APPM 4/5560 Markov Chains

Fall 2019, Some Review Problems for Exam II

- 1. State and prove the lack of memory property of the exponential random variable.
- 2. Let $\{N(t)\}$ be a Poisson process with rate 3.
 - (a) Find P(N(2) = 3, N(6) = 3).
 - (b) Find the expected number of arrivals between time 2 and time 3 given that there was already an arrival by time 2.
 - (c) Find $P(N(2) = 3|S_2 = 1.8)$ where S_2 is the time of the second arrival.
- 3. A hitchhiker approaches a major interstate at a certain place and time of day where vehicles are known to pass according to a Poisson process with a rate of 200 cars per hour.
 - (a) If each car here will pick up the hitchhiker with probability 0.05, what is the hitchhiker's expected waiting time?
 - (b) What is the expected number of cars that will pass the hitchhiker before he/she is picked up?
 - (c) Now suppose that 1 in 100 cars that pass this point are highway patrol cars and if each patrol car will stop to question/warn/ticket/arrest the hitchhicker with probability 0.7, what is the probability that the hitchhiker will get a ride before being bothered by the highway patrol?
- 4. Let $X_1, X_2 \stackrel{iid}{\sim} exp(rate = \lambda)$. Find the pdf for $Y = \max\{X_1, X_2\}$.
- 5. Customers arrive at a bank according to a Poisson process with rate λ .
 - (a) Suppose exactly one customer arrived during the first hour. What is the probability that he/she arrived during the first 20 minutes?
 - (b) Suppose that exactly two customers arrived during the first hour. What is the probability that exactly one had arrived by 20 minutes?
 - (c) Suppose that exactly two customers arrived during the first hour. What is the probability that at least one arrived in the first 20 minutes?
- 6. Let X and Y be independent Poisson random variables with parameters λ_1 and λ_2 , respectively. Find the condition distribution of X given that X + Y = n.
- 7. Let $\{N(t)\}$ be a Poisson process with rate λ . For any $s, t \ge 0$ find

$$\mathsf{E}[N(t)N(s+t)].$$

8. Suppose that minor defects are distributed over the length of a cable as a Poisson process with rate λ_1 , and that, independently, major defects are distributed over the cable according to a Poisson process with rate λ_2 . Let N(t) be the number of defects in the first t feet of the cable.

- (a) If exactly 1 minor defect has been found in the first 10 feet of the cable, what is the probability it is within the first 2 feet?
- (b) If exactly 1 defect has been found in the first 10 feet of the cable, what is the probability that it is a minor defect?
- (c) What is the expected number of minor defects between two successive minor defects?
- 9. Customers arrive at a service facility according to a Poisson process with rate λ customers per hour. Let N(t) be the number of customers that have arrives up to time t. Let S_1, S_2, \ldots be the successive arrival times. Find
 - (a) the probability that 5 customers arrived during the first hour given that 12 arrived during the first 2 hours
 - (b) $\mathsf{E}[S_5|N(1)=3]$
 - (c) $\mathsf{E}[S_5|S_1 > t]$
 - (d) $\mathsf{E}[N(t)|S_1 > t]$
 - (e) $\mathsf{E}[N(t)|S_1 < t]$
- 10. The gamma density can not be integrated in closed form. For $X \sim \Gamma(n, \lambda)$, find an expression for $P(X \leq x)$ in terms of a sum of Poisson probabilities.
- 11. Consider a two-server queueing process where customers arrive according to a Poisson process with rate λ , and go to either one of two servers if they are available. If both servers are busy, the customers form a single queue where the person at the end of the line will go to the next available server.

Suppose that each sever takes an exponential amount of time with rate μ to serve a customer.

If we model the total number of customers in this system as a birth-and-death process, what are the birth and death rates?

12. Consider a Poisson process $\{N(t)\}$ with rate λ with rate λ for some $\lambda > 0$.

Does this process have a stationary distribution? If so, find it. If not, explain why it does not.

Suppose that d particles are distributed into two cells. A particle in cell 1 remains in that cell for a random length of time that is exponentially distributed with rate λ before moving to cell
A particle in cell 2 remains in that cell for a random length of time that is exponentially distributed with rate μ before moving to cell 1. The particles act independently of each other. Let X(t) denote the number of paticles in cell 2 at time t ≥ 0.

Show that X(t) is a birth-and-death process and find the birth-and-death rates.

- 14. (a) Suppose that f and g are both o(h) functions. Show that f/g is o(h) or give a counterexample if it is not true.
 - (b) Simplify

$$\frac{1 - e^{-\lambda h}}{h}$$

with o(h) notation.

- (c) Show that $(1 \lambda h)^i = 1 i\lambda h + o(h)$.
- 15. A Poisson bug race: Two bugs, bug 1 and bug 2, are sitting on a 1 dimensional grid. After an exponential amount of time with rate λ_1 , bug 1 hops forward 1 unit on the grid. Similarly, after an exponential amount of time with rate λ_2 , bug 2 hops forward 1 unit on the grid. The first bug to hop 10 units wins.
 - (a) What is the probability that bug 1 is the first to hop?
 - (b) What is the probability that, after 4 total hops, the bugs are tied in the race?
 - (c) What is the probability that bug 1 wins the race? (Leave your answered as an unsimplified sum.)
- 16. A small motel reservation system has two computers– one online and one backup.
 - (a) The motel only operates one at a time. The operating computer fails after an exponentially distributed amount of time with rate μ and is replaced by the other computer if it is in operating condition. There is one repair facility (which can repair only one computer at a time) and repair times are exponentially distributed with rate λ . Let X(t) be the number of computers in operating condition at time t. $\{X(t)\}$ is a Markov process. (You do not have to show this.) Find the infinitessimal generator matrix.
 - (b) Find the generator matrix now assuming that both machines are operating and used at the same time.
- 17. Let $\{Y_n\}_{n=0}^{\infty}$ be a discrete time Markov chain on the state space $S = \{1, 2, 3, 4, 5\}$ with transition probabilities p_{ij} for $i, j \in S$. Let $\{N(t)\}_{t\geq 0}$ be an independent Poisson process with rate λ . Define a new "compound process" as

$$X(t) = Y_{N(t)}.$$

Argue that $\{X(t)\}\$ is a continuous time Markov chain and gives its infinitessimal generator matrix.