], [26], [28].

The ADI-FDTD method is mainly of interest in cases when intricate spa-
tial geometry forces the use of very small space steps. Therefore, there is not
very much need for increasing the spatial order of accuracy in (2.2) and (2.3).
Compared to the size of the wave length, the spatial resolution is already very
high. The situation in time is entirely different. In that direction, the domain
is simply an interval. We want to increase the order of accuracy so that we
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Fig. 1. A test case of 3-D Maxwell’s equations using Richardson extrapolation in
time, as described in [16]. Here, the pseudospectral method is employed for spatial
discretization, and we display the combined least square error for the six fields
at final time T = 32. The curves, from top to bottom, correspond to different
time step sizes k = ∆t = T/N, N = 2048 · 2j−1, j = 1, . . . , 8. (a) Errors for
different time step sizes at final time T = 32 when Richardson extrapolated to
higher orders of accuracy. (b) Accuracies in the case of 4th order, with increasing
numbers of re-starts. (c) Accuracies in the case of 6th order, with increasing numbers
of re-starts.

can use longer (and thereby more economical) time steps.

2.2 Review and motivation

In [16] it was discovered that Richardson extrapolation in time could achieve
the goal just mentioned: increasing temporal order of accuracy while preserv-
ing the unconditional stability, and thereby significantly reducing the com-
putational cost. Richardson extrapolation is very much in the style of the
extrapolation methods, which have been well-known since the middle of the
last century for accurate solution of ODEs. The additional idea of re-starts was
considered in [16], and found to further improve the accuracy at no increase in
cost. However, the stability situation in the case of re-starts remained unclear.
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Figure 1 summarizes the result of a test case of 3-D Maxwell’s equations using
Richardson extrapolation in time. Clearly, large increases in computational ef-
ficiency can be achieved through Richardson extrapolation. The main purpose
of this present study is to add more theoretical understanding to the idea of re-
starts and, in particular, to their stability (or lack thereof). The slopes that are
marked by dashed lines in subplots b and c will be confirmed by our analysis
in Section 5.2.1. As noted in the Introduction, most convergence/divergence
features for the ADI-FDTD method (applied to the 3-D Maxwell’s equations)
can be reproduced with the very simple ODE (1.1).

For the present context of wave equations, we need to analyze somewhat dif-
ferent features of ODE solvers than what are usually considered. Of particular
interest will be the extent of the stability domains along the imaginary axis
(the stability ordinate), how this depends on the order of extrapolation, and
on how often in time the extrapolations are performed (i.e. how many re-starts
are done). A second main goal of the present study is to contrast uncondition-
ally stable methods - such as the trapezoidal rule (TR) - with conditionally
stable ones, represented for ex. by the Gragg-Bulirsch-Stoer (GBS) scheme.

2.3 Description of ADI-FDTD test problem

The fields

Ex = cos(2π(x + y + z) − 2
√

3πt) Hx =
√

3Ex

Ey = −2Ex Hy = 0

Ez = Ex Hz = −
√

3Ex

with ε = µ = 1 satisfy (2.1) over a periodic unit cube, and correspond to waves
propagating along the main diagonal of the computational lattice. Since the
ADI-FDTD method is mainly of interest in cases when the geometry forces the
use of very small space steps, spatial errors in resolving a wave will contribute
little to the overall error. In this case we employed the pseudospectral method
in space in order to see most clearly how Richardson extrapolations in time,
described in [16], improves the temporal accuracy. In the computations from
t = 0 to t = T = 32 shown in Figure 1, the leftmost point markers (order
of accuracy = 2) in part (a) show how the final error (measured in the `2-
norm, over all the six fields) decreases when the time step in (2.2), (2.3)
is successively decreased by factors of two - from 1/25 to 1/210. Each time
the time step is halved, the computational cost doubles. In contrast, each
Richardson extrapolation (moving to next column in Figure 1a) only increases
computational cost by 50%. Not only is this much less costly than refining
the time step, the gain in accuracy is seen to be much larger. The leftmost
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columns in Figures 1b and c correspond to the fourth and sixth order methods,
as shown in part a of the figure. The re-starts (as described in [16] and here
in Section 5.2) decrease time errors by some additional orders of magnitude,
without any further increases in cost. As noted in the introduction, one of the
main purpose of the present study is to clarify the stability situation when
extrapolation is used in this way at the end of each computational temporal
subinterval.

