Remember to write your name! You are allowed to use a calculator. You are not allowed to use the textbook, your notes, the internet, or your neighbor. To receive full credit on a problem you must show **sufficient justification for your conclusion** unless explicitly stated otherwise.

Name:

1. (30 points) If the statement is always true mark “TRUE”; if it is possible for the statement to be false then mark “FALSE.” If the statement seems neither true nor false but rather incoherent, raise your hand. No justification is necessary. **Students in 4720 can pick 5 out of 6 questions to answer. Students in 5720 must answer all.**

 (a) If a matrix A is normal then the eigenvalues of the perturbed matrix $A + E$ are all within a distance $\|E\|_3$ of the eigenvalues of A.

 False This is the Bauer-Fike theorem. You can use any p-norm. But in the 3-norm the condition of the eigenvector basis is not necessarily 1, as it would be in the 2-norm.

 (b) Let λ be a simple eigenvalue of A with left and right eigenvectors y and x, each of which are 2-norm unit vectors, and let $A + E$ be the perturbed matrix where $\|E\|_2 = \epsilon$. True or False: The perturbed matrix will have an eigenvalue μ within a distance of approximately $\epsilon/|y^*x|$ from λ, for small-enough ϵ.

 True

 (c) Let A be a diagonalizable matrix with approximate eigenvalue/eigenvector pair (μ, x). True or false: (μ, x) is an exact eigenvalue/eigenvector pair for a perturbed matrix $A + E$ where $\|E\|_2 \leq \|Ax - \mu x\|_2$.

 False This would be true for *normal* matrices, but the correct statement for non-normal matrices includes the condition number of the eigenvector basis.

 (d) Suppose that A is $n \times n$ with LU factorization $PA = LU$. True or false: The matrix $UP^T L$ has the same eigenvalues as A.

 True The matrices are similar:

 $$UP^T L = L^{-1} PAP^T L.$$

 L is always invertible (even if A is not) because it is lower triangular with ones on the diagonal.

 (e) Let λ and x be an eigenvalue/eigenvector pair for A. True or false: The matrix $A - \lambda xx^*/\|x\|_2^2$ has eigenvector x with eigenvalue 0.

 True

 (f) Let S be a nontrivial subspace that is invariant under a square matrix A. True or False: There is an eigenvector of A in S.

 True
2. (20 points) Suppose that you are given one eigenvalue/eigenvector pair of an $n \times n$ matrix A. Explain how you can reduce the problem of finding the remaining eigenvalues of A to finding the eigenvalues of an $n-1 \times n-1$ matrix. Show explicitly how to construct the $n-1 \times n-1$ matrix. Hint: Start by constructing an invertible matrix X whose first column is the eigenvector.

Let X be an invertible matrix whose first column is the eigenvector. Then

$$X^{-1}AX = \begin{bmatrix} \lambda & * \\ 0 & B \end{bmatrix}.$$

A is similar to the RHS, which is block-upper triangular. The eigenvalues of A are therefore λ together with the eigenvalues of B, which is $n-1 \times n-1$. Kudos if you used a unitary similarity transform rather than just an invertible X.

3. Computing the SVD of a real $m \times n$ matrix A requires computing the eigenvalues and eigenvectors of A^TA and AA^T.

(a) Let P and Q be real orthogonal matrices of size $m \times m$ and $n \times n$ respectively, and let $B = PAQ$. Show that the singular values of B are the same as the singular values of A.

The singular values of A are the square roots of the eigenvalues of A^TA, and similarly for the singular values of B. Note that

$$B^TB = Q^TA^TAQ$$

so B^TB is (orthogonally-)similar to A^TA, and they therefore have the same eigenvalues.

(b) Let v be an eigenvector of B^TB. How is it related to the corresponding eigenvector of A^TA?

The above analysis shows that if v is an eigenvector of B^TB, then Qv is an eigenvector of A^TA.

(c) It is possible to choose P and Q such that B is bi-diagonal (nonzeros immediately above the diagonal). Prove that B^TB and BB^T are tridiagonal (you may cite any relevant theorem from class).

The banded-matrix-multiplication theorem shows that multiplying a lower-bidiagonal and an upper-bidiagonal matrix yields a tridiagonal matrix.
4. (20 points)

- **5720 Only** Let \(A \) be an \(n \times n \) diagonalizable matrix with eigenvalues satisfying \(\lambda_1 = \ldots = \lambda_k \) with \(|\lambda_k| > |\lambda_{k+1}| \geq \ldots \geq |\lambda_n| \). Show that the vectors generated by the power method will converge to an eigenvector of \(A \) (under standard assumptions on the starting vector).

Let the eigenvectors of \(A \) be \(v_1, \ldots, v_n \), and the initial vector for the power method be \(x_0 = c_1 v_1 + \cdots + c_n v_n \). Assume that \(c_1, \ldots, c_k \) are not all zero. Then

\[
A^p x_0 = c_1 \lambda_1^p v_1 + \cdots + c_k \lambda_1^p v_k + c_{k+1} \lambda_{k+1}^p v_{k+1} + \cdots + c_n \lambda_n^p v_n
\]

\[
A^p x_0 = \lambda_1^p (c_1 v_1 + \cdots + c_k v_k) + c_{k+1} \lambda_{k+1}^p v_{k+1} + \cdots + c_n \lambda_n^p v_n
\]

If you normalize then the coefficients of \(v_{k+1}, \ldots, v_n \) will decay to 0 as \(p \to \infty \) so that \(A^p x_0 / \|A^p x_0\| \) will converge to

\[
\frac{c_1 v_1 + \cdots + c_k v_k}{\|c_1 v_1 + \cdots + c_k v_k\|}
\]

This vector is an eigenvector of \(A \) because

\[
A(c_1 v_1 + \cdots + c_k v_k) = \lambda_1 (c_1 v_1 + \cdots + c_k v_k).
\]

- **4720 Only** The basic shifted QR algorithm is

\[
A_{m-1} - \rho I = Q_m R_m, \quad A_m = R_m Q_m + \rho I, \quad A_0 = A.
\]

Show that \(A_m \) is orthogonally similar to \(A_{m-1} \) (you may assume everything is real).

\[
A_{m-1} = Q_m R_m + \rho I \Rightarrow Q_m^T A_{m-1} Q_m = R_m Q_m + \rho I = A_m
\]