
APPM 5720: Computational Bayesian Statistics

Solutions to Exam I Review Problems

1. A conjugate prior, for a particular model, is one such that the posterior distribution is from
the same family of distributions as the prior.

A natural conjugate prior is a conjugate prior with the additional property of having the
same form as the likelihood when considered as a function of the parameter.

A non-informative (also “uninformative” or “flat”) prior for a parameter θ assigns equal
probability to all possibilities for θ.

A mixture prior is a weighted average of two or more densities.

An expert prior is a prior that may not be computationally nice but reflects the actual
opinon of an expert in the field that the Bayesian model is modeling!

An improper prior is a prior that is not a proper probability density function in that it does
not integrate (or sum) to 1. It is usually used to reflect euqally likely parameter possibilities
over an infinite range.

A Jeffreys prior, for a one-dimensional parameter θ, is defined as proportional to
√
In(θ)

where In(θ) is the Fisher information. It is constructed so that the posterior is invariant
under parameter transformations.

2. (a) An infinite sequence of binary random variables, {Xn}∞n=1, is exchangeable if and only
if there exists a cdf F on [0, 1] such that

P (X1 = x1, X2 = x2, . . . , Xn = xn) =

∫ 1

0
θ
∑

xi(1− θ)n−
∑

xi dF (θ).

(b) The pdf for any one of the Xi is

f(x|θ1, θ2) = 1
2θ
x
1 (1− θ1)1−x I{0,1}(x) + 1

2θ
x
2 (1− θ2)1−x I{0,1}(x)

= [1
2(θ1 + θ2)]x · [1− 1

2(θ1 + θ2)]1−x I{0,1}(x)

This is the pdf for the Bernoulli(θ) distribution with p = 1
2(θ1 + θ2). (Note: If you

want to use θ here, then you should not use it as the moving variable in the deFinetti
integral!)

For any integers 1 ≤ k ≤ n, we have

P (X1 = 1, . . . , Xk = 1, Xk+1 = 0, . . . , Xn = 0)
iid
= pk(1− p)n−k.

We wish to find a cdf F such that∫ 1

0
θ
∑

xi(1− θ)n−
∑

xi dF (θ) = pk(1− p)n−k.

It is easy to verify that we can get this to hold for the step function cdf that puts all of
its mass on p:

F (θ) =

{
0 , θ < p
1 , θ ≥ p



3. Disregarding the masses on the endpoints 0 and 1 for a moment, the exponential rate λ,
restricted to (0, 1) has pdf

f(x) =
1

1− e−λ
λe−λx I(0,1)(x)

That first part comes from renormalizing the pdf by∫ 1

0
λe−λx dx = 1− e−λ.

However, because of the total mass of 1/2 on the two endpoints, we should have the continuous
middle part integrate to 1/2 only and not 1, using the pdf

f(x) =
1

2

1

1− e−λ
λe−λx I(0,1)(x).

The cdf for any point x in (0, 1) will include the probability 1/4 obtained at x = 0 plus the
integral of this pdf from 0 to x.

(a) The cdf is

F (x) =


0 , x < 0
1
4 + 1

2
1

1−e−λ (1− e−λx) , 0 ≤ x < 1

1 , x ≥ 1.

(b)
E[X] =

∫∞
−∞ x dF (x)

= 0 · 1
4 + 1

2
1

1−e−λ λ
∫ 1

0 xe
−λx dx+ 1 · 1

4

= 1
2

1
1−e−λ

1
λ [1− (λ+ 1)e−λ] + 1

4

4.

V ar

[
n∑
i=1

Xi

]
= Cov

 n∑
i=1

Xi,
n∑
j=1

Xj

 =
n∑
i=1

n∑
j=1

Cov(Xi, Xj)

So, we have to add up n2 terms of the variance-covariance matrix.

On the diagonals, we have V ar[X1], V ar[X2], . . ., V ar[Xn]. We have seen that exchangeable
random variables are always identically distributed. So, these terms are all the same and sum
up to n · V ar[X1].

