Remember to write your name! You are allowed to use a calculator. You are not allowed to use the textbook, your notes, the internet, or your neighbor. To receive full credit on a problem you must show sufficient justification for your conclusion unless explicitly stated otherwise.

Name:

- 1. (30 points) If the statement is **always true** mark "TRUE"; if it is possible for the statement to be false then mark "FALSE." If the statement seems neither true nor false but rather incoherent, raise your hand. No justification is necessary. **Students in 4720 can pick 5** out of 6 questions to answer. **Students in 5720 must answer all.**
- (a) If a matrix **A** is normal then the eigenvalues of the perturbed matrix $\mathbf{A} + \mathbf{E}$ are all within a distance $\|\mathbf{E}\|_3$ of the eigenvalues of **A**.
- (b) Let λ be a simple eigenvalue of **A** with left and right eigenvectors \boldsymbol{y} and \boldsymbol{x} , each of which are 2-norm unit vectors, and let $\mathbf{A} + \mathbf{E}$ be the perturbed matrix where $\|\mathbf{E}\|_2 = \epsilon$. True or False: The perturbed matrix will have an eigenvalue μ within a distance of approximately $\epsilon/|\boldsymbol{y}^*\boldsymbol{x}|$ from λ , for small-enough ϵ .
- (c) Let **A** be a diagonalizable matrix with approximate eigenvalue/eigenvector pair (μ, \boldsymbol{x}) . True or false: (μ, \boldsymbol{x}) is an exact eigenvalue/eigenvector pair for a perturbed matrix $\mathbf{A} + \mathbf{E}$ where $\|\mathbf{E}\|_2 \leq \|\mathbf{A}\boldsymbol{x} - \mu\boldsymbol{x}\|_2$.
- (d) Suppose that **A** is $n \times n$ with LU factorization $\mathbf{PA} = \mathbf{LU}$. True or false: The matrix $\mathbf{UP}^T \mathbf{L}$ has the same eigenvalues as **A**.
- (e) Let λ and \boldsymbol{x} be an eigenvalue/eigenvector pair for \mathbf{A} . True or false: The matrix $\mathbf{A} \lambda \boldsymbol{x} \boldsymbol{x}^* / \|\boldsymbol{x}\|_2^2$ has eigenvector \boldsymbol{x} with eigenvalue 0.
- (f) Let \mathcal{S} be a nontrivial subspace that is invariant under a square matrix \mathbf{A} . True or False: There is an eigenvector of \mathbf{A} in \mathcal{S} .
- 2. (20 points) Suppose that you are given one eigenvalue/eigenvector pair of an $n \times n$ matrix **A**. Explain how you can reduce the problem of finding the remaining eigenvalues of **A** to finding the eigenvalues of an $n 1 \times n 1$ matrix. Show explicitly how to construct the $n 1 \times n 1$ matrix. Hint: Start by constructing an invertible matrix **X** whose first column is the eigenvector.

- 3. (30 points) Computing the SVD of a real $m \times n$ matrix **A** requires computing the eigenvalues and eigenvectors of $\mathbf{A}^T \mathbf{A}$ and $\mathbf{A} \mathbf{A}^T$.
 - (a) Let **P** and **Q** be real orthogonal matrices of size $m \times m$ and $n \times n$ respectively, and let **B** = **PAQ**. Show that the singular values of **B** are the same as the singular values of **A**.

- (b) Let \boldsymbol{v} be an eigenvector of $\mathbf{B}^T \mathbf{B}$. How is it related to the corresponding eigenvector of $\mathbf{A}^T \mathbf{A}$?
- (c) It is possible to choose \mathbf{P} and \mathbf{Q} such that \mathbf{B} is bi-diagonal (nonzeros immediately above the diagonal). Prove that $\mathbf{B}^T \mathbf{B}$ and $\mathbf{B}\mathbf{B}^T$ are tridiagonal (you may cite any relevant theorem from class).

- 4. (20 points)
 - 5720 Only Let A be an $n \times n$ diagonalizable matrix with eigenvalues satisfying $\lambda_1 = \dots = \lambda_k$ with $|\lambda_k| > |\lambda_{k+1}| \ge \dots \ge |\lambda_n|$. Show that the vectors generated by the power method will converge to an eigenvector of A (under standard assumptions on the starting vector).
 - 4720 Only The basic shifted QR algorithm is

$$\mathbf{A}_{m-1} - \rho \mathbf{I} = \mathbf{Q}_m \mathbf{R}_m, \ \mathbf{A}_m = \mathbf{R}_m \mathbf{Q}_m + \rho \mathbf{I}, \ \mathbf{A}_0 = \mathbf{A}.$$

Show that \mathbf{A}_m is orthogonally similar to \mathbf{A}_{m-1} (you may assume everything is real).