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Abstract The long-time behavior of an initial step resulting in a dispersive shock wave
(DSW) for the one-dimensional isentropic Euler equations regularized by generic,
third-order dispersion is considered by use of Whitham averaging. Under modest
assumptions, the jump conditions (DSW locus and speeds) for admissible, weak DSWs
are characterized and found to depend only upon the sign of dispersion (convexity or
concavity) and a general pressure law. Two mechanisms leading to the breakdown of
this simple wave DSW theory for sufficiently large jumps are identified: a change in
the sign of dispersion, leading to gradient catastrophe in the modulation equations, and
the loss of genuine nonlinearity in the modulation equations. Large amplitude DSWs
are constructed for several particular dispersive fluids with differing pressure laws
modeled by the generalized nonlinear Schrödinger equation. These include superfluids
(Bose–Einstein condensates and ultracold fermions) and “optical fluids.” Estimates
of breaking times for smooth initial data and the long-time behavior of the shock tube
problem are presented. Detailed numerical simulations compare favorably with the
asymptotic results in the weak to moderate amplitude regimes. Deviations in the large
amplitude regime are identified with breakdown of the simple wave DSW theory.
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1 Introduction

Nonlinear wave propagation in dispersive media with negligible dissipation can lead
to the formation of dispersive shock waves (DSWs). In contrast to classical, viscous
shock waves which are localized, rapid jumps in the fluid’s thermodynamic variables,
DSWs exhibit an expanding oscillatory region connecting two disparate fluid states.
A schematic depicting typical left-going DSWs for positive and negative dispersion
fluids is shown in Fig. 1. These structures are of particular, current interest due to their
recent observation in superfluidic Bose–Einstein condensates (BECs) of cold atomic
gases (Dutton et al. 2001; Simula et al. 2005; Hoefer et al. 2006; Chang et al. 2008;
Meppelink et al. 2009) and nonlinear photonics (Wan et al. 2007; Jia et al. 2007; Barsi
et al. 2007; Ghofraniha et al. 2007; Conti et al. 2009; Wan et al. 2010; Conforti et
al. 2012; Ghofraniha et al. 2012). DSWs also occur in a number of other dispersive
hydrodynamic-type systems including water waves (Chanson 2009) (known as undular
hydraulic jumps or bores), two-temperature collisionless plasma (Taylor et al. 1970)
(called collisionless shock waves), and fluid interfaces in the atmosphere (Smith 1988;
Christie 1992; Rottman and Grimshaw 2001) and ocean (Holloway et al. 2001).

The Whitham averaging technique Whitham (1965, 1974) is a principal analytical
tool for dispersive regularization of singularity formation in hyperbolic systems; see,
e.g., the review (Hoefer and Ablowitz 2009). The method is used to describe slow
modulations of a nonlinear, periodic traveling wave. Given an nth-order nonlinear
evolution equation, implementation of the method requires the existence of an n-
parameter family of periodic traveling wave solutionsφ(ξ ; p), p ∈ R

n with period L =
L(p), coordinate ξ = x −ct , and speed c = c(p). Additionally, the evolution equation
must admit n − 1 conserved densities Pi [φ] and fluxes Qi [φ], i = 1, 2, . . . , n − 1
corresponding to the conservation laws

∂

∂t
Pi + ∂

∂x
Qi = 0, i = 1, . . . , n − 1. (1.1)

Assuming slow spatiotemporal evolution of the wave’s parameters p, the conservation
laws are then averaged over a period, resulting in the modulation equations

⎛
⎝ 1

L

L∫

0

Pi [φ(ξ ; p)]dξ
⎞
⎠

t

+
⎛
⎝ 1

L

L∫

0

Qi [φ(ξ ; p)]dξ
⎞
⎠

x

= 0, i = 1, . . . , n − 1.

(1.2)

The n Whitham modulation equations are completed by the addition of the conser-
vation of waves to (1.2)

kt + ωx = 0, k = 2π/L , ω = kc, (1.3)

a consistency condition for the application of modulation theory. The Whitham equa-
tions are a set of first-order, quasilinear partial differential equations (PDEs) describing
the slow evolution of the traveling wave’s parameters p.
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(a) (b)

Fig. 1 Density for the negative dispersion, 1−-DSW case (a) and positive dispersion, 1+-DSW case (b)
with stationary soliton edge s+ = s− = 0 (see Sect. 6). The background flow velocities u1, u2 and linear
wave edge velocities v+, v− are also pictured. In (a), backflow (v− < 0) occurs, while in (b), it is possible
for the downstream flow to be negative when a vacuum point appears (see Sect. 9)

As laid out originally by Gurevich and Pitaevskii (1974), a DSW can be described by
the evolution of a free boundary value problem. The boundary separates the oscillatory,
one-phase region, described by the Whitham equations, from nonoscillatory, zero-
phase regions, described by the dispersionless evolution equation. The regions are
matched at phase boundaries by equating the average of the one-phase solution to the
zero-phase solution. Thus, the free boundary is determined along with the solution.
There are two ways for a one-phase wave to limit to a zero-phase solution. In the
vicinity of the free boundary, either the oscillation amplitude goes to zero (harmonic
limit) or the oscillation period goes to infinity, corresponding to a localization of the
traveling wave (soliton limit). The determination of which limiting case to choose at
a particular phase boundary requires appropriate admissibility criteria, analogous to
entropy conditions for classical shock waves.