3 Two second order ODE solvers

An extrapolation method typically starts with a scheme which is second order
accurate in time, and for which the error expansion contains only even powers
of the time step k. In the case of solving

y′ = f(t, y) , (3.1)

two such schemes are described next. Based on the insights we gain from
these two cases, we will be able to address the corresponding issue for the
extrapolated ADI method for Maxwell’s equations.

3.1 Trapezoidal rule

To advance (3.1) with initial condition (IC) y(t0) = y0 forward N time steps
to reach time tN , the trapezoidal rule (TR) amounts to repeating

yn+1 − yn

k
=

1

2
(f(tn+1, yn+1) + f(tn, yn)), n = 0, 1, 2, . . . , N − 1. (3.2)

Comparing the computed solution yN to the exact value YN at time tN , we
obtain

yN − YN =
∞
∑

j=1

cjk
2j , (3.3)

containing only even powers of k [14]. Extrapolation in time for this scheme
is discussed in Section 5.1.1. The procedure is seldom used for this scheme,
but is nevertheless instructive for our subsequent analysis. This scheme is
conceptually very similar to the ADI-FDTD scheme in being unconditionally
stable and unchanged under time reversal.
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3.2 Gragg-Bulirsch-Stoer

Since extrapolation methods for ODEs are most commonly based on the GBS
scheme [13], we included it here for the purpose of comparison. The basic
second order (un-extrapolated) version of GBS consists of the steps























































y1 − y0

k
= f(t0, y0) Forward Euler

yn+1 − yn−1

2k
= f(tn, yn) Leap-frog, n = 1, 2, . . . , N

y∗N = 1
4
(yN−1 + 2yN + yN+1) Averaging

(3.4)

where y∗N is the approximation that is accepted at time tN . We rename y∗N
as yN . If N is even, it transpires that we get again an error expansion of the
form (3.3) in even powers only [3], [13], [14]. Many other second order ODE
solvers feature error expansions with all powers of k present, and they are
therefore not equally well suited for subsequent extrapolation [13] (gaining
only one rather than two orders of accuracy for each extrapolation). Time
extrapolations for GBS are discussed in Section 5.1.2.

4 Stability domains

These domains are essential in determining when an ODE solver can be used
for MOL solution of a PDE. They are obtained by considering the numerical
scheme applied to the simple linear ODE (1.1). For the ODE itself, solutions
will not grow when Re λ ≤ 0. For each ODE solver applied to (1.1), we sim-
ilarly obtain a certain domain in a complex ξ = λk plane for which solutions
will not grow. Figure 2 shows these stability domains for Forward Euler (FE),
Leap-frog (LF), and p-stage explicit Runge-Kutta methods of order p (RKp),
p = 1, 2, 3, 4. More details on these well-known stability domains can, for
example, be found in [1] (p.407), [10] (Appendix G), and [19] (p.69). The fact
that the domains for FE, RK1 and RK2 do not include any interval along
the imaginary axis tells that an MOL solution based on them will be uncon-
ditionally unstable for wave equations. For LF, RK3 and RK4, the stability
ordinates are 1,

√
3 and 2

√
2 respectively (cf. Figure 2).

The stability condition on k/h (time step divided by space step for a wave
equation) will be proportional to this stability ordinate (and will also depend
on the space operator; see for ex. Example 5, Section 4.5 in [10]).
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Fig. 2. Some examples of stability domains in a complex ξ = λk plane.

4.1 Stability domain for the trapezoidal rule

The TR scheme applied to (1.1) becomes

yn+1 − yn

k
=

λ

2
(yn+1 + yn) ,

i.e.

yn+1 =
1 + ξ

2

1 − ξ
2

yn , (4.1)

with non-growing solutions if and only if Re ξ ≤ 0. The stability domain is
therefore precisely the left half plane, just as is the domain of no-growth for
the ODE itself.

