Remember to write your name! You are allowed to use a calculator. You are not allowed to use the textbook, your notes, the internet, or your neighbor. To receive full credit on a problem you must show sufficient justification for your conclusion unless explicitly stated otherwise.

Name:

- 1. (30 points) If the statement is **always true** mark "TRUE"; if it is possible for the statement to be false then mark "FALSE." If the statement seems neither true nor false but rather incoherent, raise your hand. No justification is necessary. **Students in 4720 can pick 5** out of 6 questions to answer. Students in 5720 must answer all.
- (a) If a matrix **A** is normal then the eigenvalues of the perturbed matrix $\mathbf{A} + \mathbf{E}$ are all within a distance $\|\mathbf{E}\|_3$ of the eigenvalues of **A**.

False This is the Bauer-Fike theorem. You can use any p-norm. But in the 3-norm the condition of the eigenvector basis is not necessarily 1, as it would be in the 2-norm.

(b) Let λ be a simple eigenvalue of **A** with left and right eigenvectors \boldsymbol{y} and \boldsymbol{x} , each of which are 2-norm unit vectors, and let $\mathbf{A} + \mathbf{E}$ be the perturbed matrix where $\|\mathbf{E}\|_2 = \epsilon$. True or False: The perturbed matrix will have an eigenvalue μ within a distance of approximately $\epsilon/|\boldsymbol{y}^*\boldsymbol{x}|$ from λ , for small-enough ϵ .

True

(c) Let **A** be a diagonalizable matrix with approximate eigenvalue/eigenvector pair (μ, \boldsymbol{x}) . True or false: (μ, \boldsymbol{x}) is an exact eigenvalue/eigenvector pair for a perturbed matrix $\mathbf{A} + \mathbf{E}$ where $\|\mathbf{E}\|_2 \leq \|\mathbf{A}\boldsymbol{x} - \mu\boldsymbol{x}\|_2$.

False This would be true for *normal* matrices, but the correct statement for non-normal matrices includes the condition number of the eigenvector basis.

(d) Suppose that **A** is $n \times n$ with LU factorization $\mathbf{PA} = \mathbf{LU}$. True or false: The matrix $\mathbf{UP}^T \mathbf{L}$ has the same eigenvalues as **A**.

True The matrices are similar:

$$\mathbf{U}\mathbf{P}^{T}\mathbf{L} = \mathbf{L}^{-1}\mathbf{P}\mathbf{A}\mathbf{P}^{T}\mathbf{L}.$$

 ${\bf L}$ is always invertible (even if ${\bf A}$ is not) because it is lower triangular with ones on the diagonal.

(e) Let λ and \boldsymbol{x} be an eigenvalue/eigenvector pair for \mathbf{A} . True or false: The matrix $\mathbf{A} - \lambda \boldsymbol{x} \boldsymbol{x}^* / \|\boldsymbol{x}\|_2^2$ has eigenvector \boldsymbol{x} with eigenvalue 0.

True

(f) Let S be a nontrivial subspace that is invariant under a square matrix **A**. True or False: There is an eigenvector of **A** in S.

True

2. (20 points) Suppose that you are given one eigenvalue/eigenvector pair of an $n \times n$ matrix **A**. Explain how you can reduce the problem of finding the remaining eigenvalues of **A** to finding the eigenvalues of an $n-1 \times n-1$ matrix. Show explicitly how to construct the $n-1 \times n-1$ matrix. Hint: Start by constructing an invertible matrix **X** whose first column is the eigenvector.

Let \mathbf{X} be an invertible matrix whose first column is the eigenvector. Then

$$\mathbf{X}^{-1}\mathbf{A}\mathbf{X} = \begin{bmatrix} \lambda & * \\ \hline \mathbf{0} & \mathbf{B} \end{bmatrix}.$$

A is similar to the RHS, which is block-upper triangular. The eigenvalues of **A** are therefore λ together with the eigenvalues of **B**, which is $n - 1 \times n - 1$. Kudos if you used a unitary similarity transform rather than just an invertible **X**.

- 3. Computing the SVD of a real $m \times n$ matrix **A** requires computing the eigenvalues and eigenvectors of $\mathbf{A}^T \mathbf{A}$ and $\mathbf{A} \mathbf{A}^T$.
 - (a) Let **P** and **Q** be real orthogonal matrices of size $m \times m$ and $n \times n$ respectively, and let **B** = **PAQ**. Show that the singular values of **B** are the same as the singular values of **A**.