Riemann problems consisting of step initial data are an analytically tractable and
physically important class to study. For a system of two genuinely nonlinear, strictly
hyperbolic conservation laws, the general solution of the Riemann problem consists
of three constant states connected by two self-similar waves, either a rarefaction or
a shock (Lax 1973; Smoller 1994). This behavior generalizes to dispersive hydrody-
namics, so borrowing terminology from classical shock theory, it is natural to label
a left(right)-going wave as a 1(2)-DSW or 1(2)-rarefaction. See Fig. 1 for examples
of 1±-DSWs where the ± sign corresponds to positive or negative dispersion. For
a DSW resulting from the long-time evolution of step initial conditions, the oscil-
latory boundaries are straight lines. These leading and trailing edge speeds can be
determined in terms of the left and right constant states, analogous to the Rankine–
Hugoniot jump conditions of classical gas dynamics. Whitham modulation theory for
DSWs was initially developed for integrable wave equations. Integrability in the con-
text of the modulation equations (Tsarev 1985) implies the existence of a diagonalizing
transformation to Riemann invariants where the Riemann problem for the hyperbolic
modulation equations could be solved explicitly for a self-similar, simple wave (Gure-
vich and Pitaevskii 1974; Gurevich and Krylov 1987). The two DSW speeds at the
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phase boundaries coinciding with the soliton and harmonic limits are the character-
istic speeds of the edges of the simple wave. Thus, the dispersive regularization of
breaking in a hydrodynamic system is implemented by the introduction of additional
conservation laws (the Whitham equations) that admit a global solution. An important
innovation was developed by El (2005) whereby the DSW’s trailing and leading edge
speeds could be determined without solving the full set of modulation equations. The
Whitham–El DSW construction relies on the existence of a simple wave solution to
the full, strictly hyperbolic and genuinely nonlinear modulation equations, but does
not require its complete determination, hence analytical results are available even for
nonintegrable equations.

In this work, the one-dimensional (1D) isentropic Euler equations are regularized
by a class of third-order dispersive terms, modeling several of the aforementioned
physical systems. The time to breaking (gradient catastrophe) for smooth initial data
is numerically found to fall within bounds predicted by the dispersionless Euler equa-
tions. In order to investigate dynamics post-breaking, the long-time resolution of the
Riemann problem is considered. The DSW locus relating upstream, downstream flow
configurations and the DSW speeds for admissible weak shocks are determined explic-
itly for generic, third-order dispersive perturbations. The results depend only upon the
sign of the dispersion (sgnωkk) and the general pressure law assumed. A fundamen-
tal assumption in the DSW construction is the existence of an integral curve (simple
wave) of the Whitham modulation equations connecting the upstream and downstream
states in an averaged sense. Explicit, verifiable sufficient criteria for the breakdown of
the simple wave assumption are given. The regularization for large amplitude DSWs
depends upon the particular form of the dispersion. Thus, DSWs are explicitly con-
structed for particular pressure laws and dispersive terms of physical origin including
a generalized nonlinear Schrödinger (gNLS) equation modeling superfluids and non-
linear optics. Comparisons with a dissipative regularization are presented in order to
highlight the differences between viscous and dispersive shock waves.

The outline of this work is as follows. Section 2 presents the general dispersive
Euler model and assumptions to be considered, followed by Sect. 3 outlining the
gNLS and other dispersive Eulerian fluid models. Background Sects. 4 and 5 review
the theory of the hyperbolic, dispersionless system and the Whitham–El method of
DSW construction, respectively. A detailed analysis of DSW admissibility criteria and
the breakdown of the simple wave assumption are undertaken in Sect. 6, followed by
the complete characterization of admissible weak DSWs in Sect. 7. The theory of the
breaking time for the gNLS model is shown to agree with numerical computation in
Sect. 8. Large amplitude DSWs for the gNLS equation are studied in Sect. 9 both
analytically and numerically. The manuscript is completed by conclusions and an
appendix on the numerical methods utilized.