4.2 Stability domain for second order GBS

The analysis for the GBS scheme is more complicated, partly since it also
depends on N (the number of time steps that are taken before the averaging
is performed).
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Applying (3.4) to (1.1) with y0 = 1 gives

y1 = 1 + λk = 1 + ξ

y2 = y0 + 2kλy1 = 1 + 2ξ + 2ξ2

y3 = y1 + 2kλy2 = 1 + 3ξ + 4ξ2 + 4ξ3

y4 = y2 + 2kλy3 = 1 + 4ξ + 8ξ2 + 8ξ3 + 8ξ4

y5 = y3 + 2kλy4 = 1 + 5ξ + 12ξ2 + 20ξ3 + 16ξ4 + 16ξ5

· · ·

For even values of N , we form y∗N = 1
4
(yN−1 + 2yN + yN+1) , i.e.

y∗2 = 1 + 2ξ + 2ξ2 + ξ3

y∗4 = 1 + 4ξ + 8ξ2 + 10ξ3 + 8ξ4 + 4ξ5

y∗6 = 1 + 6ξ + 18ξ2 + 35ξ3 + 48ξ4 + 48ξ5 + 32ξ6 + 16ξ7

· · ·

(4.2)

From these expressions, we can plot the corresponding stability domains, as
will later be done in Section 5.1.2.

In the context of wave equations, the key question is whether or not any
interval along the imaginary axis around the origin is included in the stability
domain. This can be settled by series expansions for fixed N (even) and small
ξ, as follows:

y∗N = 1 + Nξ + 1
2
N2ξ2 + 1

6
N(N2 − 1)ξ3 + 1

24
N2(N2 − 4)ξ4 +

+ 1
120

N(N2 − 4)(N2 − 6)ξ5 + 1
720

N2(N2 − 4)(N2 − 16)ξ6 +

+ 1
5040

N(N2 − 4)(N2 − 15)(N2 − 16)ξ7 + . . .

The multiplication factor per time step thus becomes

σN = N
√

y∗N

= 1 + ξ + 1
2
ξ2 − 1

8
ξ4 + 1

8
ξ5 − 1

16
(2N − 3)ξ6 + 1

24
(N − 2)(2N + 1)ξ7 + . . .

and we can further compute

ρN = ln σN = ξ − 1
6
ξ3 + 1

5
ξ5 − 1

8
N ξ6 + 1

84
(7N2 − 16) ξ7 + . . . . (4.3)

For an exact ODE solver, this last quantity should satisfy ρN = ξ. The fact
that next term is of the form c · ξ3 signifies that the scheme is of second order
accuracy.

10



The stability domain consists of ξ-values such that |σN | ≤ 1. Because of the
general formula for z complex: ln z = ln |z| + i arg z, this domain is also
described by Re ρN ≤ 0. Letting ξ vary along the imaginary axis near the
origin, the first three terms in (4.3) tell that the edge of the stability domain,
to leading orders, also follows the imaginary axis. However, the fourth term
−1

8
N ξ6 tells that Re ρN > 0 when ξ is small and purely imaginary. Thus, all

these methods (N = 2, 4, 6, . . .) lack imaginary axis coverage near the origin,
and they will therefore become unconditionally unstable in case of MOL time
stepping of wave equations. Illustrations of the second order GBS stability
domains in cases of N = 2, 4, 8, 16 appear later in this paper as the leftmost
column in Figure 4.

For comparison, we can note that for TR, the counterpart to (4.3) will not
feature any N -dependence. From (4.1) follows

ρ = ln
1 + ξ

2

1 − ξ
2

=
∞
∑

n=1

ξ2n−1

(2n − 1) 4n−1
, (4.4)

containing only odd powers in ξ. This is consistent with the fact that the
stability domain boundary for TR does not deviate in either direction from
the imaginary axis.

5 Extrapolations to higher orders

Richardson extrapolation [22] has often been used when numerical calcula-
tions feature error expansions of the form (3.3), e.g. Romberg’s method for
quadrature [6], and extrapolation methods for ODEs [8], [13]. In the context
of solving ODEs, frequent extrapolations/re-starts are usually advantageous.
In our present context of MOL solution of wave-type PDEs, the issue is more
complicated since we also need to take into account if the resulting stability
domains cover part of the imaginary axis. To our knowledge, this has not been
studied previously.

The two main options when extrapolating are whether to perform it every N
time steps (i.e. increasingly many times as the grid is refined) or a fixed number
M of times (i.e. progressively more rarely under mesh refinement). We will see
in Section 5.1 that the former option never works for TR, but that it can give
conditional stability in some cases for extrapolated GBS schemes. However,
since our interest lies in unconditional stability, we turn in Section 5.2 to the
case of extrapolating only a fixed number M times (even as the time step is
refined). This was the case considered in [16]. We can here both confirm and
interpret (in the case of TR) the favorable convergence and stability situation
that was previously observed (for ADI-FDTD).
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5.1 Extrapolation every N time steps

We need to analyze this separately for the TR and the GBS schemes, as
follows.

