APPM 5720: Computational Bayesian Statistics

Exam I Review Problems

Exam I: In class on Friday, February 23rd.

1. Know how to define or describe the following types of priors: conjugate, natural conjugate, non-informative, expert, mixture, improper, Jeffreys
2. (a) State deFinetti's Theorem.
(b) Suppose that X_{1}, X_{2}, \ldots is an infinite sequence of iid random variables. Further suppose that the distribution of X_{i} is an equally weighted mixture of a $\operatorname{Bernoulli}\left(\theta_{1}\right)$ distribution and a $\operatorname{Bernoulli}\left(\theta_{2}\right)$ distribution.
(c) Find the cdf F from deFinetti's Theorem.
3. Suppose that X is a random variable that takes on the value 0 with probability $1 / 4$, the value 1 with probability $1 / 4$, and otherwise takes on a value drawn from a continuous exponential distribution with rate λ restricted to the interval $(0,1)$.
(a) Write down the cdf for X.
(b) Compute $\mathrm{E}[X]$ by evaluating the Riemann-Stiltjes integral

$$
\mathrm{E}[X]=\int x d F(x)
$$

4. Show that if $X_{1}, X_{2}, \ldots, X_{n}$ are exchangeable, then

$$
\operatorname{Var}\left[\sum_{i=1}^{n} X_{i}\right]=n \operatorname{Var}\left[X_{1}\right]+n(n-1) \operatorname{Cov}\left(X_{1}, X_{2}\right) .
$$

5. The number of offspring in a certain population has probability mass function

$$
f(x \mid \alpha, \beta)= \begin{cases}\alpha & , \quad x=0 \\ (1-\alpha) \beta(1-\beta)^{x-1} & , \quad x=1,2, \ldots\end{cases}
$$

Suppose that α and β have a priori independent Beta distributions with parameters (a, b) and (c, d), respectively.
(a) Find the posterior distribution for (α, β).
(b) Are α and β a posteriori independent?
(c) Is the prior a conjugate prior?
6. The continuous Pareto distribution on your table of distributions is a specific case of a more generalized two-parameter Pareto distribution that has pdf

$$
f(x \mid \alpha, \beta)=\frac{\alpha \beta^{\alpha}}{x^{\alpha+1}} I_{(\beta, \infty)}(x) .
$$

Let us denote this distribution as $\operatorname{Pareto}(\alpha, \beta)$.
Suppose that $X_{1}, X_{2}, \ldots, X_{n} \stackrel{i i d}{\sim}$ unif $(0, \theta)$.
If θ has a $\operatorname{Pareto}(\alpha, \beta)$ prior (for known α and β), find the posterior distribution for θ. Is this a conjugate prior?
7. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from the distribution with pdf

$$
f(x \mid \theta, \beta)=\theta \beta^{\theta} x^{\theta-1} I_{(0,1 / \beta)}(x)
$$

with parameters $\theta>0, \beta>0$. Suppose that θ is fixed and known.
Find the Jeffreys prior for β.
8. Suppose that the lifetimes of lightbulbs (in hours) produced in a single production run at the ACME Lightbulb Company are iid random variables following an exponential distribution with rate θ. Suppose that θ varies from run to run according to a $\Gamma(\alpha, \beta)$ distribution for known α and β.
(a) Find the posterior Bayes estimator for θ based on a sample of lightbulb lifetimes $X_{1}, X_{2}, \ldots, X_{n}$.
(b) Find the posterior predictive density for X_{n+1}.
(c) What is the posterior probability that the next lightbulb sampled works for more than 75 hours?
9. Suppose that $X_{1}, X_{2}, \ldots, X_{n} \stackrel{i i d}{\sim} N(\mu, 1)$.
(a) Assuming a "flat" prior on μ, find the posterior Bayes estimator for μ.
(b) Give the natural conjugate prior for μ.
10. Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from the distribution with pdf

$$
f(x \mid \theta)=e^{-(x-\theta)} I_{(\theta, \infty)}(x) .
$$

Assuming a flat prior, find a 95% credible interval for θ.