2 Dispersive Euler Equations and Assumptions

The 1D dispersive Euler equations considered in this work are, in nondimensional
form,
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ρt + (ρu)x = 0,

(ρu)t +
[
ρu2 + P(ρ)

]
x

= [D(ρ, u)]x , −∞ < x < ∞, (2.1)

where ρ is a fluid density, u is the velocity, and Dx is the (conservative) dispersive
term. Formally setting D = 0 gives the hydrodynamic approximation, valid until
gradient catastrophe when the dispersion acts to regularize the singular behavior. The
dispersionless, hyperbolic, isentropic Euler equations are known as the P-system,
whose weak solutions to the Riemann problem are well known (Wagner 1987; Smoller
1994). Here, the long-time behavior of the dispersively regularized Riemann problem
is analyzed. By the formal rescaling X = εx , T = εt ,

ρT + (ρu)X = 0,

(ρu)T +
[
ρu2 + P(ρ)

]
X

= ε2[D(ρ, u)]X , −∞ < X < ∞,

the long-time (t � 1) behavior of the dispersive Euler equations in the independent
variables (X, T ) is recast as a small dispersion (ε2 � 1) problem. Due to the oscillatory
nature of the small dispersion limit, it is necessarily a weak limit, as shown rigorously
by Lax, Levermore, and Venakides for the Korteweg–de Vries equation (KdV) Lax
and Levermore (1983a,b,c), Venakides (1985). In this work, the multiscale Whitham
averaging technique will be used to study the behavior of the dispersive Euler equations
(2.1) for sufficiently large time and long waves.

The Whitham–El DSW simple wave closure method El (2005) is used to construct
DSWs under the following assumptions:

A1 (sound speed) The pressure law P = P(ρ) is a smooth, monotonically increasing
function of ρ, P ′(ρ) > 0 for ρ > 0 so that the speed of sound

c0 = c(ρ0) ≡ √
P ′(ρ0)

is real and the local Mach number

M0 ≡ |u0|
c(ρ0)

is well defined. It will also be assumed that the pressure is convex, P ′′(ρ) > 0 for
ρ > 0 so that c′(ρ) > 0 and ensures the genuine nonlinearity, strict hyperbolicity
of the dispersionless hyperbolic system.

A2 (symmetries) Equations (2.1) admit the Galilean invariance

D(ρ, u − u0)(x − u0t, t) = D(ρ, u)(x, t)

for all u0 ∈ R and exhibit the sign inversion

D(ρ,−u)(−x, t) = −D(ρ, u)(x, t), (2.2)

so that (2.1) are invariant with respect to x → −x , u → −u.
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A3 (dispersive operator) The dispersive term [D(ρ, u)]x is a differential operator
with D of second order in spatial and/or mixed partial derivatives such that the
system (2.2) has the real-valued dispersion relation

ω = u0k ± ω0(k, ρ0), (2.3)

with two branches found by linearizing about the uniform background state ρ =
ρ0, u = u0 with small amplitude waves proportional to exp[i(kx − ωt)]. The
appropriate branch of the dispersion relation is fixed by the ± sign in (2.3) with
ω0(k, ρ0) ≥ 0 for k ≥ 0, ρ0 ≥ 0. The dispersion relation has the long-wave
expansion

ω0(k, ρ0) = c0k + μk3 + o(k3), k → 0, μ 
= 0. (2.4)

The sign of the dispersion is sgnω′′
0(k; ρ0) for k > 0. Using (2.4) and the convexity

or concavity of ω0 as a function of k, one finds

sgn

(
ω0(k, ρ0)

k

)

k
= sgn

∂2ω0

∂k2 (k, ρ0).

Therefore, positive dispersion corresponds to increasing phase and group veloc-
ities with increasing k, while negative dispersion leads to decreasing phase and
group velocities.

A4 (Whitham averaging) Equations (2.1) are amenable to Whitham averaging
whereby a DSW can be described by a slowly varying, single-phase traveling
wave. This requires:

(i) The system possesses at least three conservation laws. The mass and momen-
tum equations in (2.1) account for two. An additional conserved quantity is
required.

(ii) There exists a four-parameter family of periodic traveling waves parametrized
by, for example, the wave amplitude a, the wavenumber k, the average den-
sity ρ, and the average velocity u limiting to a trigonometric wave for small
amplitude and a solitary wave for small wavenumber. In the cases considered
here, the periodic traveling wave manifests as a solution of the ordinary dif-
ferential equation (ODE) (ρ′)2 = G(ρ), where G is smooth as it varies over
three simple, real roots. Two roots coincide in the small amplitude and solitary
wave limits.

A5 (Simple wave) The Whitham–El method requires the existence of a self-similar
simple wave solution to the four Whitham modulation equations (the averaged
conservation laws and the conservation of waves). For this, the modulation equa-
tions must be strictly hyperbolic and genuinely nonlinear.

Assumption A1 provides for a modulationally stable, hydrodynamic long-wave
limit. The symmetry assumptions in A2 are for convenience and could be neglected.
As will be demonstrated in Sect. 3, A3 is a reasonable restriction still allowing for a
number of physically relevant dispersive fluid models. The assumptions in A4 and A5
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allow for the application of the Whitham–El method. While the assumptions in A4 are
usually verifiable, A5 is often assumed. Causes of the breakdown of assumptions A3
(unique dispersion sign) and A5 (genuine nonlinearity) are identified and associated
with extrema in the DSW speeds as either the left or right density is varied.

The nonstationary DSW considered here is the long-time resolution of an initial
jump in the fluid density and velocity, the Riemann problem

u(x, 0) =
{

u1 x < 0
u2 x > 0

, ρ(x, 0) =
{
ρ1 x < 0
ρ2 x > 0

, (2.5)

where u j ∈ R, ρ j > 0.