5.1.1 Stability analysis for TR

If we advance TR N steps forward with a time step inversely proportional

to N , the solution gets multiplied by
(

1+ 1

2

ξ
N

1− 1

2

ξ
N

)N

. We can then build up the

Romberg table

y
(2)
1 =

1+ 1

2

ξ
1

1− 1

2

ξ
1

y
(2)
2 =

(

1+ 1

2

ξ
2

1− 1

2

ξ
2

)2

y
(4)
2

y
(2)
4 =

(

1+ 1

2

ξ
4

1− 1

2

ξ
4

)4

y
(4)
4 y

(6)
4

y
(2)
8 =

(

1+ 1

2

ξ
8

1− 1

2

ξ
8

)8

y
(4)
8 y

(6)
8 y

(8)
8

...
...

...
...

. . .

(5.1)

where the superscripts (p) denote the order of accuracy and – as before – sub-
scripts denote N. The elements in successive columns are computed recursively
by

y
(p)
2i =

2p−2y
(p−2)
2i − y

(p−2)
2i−1

2p−2 − 1
.

For example, in the special case of extrapolating from second to fourth order
(p = 4), we have

y
(4)
2i =

4

3
y

(2)
2i − 1

3
y

(2)
2i−1 . (5.2)

In the same way as how we obtained the stability domains and equation (4.3)
for the 2nd order GBS scheme, we can now compute the corresponding data
for the extrapolated methods. However, it is hard to read off from Figure 3
whether there is any imaginary axis coverage or not. Inspection of the corre-
sponding ρN− functions (shown in the left part of Table 1) settles that issue.

The orders of accuracy are seen to increase as expected by two for each level
of extrapolation. The signs in front of the first even power (negative for orders
4, 8, 12, ... and positive for orders 6, 10, ...) show that, in contrast to the
perfect stability situation for un-extrapolated TR, the extrapolated TR meth-
ods never offer any imaginary axis coverage near the origin. In our context
of MOL solution of wave equations, these methods will therefore all feature
unconditional instability.
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Fig. 3. Stability domains for TR methods (including extrapolations to different
orders).

Table 1
Stability domains for TR and GBS; Expansions around origin

Order ρN (ξ) for TR ρN (ξ) for GBS

2 ξ + 1
12ξ3 + {odd powers of ξ only } ξ − 1

6ξ3 + 1
5ξ5 − 1

8N ξ6 + . . .

4 ξ − 1
20ξ5 − 1

72N ξ6 + . . . ξ − 22

5 ξ5 + 22

9 N ξ6 + . . .

6 ξ + 1
7ξ7 + 1

15N ξ8 + . . . ξ − 28

21ξ7 + 27

15N ξ8 + . . .

8 ξ − 24

9 ξ9 − 23·71
525 N ξ10 + . . . ξ − 215

45 ξ9 + 219

175N ξ10 + . . .

10 ξ + 210

11 ξ11 + 211·31
945 N ξ12 + . . . ξ − 226

385ξ11 + 232·31
945 N ξ12 + . . .

12 ξ − 218

13 ξ13 − 217·3043
24255 N ξ14 + . . . ξ − 237

819ξ13 + 237

4851N ξ14 + . . .

. . . . . . . . .

5.1.2 Stability analysis for GBS

The algebra becomes very similar to the TR case, with the exception that the
entries from the closed form expressions for σN = N

√
y∗N (cf. (4.2)) need to be

used in place of the explicit ratios in the left-most column in (5.1). Figure 4
displays the resulting stability domains, and the series expansions for ρN are
shown in the right column of Table 1. The top entry corresponds to (4.3).
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Fig. 4. Stability domains for GBS methods (including extrapolations to different
orders).

Table 2
Stability Ordinates for GBS methods of orders p = 4, 8, 12, ...

4 8 12 . . .

N = 4 0.84090

8 0.28008

16 0.14187 0.25390

32 0.07115 0.06680

64 0.03560 0.03355 0.05881

128 0.01780 0.01614 0.01636
...

...
...

...
...

Although the stability situation in the un-extrapolated GBS case is much
more restrictive than for the un-extrapolated TR (which featured A -stability),
we now obtain some imaginary axis coverage near the origin for orders p =
4, 8, 12, . . . Table 2 gives numerical values of the stability ordinate in these
cases.

In the context of MOL solution of wave equations, we will in these cases
obtain conditional stability (of the form k/h < constant) - however never the
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unconditional stability that made the ADI-FDTD scheme so attractive.