Also, by exchageability, all bivariate marginal distributions and hence all terms like
Cov(Xi, Xj), for i 6= j are the same. There are n2 − n = n(n − 1) of these off-diagnal
terms. Thus, we have that

V ar

[
n∑
i=1

Xi

]
= nV ar[X1] + n(n− 1)Cov(X1, X2),



as desired.

5. The prior for (α, β) is

f(α, β) = 1
B(a,b)α

a−1(1− α)b−1 I(0,1)(α) · 1
B(c,d)β

c−1(1− β)d−1 I(0,1)(β)

∝ αa−1(1− α)b−1 I(0,1)(α) · βc−1(1− β)d−1 I(0,1)(β)

(a)-(c) (I will make sure it is clear on the exam whether or not you should consider an entire
random sample X1, X2, . . . , Xn or not.)

The joint pdf for a random sample of size x from the distribution with the given density
is

f(~x|α, β) =
n∏
i=1

[
α I{0}(x) + (1− α)β(1− β)xi−1 I{1,2,...,}(xi)

]
Let n0 be the number of xi in the sample that are equal to zero. Then n− n0 of thr xi
are in {1, 2, . . .}.
The joint pdf can be written as

f(~x|α, β) = αn0 · [(1− α)β]n−n0 (1− β)

 ∑
{i:xi 6=0}

xi

−(n−n0)


The posterior distribution for (α, β) is then given by

f(α, β|~x) ∝ f(~x|α, β) · f(α, β)

which will turn out to be another another product of independent Beta distributions.

So, yes, given the data ~x, α and β are a prioriori independent with

α ∼ Beta(a∗, b∗) and β ∼ Beta(c∗, d∗)

where
a∗ = a+ n0

b∗ = b+ n− n0

c∗ = c+ n− n0

d∗ = d+

 ∑
{i:xi 6=0}

xi

− (n− n0)

and the prior is a conjugate prior.

6. The joint pdf for the Xi is

f(~x|θ) iid=
n∏
i=1

1

θ
I(0,θ)(xi) =

1

θn
I(0,x(n))(x(1)) I(0,θ)(x(n))

where x(1) and x(2) are the minimum and maximum, respectively of x1, x2, . . . , xn.



The posterior is
f(α, β|~x) ∝ f(~x|α, β) · f(α, β)

∝ 1
θn I(0,θ)(x(n)) · αβ

α

θα+1 I(β,∞)(θ)

∝ 1
θn+α+1 I(0,θ)(x(n)) I(β,∞)(θ)

= 1
θn+α+1 I(x(n),∞)(θ) I(β,∞)(θ)

= 1
θn+α+1 I(max(x(n),β),∞)(θ)

Thus, θ|~x has a Pareto(α∗, β∗) distribution with

α∗ = n+ α

β∗ = max(x(n), β)

So, yes, this is a conjugate prior for the model!

7. We will need to compute the Fisher information In(β). Since the Xi are iid, we have that

In(β)
iid
= n · I1(β). Be careful, however, about using any computational simplifications for the

Fisher information that depended on us being able to interchange ∂
∂β . (For example, we do

not know that the acore statistic has zero expectation nor do we necessarily have the second
derivative simplification for the Fisher information.)

Before we proceed, note that it doesn not make sense to take the log or the derivative of the
indicator so we’ll just keep it in mind on the side. For example, if one has a function

g(x) =

{
x2 , 0 < x < 1
x , x > 1,

the derivative is

g′(x) =

{
2x , 0 < x < 1
1 , x ≥ 1,

but we do not take derivatives of the parts “0 < x < 1” and “x ≥ 1”!

ln f(x|β) = ln θ + θ lnβ + (θ − 1) lnx

⇓
∂

∂β
ln f(x|β) =

θ

β
.

Now,

I1(β) = E

[(
∂

∂β
ln f(X1|β)

)2
]

= E

[(
θ

β

)2
]

=
θ2

β2

and

In(β) =
nθ2

β2
.



The Jeffreys prior is

fJ(β) ∝
√
In(β) ∝ 1

β
.

Since β > 0, this is an improper prior.

8. The joint pdf is

f(~x|θ) = θne−θ
∑

xi
n∏
i=1

I(0,∞)(xi).