3 Example Dispersive Fluids

The dispersive Euler equations (2.2) model a number of dispersive fluids including,
among others, superfluids and optical fluids. The particular model equations described
below were chosen because they incorporate different pressure laws and allow for
different signs of the dispersion, key distinguishing features of Eulerian dispersive
fluids and their weak dispersion regularization.

3.1 gNLS Equation

The generalized, defocusing nonlinear Schrödinger equation

iψt = −1

2
ψxx + f (|ψ |2)ψ,

f (0) = 0, f (ρ) > 0, ρ > 0, (3.1)

or gNLS, describes a number of physical systems; For example, the “polytropic super-
fluid”

f (ρ) = ρ p, p > 0, (3.2)

corresponds to the cubic NLS when p = 1, which describes a repulsive BEC and
intense laser propagation through optically defocusing (normal dispersion) media.
The model (3.2) with p = 2/3 describes a zero-temperature Fermi gas near unitarity
(Giorgini et al. 2008; Csordás et al. 2010), which is of special significance as recent
experiments have been successfully interpreted with both dissipative Joseph et al. 2011
and dispersive Salasnich 2012 regularizations. Moreover, the regime 2/3 < p < 1
describes the so-called BEC–Bardeen–Cooper–Schrieffer transition in ultracold Fermi
gases (Ketterle and Zwierlein 2008). The quintic NLS case, p = 2, models three-body
interactions in a BEC (Kevrekidis et al. 2008; Chen and Pavlovic 2011).

A BEC confined to a cigar-shaped trap exhibits effective 1D behavior that is well
described by the nonpolynomial nonlinearity (Salasnich et al. 2002; Muoz Mateo and
Delgado 2008)
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f (ρ) = 2
√

1 + γρ − 2

γ
, γ > 0, (3.3)

here scaled so that f (ρ) → ρ, γ → 0+. In spatial nonlinear optics, photorefractive
media corresponding to (Segev et al. 1992; Christodoulides and Carvalho 1995)

f (ρ) = ρ

1 + γρ
, γ > 0 (3.4)

are of particular interest due to recent experiments exhibiting DSWs (Wan et al. 2007;
Barsi et al. 2007; Jia et al. 2007; Barsi et al. 2012; Jia et al. 2012). For 0 < γ � 1,
the leading-order behavior of (3.3) and (3.4) correspond to the cubic NLS.

The complex wavefunction ψ can be interpreted in the dispersive fluid context by
use of the Madelung transformation Madelung (1927)

ψ = √
ρeiφ, u = φx . (3.5)

Using (3.5) in (3.1) and equating real and imaginary parts results in the dispersive
Euler equations (2.1) with

P(ρ) =
ρ∫

0

ρ̃ f ′(ρ̃)dρ̃, c(ρ) = √
ρ f ′(ρ),

[D(ρ, u)]x = 1

4

[
ρ (ln ρ)xx

]
x = ρ

2

[
(
√
ρ)xx√
ρ

]

x

. (3.6)

The zero dispersion limit of (2.1) corresponds to the semiclassical limit of (3.1),
which in dimensional units corresponds to h̄ → 0 for quantum many-body systems.
In applications, the dispersive regularization coincides with a strongly interacting BEC
or a large input optical intensity.

Assumption A1 restricts the admissible nonlinearity f to those satisfying

f ′(ρ) > 0,
(
ρ f ′(ρ)

)′
> 0, ρ > 0, (3.7)

which is realized by (3.2), (3.3) generally and for (3.4) when γρ < 1. Assumptions
in A2 are well-known properties of the gNLS equation (Sulem and Sulem 1999).
Assumption A3 is clear from (3.6), and the dispersion relation is

ω0(k, ρ) = k
√

c2 + k2/4 ∼ ck + 1

8c
k3, |k| � c. (3.8)

The dispersion is positive because ω0kk (k; ρ) > 0 for k > 0, ρ > 0.
Inserting the traveling wave ansatz

ρ = ρ(x − V t), u = u(x − V t),

into (2.1) with (3.6) and integrating twice leads to
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u = V + A

ρ
, (3.9a)

(
ρ′)2 = 8

⎡
⎣ρ

ρ∫

ρ1

f (ρ̃)dρ̃ + Bρ2 + Cρ − A2

2

⎤
⎦ ≡ G(ρ). (3.9b)

It is assumed that G has three real roots ρ1 ≤ ρ2 ≤ ρ3 related to the integration
constants A, B, and C so that, according to a phase plane analysis, a periodic wave
exists with maximum and minimum densities ρ2 and ρ1, respectively. The fourth
arbitrary constant, due to Galilean invariance, is the wave speed V . In addition to
mass and momentum conservation, an additional energy conservation law exists (Jin
et al. 1999) which reads

E ≡ ρu2

2
+ ρ2

x

8ρ
+

ρ∫

0

f (ρ̃)dρ̃,

Et + {u[E + P(ρ)]}x = 1

4

[
uρxx − (ρu)xρx

ρ

]

x
,

hence the assumptions in A4 are satisfied. The hyperbolicity of the Whitham equations
can only be determined by their direct study. The genuine nonlinearity of the system
will be discussed in Sect. 6. It will be helpful to note the solitary wave amplitude/speed
relation which results from the boundary conditions for a depression (dark) solitary
wave

u0 ≡ lim|ξ |→∞ u(ξ), ρ0 ≡ lim|x |→∞ ρ(ξ), ρmin ≡ min
ξ∈R

ρ(ξ).