5.2 Extrapolation M times during a time integration

5.2.1 Accuracy

In this case, stability will always be preserved (when the time step is de-
creased), since a fixed linear combination of bounded results will again become
bounded. The approach is therefore ‘safe’, and it allows the accuracy to be
increased to any order. This was exploited in [16], where it was furthermore
empirically noted - as we recalled in the introduction of the present paper -
that the accuracy improves roughly by a factor of two each time M is dou-
bled in case of extrapolating ADI from order 2 to 4, and by a factor of 4
when extrapolating from order 4 to 6, etc. We will see next that (i) a gain of
two orders of accuracy for each Richardson extrapolation corresponds to ρ(ξ)
being an odd function, (ii) the gains in accuracy due to re-starts occur only
if λτ is large, where τ is the time over which the ODE is solved, (iii) we can
theoretically reproduce these observed improvement factors for re-starts, and
(iv) the error (for very large values of λ) can grow with a factor of 5/3 for each
re-start (i.e. by a factor of (5/3)M in case of M re-starts, severely restricting
the number of subintervals/re-starts that can be used in practice).

The numerical solution of (1.1) at time τ = T/M , starting with y(0) = 1 and
using a time step k, becomes

y(τ) = σ(ξ)
τ
k = e

τ
k

ln σ(ξ) = e
τ
k
ρ(ξ) = e

τ
k
ρ(λk).

The error

y(τ) − Y (τ) = e
τ
k
ρ(λk) − eλτ

becomes an even function of k if and only if ρ(ξ) is an odd function. It can
therefore be expanded as ρ(ξ) = ξ + c3ξ

3 + c5ξ
5 + c7ξ

7 + . . . (We can note that
there is no contradiction between this and the presence of even powers of ξ in
(4.3) since there N = τ

k
= λτ

ξ
). Expanding y(τ) = e

τ
k
ρ(λk) gives

y(τ) = eλτ · ec3λ3τ k2+c5λ5τ k4+c7λ7τ k6+... (5.3)

= eλτ + eλτc3λ
3τ k2 + 1

2
eλτλ5τ(2c5 + c2

3λτ)k4+

+ 1
6
eλτλ7τ(6c7 + 6c3c5λτ + c3

3λ
2τ2)k6 + . . .

Richardson extrapolation to 4th order, combining the above with a calculation
using time step 2k, gives

y(τ) = eλτ − eλτλ5τ(4c5 +2c2
3λτ)k4 − 10

3
eλτλ7τ(6c7 +6c3c5λτ + c3

3λ
2τ 2)k6 + . . .

(5.4)
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If we want to reach the time T = M τ (by repeating the procedure M times),
the result becomes

y(T ) = y(τ)M = eλT

[

1 + 2Tλ5

(

2c5 +
c2
3λT

M

)

k4 + O(k6)

]

. (5.5)

Assuming that k is small enough that the O(k4)-term dominates the O(k6)-
term, and that λT is large compared to M , the error has therefore gone down
by a factor of M . In particular, it goes down by a factor of two each time M
is doubled, as noted in [16].

Similarly, we can Richardson extrapolate (5.4) to also eliminate the k4-term
and, in place of (5.4), obtain

y(τ) = eλτ + 32
3
eλτλ7τ(6c7 + 6c3c5λτ + c3

3λ
2τ 2)k6 + . . .

The solution at time T = M τ becomes

y(T ) = y(τ)M = eλT

[

1 + 32 T λ7(2c7 + 2c3c5
λT

M
+

1

3
c3
3

λ2T 2

M2
)k6 + O(k8)

]

(5.6)
This time, the error similarly goes down with a factor of M 2, i.e. by a factor
of four each time M is doubled. For extrapolation from 6th to 8th order, the
corresponding factor becomes M 3, etc. The factor ‘M ’ in (5.5) and ‘M 2’ in
(5.6) imply that a doubling of M will reduce the error by factors of 2 and 4
respectively, giving slopes as shown with labels ‘Factor 2’ and ‘Factor 4’ in
Figures 1 and 5.