The singular values of \mathbf{A} are the square roots of the eigenvalues of $\mathbf{A}^T \mathbf{A}$, and similarly for the singular values of \mathbf{B} . Note that

$$\mathbf{B}^T \mathbf{B} = \mathbf{Q}^T \mathbf{A}^T \mathbf{A} \mathbf{Q}$$

so $\mathbf{B}^T \mathbf{B}$ is (orthogonally-)similar to $\mathbf{A}^T \mathbf{A}$, and they therefore have the same eigenvalues.

(b) Let \boldsymbol{v} be an eigenvector of $\mathbf{B}^T \mathbf{B}$. How is it related to the corresponding eigenvector of $\mathbf{A}^T \mathbf{A}$?

The above analysis shows that if v is an eigenvector of $\mathbf{B}^T \mathbf{B}$, then $\mathbf{Q}v$ is an eigenvector of $\mathbf{A}^T \mathbf{A}$.

(c) It is possible to choose \mathbf{P} and \mathbf{Q} such that \mathbf{B} is bi-diagonal (nonzeros immediately above the diagonal). Prove that $\mathbf{B}^T \mathbf{B}$ and $\mathbf{B} \mathbf{B}^T$ are tridiagonal (you may cite any relevant theorem from class).

The banded-matrix-multiplication theorem shows that multiplying a lower-bidiagonal and an upper-bidiagonal matrix yields a tridiagonal matrix.

- 4. (20 points)
 - 5720 Only Let A be an $n \times n$ diagonalizable matrix with eigenvalues satisfying $\lambda_1 = \ldots = \lambda_k$ with $|\lambda_k| > |\lambda_{k+1}| \ge \ldots \ge |\lambda_n|$. Show that the vectors generated by the power method will converge to an eigenvector of A (under standard assumptions on the starting vector).

Let the eigenvectors of **A** be v_1, \ldots, v_n , and the initial vector for the power method be $x_0 = c_1 v_1 + \cdots + c_n v_n$. Assume that c_1, \ldots, c_k are not all zero. Then

$$\mathbf{A}^{p}\boldsymbol{x}_{0} = c_{1}\lambda_{1}^{p}\boldsymbol{v}_{1} + \dots + c_{k}\lambda_{1}^{p}\boldsymbol{v}_{k} + c_{k+1}\lambda_{k+1}^{p}\boldsymbol{v}_{k+1} + \dots + c_{n}\lambda_{n}^{p}\boldsymbol{v}_{n}$$
$$\mathbf{A}^{p}\boldsymbol{x}_{0} = \lambda_{1}^{p}(c_{1}\boldsymbol{v}_{1} + \dots + c_{k}\boldsymbol{v}_{k}) + c_{k+1}\lambda_{k+1}^{p}\boldsymbol{v}_{k+1} + \dots + c_{n}\lambda_{n}^{p}\boldsymbol{v}_{n}$$

If you normalize then the coefficients of v_{k+1}, \ldots, v_n will decay to 0 as $p \to \infty$ so that $\mathbf{A}^p \boldsymbol{x}_0 / \| \mathbf{A}^p \boldsymbol{x}_0 \|$ will converge to

$$\frac{c_1\boldsymbol{v}_1+\cdots+c_k\boldsymbol{v}_k}{\|c_1\boldsymbol{v}_1+\cdots+c_k\boldsymbol{v}_k\|}.$$

This vector is an eigenvector of \mathbf{A} because

$$\mathbf{A}(c_1\boldsymbol{v}_1+\cdots+c_k\boldsymbol{v}_k)=\lambda_1(c_1\boldsymbol{v}_1+\cdots+c_k\boldsymbol{v}_k).$$

• 4720 Only The basic shifted QR algorithm is

$$\mathbf{A}_{m-1} - \rho \mathbf{I} = \mathbf{Q}_m \mathbf{R}_m, \ \mathbf{A}_m = \mathbf{R}_m \mathbf{Q}_m + \rho \mathbf{I}, \ \mathbf{A}_0 = \mathbf{A}$$

Show that \mathbf{A}_m is orthogonally similar to \mathbf{A}_{m-1} (you may assume everything is real).

$$\mathbf{A}_{m-1} = \mathbf{Q}_m \mathbf{R}_m + \rho \mathbf{I} \Rightarrow \mathbf{Q}_m^T \mathbf{A}_{m-1} \mathbf{Q}_m = \mathbf{R}_m \mathbf{Q}_m + \rho \mathbf{I} = \mathbf{A}_m$$