A phase plane analysis of (3.9b) implies that the roots of G satisfy ρ1 = ρmin, ρ2 =
ρ3 = ρ0, resulting in the solitary wave speed s = V satisfying

(s − u0)
2 = 2ρmin

(ρ0 − ρmin)2

⎡
⎣(ρ0 − ρmin) f (ρ0)−

ρ0∫

ρmin

f (ρ̃)dρ̃

⎤
⎦ . (3.10)

The soliton profile can be determined by integration of (3.9b).
Dispersive shock waves for the gNLS equation have been studied for the pure NLS

case (Gurevich et al. 1990; El and Krylov 1995) as well as in 1D photorefractive media
(El et al. 2007) and the cubic–quintic case (Crosta 2011; Crosta et al. 2012). A general
DSW analysis will be presented in Sect. 9.

3.2 Other Systems

The gNLS equation exhibits positive dispersion. Two additional examples with nega-
tive dispersion are briefly given here.
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Two-temperature collisionless plasma: The dynamics of the ionic component of
a two-temperature unmagnetized plasma (Karpman 1974) satisfy the dispersive Euler
equations with

P(ρ) = ρ, c(ρ) = 1,

D(ρ, u) = 1

2
φ2

x − φxx , −φxx + eφ = ρ.

The electronic potential φ introduces nonlocal dispersion with dispersion relation

ω0(k, ρ) = k√
1 + k2/ρ

∼ k − k3

2ρ0
, |k| � 1.

It can be shown that ωkk < 0, k > 0, thus the system exhibits negative dispersion.
This system has been analyzed in detail Gurevich et al. (1990) and satisfies assump-

tions A1–A4. Large amplitude dispersive shock waves were constructed in El (2005)
under the assumptions of A5.

Fully nonlinear shallow water: Shallow waves in an ideal fluid with no restriction
on amplitude satisfy the generalized Serre equations (also referred to as the Su–Gardner
or Green–Naghdi equations) (Serre 1953; Su and Gardner 1969; Green and Naghdi
1976; Dias and Milewski 2010) with

P(ρ) = 1

2
ρ2, c(ρ) = √

ρ,

D(ρ, u) = 1

3

[
ρ3
(

utx + uuxx − u2
x

)]
+ σ

(
ρρxx − 1

2
ρ2

x

)
. (3.11)

The density ρ corresponds to the free surface fluid height, and u is the vertically
averaged horizontal fluid velocity. The Bond number σ ≥ 0 is proportional to the
coefficient of surface tension. The dispersion relation is

ω0(k, ρ) = k

(
ρ

1 + σk2

1 + ρ2k2/3

)1/2

∼ √
ρ

(
k + 3σ − ρ2

6
k3
)
, k → 0.

The sign of the dispersion changes when ωkk = 0, corresponding to the critical values

σcr = ρ2

3
or kcr = 1

ρ

(
3 + 3

√
1 + ρ2/σ

)1/2

.

The critical valueσcr expresses the fact that shallow water waves with weak surface ten-
sion effects, σ < σcr, exhibit negative dispersion for sufficiently long waves (k < kcr)

123



J Nonlinear Sci

and support elevation solitary wave solutions. Strong surface tension, σ > σcr, cor-
responds to positive dispersion and can yield depression solitary waves. Assump-
tions A1–A4 hold (Dias and Milewski 2010). DSWs in the case of zero surface tension
σ = 0 were studied in El et al. (2006).

It is worth mentioning that the Serre equations (3.11) with σ = 0 and a model of
liquid containing small gas bubbles (Wijngaarden 1972) can be cast in Lagrangian
form to fit into the framework of “continua with memory” (Gavrilyuk. and Teshukov
2001). The Whitham modulation equations for these dispersive Eulerian fluids were
studied in Gavrilyuk (1994). Explicit, sufficient conditions for hyperbolicity of the
modulation equations were derived.

The properties of DSWs for these systems will be discussed briefly in Sect. 10.