The prior is

f(θ) =
1

Γ(α)
βαθα−1e−βθ I(0,∞)(θ).

The posterior is
f(θ|~x) ∝ f(~x|θ) · f(θ)

∝ θne−θ
∑

xiθα−1e−βθ I(0,∞)(θ)

= θα+n−1e−(
∑

xi+β)θ I(0,∞)(θ).

So, the posterior distribution for θ, given ~x is Γ(α∗, β∗) where

α∗ = α+ n

β∗ =
∑
xi + β.

(a) The posterior Bayes estimator for θ is

θ̂PBE = E[Θ|~x] =
α∗

β∗
=

α+ n∑
Xi + β

.

(b) The posterior predictive density is

f(xn+1|~x) =
∫∞
−∞ f(xn+1|θ) · f(θ|~x) dθ

=
∫∞

0 θe−θxn+1 I(0,∞)(xn+1) · 1
Γ(α∗)(β∗)α

∗
θα
∗−1e−β

∗θ dθ

= 1
Γ(α∗)(β∗)α

∗
I(0,∞)(xn+1)

∫∞
0 θα

∗
e−(xn+1+β∗)θ︸ ︷︷ ︸
looks like

Γ(α∗ + 1, xn+1 + β∗)

dθ

= 1
Γ(α∗)(β∗)α

∗
Γ(α∗ + 1) 1

(xn+1+β∗)α∗+1 I(0,∞)(xn+1)

∫ ∞
0

1

Γ(α∗ + 1)
(xn+1 + β∗)α

∗+1θα
∗
e−(xn+1+β∗)θ dθ︸ ︷︷ ︸

1

= α∗(β∗)α
∗
(

1
xn+1+β∗

)α∗+1
I(0,∞)(xn+1)



(c)
P (Xn+1 > 75|~x) =

∫∞
75 α

∗(β∗)α
∗
(xn+1 + β∗)−α

∗−1 dxn+1

= −(β∗)α
∗
(xn+1 + β∗)−α

∗
∣∣∣∞
75

= (β∗)α
∗

(75+β∗)α∗
.

9. (a) f(µ) ∝ 1, −∞ < µ <∞

f(µ|~x) ∝ f(~x|µ) · f(µ)

= exp
[
−1

2

∑n
i=1(xi − µ)2

]
· 1

= exp
[
−n

2 (µ− x)2
]

So
µ|vecx ∼ N(x, 1/n).

The posterior Bayes estimator is

µ̂PBE = E[µ| ~X] = X.

(b) The natural conjugate prior is N(µ0, σ
2
0) for some hyperparameters µ0 and σ2

0.

10. The joint pdf is

f(~x|θ) =
n∏
i=1

e−(xi−θ) I(θ,∞)(xi) = e−
∑

xi+nθ I(θ,∞)(x(1))

where x(1) = min(x1, x2, . . . , xn).

The prior is
f(θ) ∝ 1, −∞ < θ <∞.

The posterior is then
f(θ|~x) ∝ f(~x|θ) · f(θ)

∝ e−
∑

xi+nθ I(θ,∞)(x(1)) · 1

= enθ I(−∞,x(1))(θ)

Let’s find the constant that will make this a normalized pdf:∫ x(1)

−∞
enθ dθ =

1

n
enθ
∣∣∣∣x(1)
−∞

=
1

n
enx(1) − 0 =

1

n
enx(1) .



So, the posterior density is

f(θ|~x) = ne−nx(1)enθ I(−∞,x(1))(θ) = nen(θ−x(1)) I(−∞,x(1))(θ)

We wish to find constants a and b such that

P (a < θ < b|~x) = 0.95.

Upon inspection of the graph of the pdf for θ, we see that we will get the shortest (not a
requirement for this solution) credible interval for θ if we take b = x(1). Then, we have

0.95 =

∫ x(1)

a
nen(θ−x(1)) dθ = 1− en(a−x(1))

which implies that

a = x(1) +
1

n
ln(0.05).

The 95% credible interval for θ is

(x(1) +
1

n
ln(0.05), x(1))