5.2.2 Stability

Next we want to understand the stability situation when using repeated re-
starts in the context of wave equations. In this case, λ is purely imaginary and
increases in size proportionally to 1/h, where h is the spatial step size. Smaller
h means larger λ, and the restriction on k in the previous analysis (section
5.2.1) gets more severe. When it is violated, we can still estimate a worst-case
error growth as follows. When each Richardson extrapolation is performed
(going from second to fourth order), we combine, with the weights 4

3
and

− 1
3

(as in (5.2)), two results that have preserved their magnitude but whose
phases might be entirely wrong. This can, at worst, increase the magnitude of
the approximate solution by a factor of 5

3
. This growth is feasible at each of

the M extrapolations. However, the amplitudes of these highest modes should
initially be vanishingly small (we need to recall that the grid is fine only to
accommodate an intricate geometry – we assumed the wave length to be large).
Increasing the amplitudes of these high modes by a factor of up to 5

3
a total of

M times is therefore acceptable if M is not very large. The overall error (all
modes included) will decrease initially when M is increased (since we improve
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Fig. 5. Trapezoidal rule solutions to y ′ = i y : the curves, from top to bottom,
represent errors at time steps k = ∆t = T/N, N = 2048 · 2j−1, j = 1, . . . , 8. (a)
Errors when solution at final time T = 100 is Richardson extrapolated to higher
orders of accuracy. (b) Accuracies in the case of 4th order, with increasing numbers
of re-starts. (c) Accuracies in the case of 6th order, with increasing numbers of
re-starts.

the accuracy in dominant low modes), but it will grow eventually (since high
modes – initially with negligible energy – can diverge exponentially with M).
The break point between these two trends will depend on the initial data,
and is most certainly best determined numerically, by checking at what point
the highest modes in the computed wave solution start to exceed the desired
accuracy level.

5.3 Numerical test of re-starts for TR

To compare how the accuracy improvements due to re-starts compare with the
theoretical predictions we have just obtained, we implemented TR for (1.1) in
the case of λ = i.

Figure 5a shows major accuracy gains by Richardson extrapolation, and parts
b and c show that the accuracy with re-starts improve just as predicted. We
also see - again as predicted - that the benefits of re-starts taper off as they are
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Fig. 6. Errors at final time T = 100 when TR is extrapolated to fourth order. The
only difference from Figure 5b is that the equation now is y ′ = 20iy instead of
y′ = iy.

performed increasingly often. We can gain close to two orders of magnitude in
accuracy when applying it at order 4, and close to three orders of magnitude
at order 6.

The general character of Figure 5 is qualitatively identical to that of Figure
1, leaving little doubt that we have indeed, in our ODE-based analysis for the
small k case, caught the mechanisms controlling the convergence rates of the
extrapolated ADI-FDTD scheme.

Repeating the same computation with λ = 20i gives, in place of Figure 5b,
the result shown in Figure 6. For the largest values of k, we get precisely
the (5/3)M growth just discussed (cf. the dot-dashed curve). This growth by
(5/3)M is independent of the integration length in time, and affects only modes
that are so high that the time integration fails to resolve them. We conclude
that using only a few subintervals (low values of M) is always acceptable,
improving the lowest modes (which contain the physical energy), and cause
only a moderate growth in the higher modes (which should contain no energy).
If one, contrary to our recommendation, would wish to use many subintervals
(high values of M), this still ought to be possible if combined with some sort
of filter which takes out the (physically meaningless) highest modes.
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6 Conclusions

The unconditionally stable ADI-FDTD scheme for the 3-D Maxwell’s equa-
tions features only second order accuracy in time. It was observed in [16] that
it could be beneficial to enhance it with Richardson extrapolation in time. In
this study, we have:

• Explained why the Richardson extrapolation procedure to higher orders of
accuracy preserves the ADI-FDTD schemes unconditional stability,

• By analysis of a model problem, clarified why use of increasingly frequent
re-starts give precisely the type of accuracy enhancements that were earlier
observed empirically,

• Demonstrated that only a limited number of re-starts are beneficial in view
of the growth that otherwise can occur in high (unphysical) modes, and
proposed a practical approach to deciding on how many re-starts to use,

• Contrasted the behavior of unconditionally stable schemes, such as ADI-
FDTD and trapezoidal rule with that of the GBS approach (the main
starting point in extrapolation methods for ODEs). In contrast to the un-
conditional instability of the former (ADI schemes with re-starts performed
so often that only a fixed number of time steps are performed between each
extrapolation), GBS-type schemes can give conditional stability also in this
case. However, this is of limited interest in our present context of exploring
schemes with unconditional stability.

Based on the observations above, we (again) recommend the ADI-FDTD
scheme - together with Richardson extrapolation - in cases when we want
to use a time step which is much larger than what the CFL condition would
permit in the case of fully explicit schemes.
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