4 Background: Dispersionless Limit

The analysis of DSWs for (2.1) requires an understanding of the dispersionless limit

ρt + (ρu)x = 0,

(ρu)t +
[
ρu2 + P(ρ)

]
x

= 0, (4.1)

corresponding to D ≡ 0. Equations (4.1) are the equations of compressible, isentropic
gas dynamics with pressure law P(ρ) (Liepmann and Roshko 1957). They are hyper-
bolic and diagonalized by the Riemann invariants (see, e.g., Courant and Friedrichs
1948)

r1 = u −
∫ ρ c(ρ′)

ρ′ dρ′, r2 = u +
∫ ρ c(ρ′)

ρ′ dρ′, (4.2)

with the characteristic velocities

λ1 = u − c(ρ), λ2 = u + c(ρ), (4.3)

so that

∂r j

∂t
+ λ j

∂r j

∂x
= 0, j = 1, 2. (4.4)

By monotonicity of

g(ρ) =
∫ ρ c(ρ′)

ρ′ dρ′,

the inversion of (4.2) is achieved via

u = 1

2
(r1 + r2), ρ = g−1

(
1

2
(r2 − r1)

)
. (4.5)
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In what follows, an overview of the properties of equations (4.1) is provided for
both the required analysis of DSWs and for the comparison of classical and dispersive
shock waves.

4.1 Breaking Time

Smooth initial data may develop a singularity in finite time. The existence of Riemann
invariants (4.2) allows for estimates of the breaking time at which this occurs. In what
follows, Lax’s breaking time estimates Lax (1964) are applied to the system (4.4) with
smooth initial data.

Lax’s general approach for 2 × 2 hyperbolic systems is to reduce the Riemann
invariant system (4.4) to the equation

z′ = −a(t)z2, z(0) = m, (4.6)

along a characteristic family, ′ ≡ ∂
∂t + λi

∂
∂x , and then bound the breaking time by

comparison with an autonomous equation via estimates for a and m in terms of initial
data for r1, r2.

Following Lax (1964), integration along the 1-characteristic family in (4.6) leads
to z = eh∂r1/∂x, a = e−h∂λ1/∂r1 and h(r1, r2) satisfies

∂h

∂r2
=

∂λ1
∂r2

λ1 − λ2
.

By direct computation with Eqs. (4.2), (4.3), one can verify the following:

h = 1

2
ln

[
c(ρ)

ρ

]
, (4.7a)

a = e−h ∂λ1

∂r1
= c(ρ)+ ρc′(ρ)

2c(ρ)

[
ρ

c(ρ)

]1/2

, (4.7b)

z = eh ∂r1

∂x
= ∂r1

∂x

[
c(ρ)

ρ

]1/2

. (4.7c)

The initial data for r1 and r2 are assumed to be smooth and bounded so that they
satisfy

r1 ≤ r1(x, t) ≤ r1, r2 ≤ r2(x, t) ≤ r2, 0 ≤ t < tbr. (4.8)
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Assuming ρ > 0 (nonvacuum conditions), then (4.7b) implies a > 0 and z is decreas-
ing along the 1-characteristic. Bounds for a(t) are defined as follows:

A = min
ρ∈RA

a, B = max
ρ∈RB

a, (4.9)

where RA and RB are intervals related to the bounds on the initial data, chosen shortly.
The initial condition m is chosen as negative as possible

x0 = arg min
x∈R

z(0) = arg min
x∈R

[
∂u

∂x
− c(ρ)

ρ

∂ρ

∂x

] [
c(ρ)

ρ

]1/2
∣∣∣∣∣
t=0

, (4.10a)

m = min
x∈R

z(0) =
[
∂u

∂x
− c(ρ)

ρ

∂ρ

∂x

] [
c(ρ)

ρ

]1/2
∣∣∣∣∣
(x,t)=(x0,0)

. (4.10b)

These estimates lead to the following bounds on the breaking time tbr:

− 1

m B
≤ tbr ≤ − 1

m A
. (4.11)

It is still necessary to provide the intervals RA and RB . The possible values of r1
and r2 in (4.8) and the monotonicity of the transformation for ρ in (4.5) suggest taking
the full range of possible values RA = RB = [g−1((r2 − r1)/2), g−1((r2 − r1)/2)].
However, this choice does not provide the sharpest estimates in (4.11). The idea is
to use the fact that r1 is constant along 1-characteristics. The choice for m in (4.10b)
suggests taking r1 = r1(x0, 0) and allowing r2 to vary across its range of values. While
the optimal m is associated with this characteristic, it does not necessarily provide the
optimal estimates for A or B. A calculation shows

∂a

∂r1
= − 1

8c3

(ρ
c

)1/2 (
c2 − 4ρcc′ − 2ρ2cc′′ + 3ρ2c′2) .

It can be verified that ∂a/∂r1 ≤ 0 for the example dispersive fluids considered here.
In this case, any characteristic with r1 < r1(x0, 0) can cause a to increase, leading
to a larger A and a tighter bound in (4.11). If r1 > r1(x0, 0), then a may decrease,
leading to a smaller B and a tighter bound on tbr. Combining these deductions leads
to the choices

RA =
[

g−1
(

r2 − r1(x0, 0)

2

)
, g−1

(
r2 − r1

2

)]
, (4.12a)

RB =
[

g−1
(

r2 − r1

2

)
, g−1

(
r2 − r1(x0, 0)

2

)]
, (4.12b)
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when ∂a/∂r1 < 0.
In summary, given initial data satisfying (4.8), the point x0 and m are determined

from (4.10a) and (4.10b). If m > 0, then there is no breaking. Otherwise, after verifying
∂a/∂r1 < 0, the sets RA and RB are defined via (4.12a) and (4.12b), leading to A
and B in (4.9). The breaking time bounds are given by (4.11). A similar argument
integrating along the 2-characteristic field yields another estimate for the breaking
time tbr. The only changes are in (4.10a) and (4.10b), where the minus sign goes to a
plus sign and the choices for RA and RB reflect r2(x0, 0). These results will be used
to estimate breaking times for dispersive fluids in Sect. 8, demonstrating the validity
of the hydraulic approximation, hence the equivalence of dispersive and dissipative
regularizations up to breaking.

4.2 Viscous Shock Waves

It will be interesting to contrast the behavior of dispersive shock waves for (2.1) with
that of classical, viscous shock waves resulting from a dissipative regularization of
the dispersionless equations. For this, the jump and entropy conditions for shocks are
summarized below Courant and Friedrichs (1948), Smoller (1994).

The Riemann problem (2.5) for (4.1) results in the Hugoniot loci of classical shock
solutions

u2 = u1 ±
{ [P(ρ2)− P(ρ1)](ρ2 − ρ1)

ρ1ρ2

}1/2

. (4.13)

The − (+) sign corresponds to an admissible 1-shock (2-shock) satisfying the Lax
entropy conditions when the characteristic velocity λ1 (λ2) decreases across the shock
so that ρ2 > ρ1 > 0 (ρ1 > ρ2 > 0). Weak 1-shocks connecting the densities ρ1 and
ρ2 = ρ1 +, 0 <  � ρ1 exhibit the shock speed

v(1) ∼ u1 − c1 − 1

2

(
c1

ρ1
+ c′

1

)
, 0 <  � ρ1. (4.14)

While the Riemann invariant r2 exhibits a jump across the 1-shock, it is third order in
/ρ1 so is approximately conserved for weak shocks. Weak, steady (nonpropagating)
1-shocks satisfy the jump conditions

 ∼ 2ρ1c1

c1 + ρ1c′
1
(M1 − 1),

M2 ∼ 1 − (M1 − 1), 0 < M1 − 1 � 1, (4.15)

where M j = |u j |/c j are the Mach numbers of the up/downstream flows and c′
1 ≡

dc
dρ (ρ1). The upstream flow indexed by 1 is supersonic and the downstream flow is
subsonic, this behavior also holding for arbitrary amplitude shocks.
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4.3 Rarefaction Waves

Centered rarefaction wave solutions of (4.1) exhibit the following wave curves con-
necting the left and right states:

1 − rarefaction : u1 = u2 + ∫ ρ2
ρ1

c(ρ)
ρ

dρ, ρ1 > ρ2, (4.16a)

2 − rarefaction : u1 = u2 − ∫ ρ2
ρ1

c(ρ)
ρ

dρ, ρ2 > ρ1, (4.16b)

where admissibility is opposite to the shock wave case. The characteristic velocities λ j

increase across a rarefaction wave. Since rarefaction waves are continuous and do not
involve breaking, the leading-order behavior of dispersive and dissipative regulariza-
tions for (4.1) are the same. A dispersive regularization of KdV (Novikov et al. 1984;
Leach and Needham 2008) shows the development of small amplitude oscillations
for the first-order singularities at either the left or right edge of the rarefaction wave,
with one decaying as O(t−1/2) and the other O(t−2/3). The width of these oscilla-
tions expands as O(t1/3) (Gurevich and Pitaevskii 1974), so that their extent vanishes
relative to the rarefaction wave expansion with O(t).

4.4 Shock Tube Problem

Recall that the general solution of the Riemann problem consists of three constant states
connected by two waves, each either a rarefaction or shock (Lax 1973; Smoller 1994).
The shock tube problem (Liepmann and Roshko 1957) involves a jump in density
for a quiescent fluid u1 = u2 = 0. The solution consists of a shock and rarefaction
connected by a constant, intermediate state (ρm, um). For the case ρ1 < ρ2, a 1-shock
connects to a 2-rarefaction via the Hugoniot locus (4.13) (with −) and the wave curve
(4.16b), respectively. For example, a polytropic gas with P(ρ) = κργ gives the two
equations

1 − shock : um = −
[
(κρ

γ
m − κρ

γ
1 )(ρm − ρ1)

ρmρ1

]1/2

,

2 − rarefaction : um = −2(κγ )1/2

γ − 3

[
ρ
(γ−1)/2
2 − ρ

(γ−1)/2
m

]
. (4.17)

Equating these two expressions provides an equation for the intermediate density ρm,
and then the intermediate velocity um follows.

5 Background: Simple DSWs

The long-time behavior of a DSW for the dispersive Euler model (2.1) was first con-
sidered in El (2005). In this section, the general Whitham–El construction of a simple
wave led DSW for step initial data is reviewed. This introduces necessary notation
and background that will be used in the later sections of this work.
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Analogous to the terminology for classical shocks, a 1-DSW is associated with the
λ1 characteristic family of the dispersionless system (4.1) involving left-going waves.
In this case, the DSW leading edge is defined to be the leftmost (most negative) edge
whereas the DSW trailing edge is the rightmost edge, these roles being reversed for
the 2-DSW associated with the λ2 characteristic family. There is a notion of polarity
associated with a DSW corresponding to its limiting behavior at the leading and trailing
edges. The edge where the amplitude of the DSW oscillations vanishes (the harmonic
limit) is called the linear wave edge. The soliton edge is associated with the phase
boundary where the DSW wavenumber k → 0 (the soliton limit). Thus, the soliton
edge could be the leading or trailing edge of the DSW, each case corresponding to a
different DSW polarity. The polarity is generally determined by admissibility criteria
and typically follows directly from the sign of the dispersion (Gurevich et al. 1990),
as will be shown in Sect. 6. The DSW construction for 1-DSWs is outlined below. A
similar procedure holds for 2-DSWs.

Assuming the existence of a DSW oscillatory region described by slow modulations
of the periodic traveling wave from assumption A4, three independent conservation
laws are averaged with the periodic wave. The wave’s parameters (ρ, the average
density; u, the average velocity; k, the generalized (nonlinear) wavenumber; and a,
the wave amplitude) are assumed to vary slowly in space and time. The averaging
procedure produces three first-order, quasilinear PDEs. This set combined with the
conservation of waves, kt + ωx = 0 (ω here is the generalized, nonlinear frequency),
results in a closed system for the modulation parameters, the Whitham modulation
equations. As originally formulated by Gurevich and Pitaevskii (1974), the DSW
free boundary value problem is to solve the dispersionless equations (4.1) outside
the oscillatory region and match this behavior to the averaged variables ρ and u
from the Whitham equations at the interfaces with the oscillatory region where k → 0
(soliton edge) or a → 0 (linear wave edge). These Gurevich–Pitaevskii (GP) matching
conditions correspond to the coalescence of two characteristics of the Whitham system
at each edge of the DSW. Assumption A5 can be used to construct a self-similar, simple
wave solution of the modulation equations connecting the k → 0 soliton edge with
the a → 0 linear wave edge via an integral curve so that the two DSW boundaries
asymptotically move with constant speed, the speeds of the double characteristics at
each edge. In the Whitham–El method, the speeds are determined by the following
key mathematical observations (El 2005):

• The four Whitham equations admit exact reductions to quasilinear systems of three
equations in the k → 0 (soliton edge) and a → 0 (linear wave edge) regimes.

• Assuming a simple wave solution of the full Whitham equations, one can integrate
across the DSW with explicit knowledge only of the reduced systems in the a = 0
or k = 0 plane of parameters, thereby obtaining the DSW leading and trailing edge
speeds.

This DSW closure method is appealing because it bypasses the difficult determination
and solution of the full Whitham equations. Furthermore, it applies to a large class of
nonintegrable nonlinear wave equations. Some nonintegrable equations studied with
this method include dispersive Euler equations for ion-acoustic plasmas (El 2005),
the Serre equations with zero surface tension (El et al. 2006), the gNLS equation with
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photorefractive (El et al. 2007) and cubic/quintic nonlinearity (Crosta et al. 2012), and
other equations including the Miyata–Camassa–Choi equations of two-layer fluids
(Esler and Pearce 2011).

Simple DSWs are described by a simple wave solution of the Whitham modulation
system which necessitates self-similar variation in only one characteristic field. Using
a nontrivial backward characteristic argument, it has been shown that a simple wave
solution requires the constancy of one of the Riemann invariants (4.2) evaluated at the
left and right states (El 2005). Then a necessary condition for a simple DSW is one of

1 − DSW : u2 = u1 −
ρ2∫

ρ1

c(ρ)

ρ
dρ, ρ2 > ρ1, (5.1)

2 − DSW : u2 = u1 +
ρ2∫

ρ1

c(ρ)

ρ
dρ, ρ1 > ρ2. (5.2)

1-DSWs (2-DSWs) are associated with constant r2 (r1) hence vary in the λ1 (λ2)
characteristic field. Equations (5.1), (5.2) can be termed DSW loci as they are the
dispersive shock analogs of the Hugoniot loci (4.13) for classical shock waves. It
is worth pointing out that the DSW loci correspond precisely to the rarefaction wave
curves in (4.16a) and (4.16b). However, the admissibility criteria for DSWs correspond
to inadmissible, compressive rarefaction waves where the dispersionless characteristic
speed decreases across the DSW. Coincidence of rarefaction and shock curves does
occur in classical hyperbolic systems but is restricted to a specific class, the so-called
Temple systems Temple (1983) to which the dispersionless Euler equations do not
belong.

Recall from Sect. 4.2 that, across a viscous shock, a Riemann invariant is conserved
to third order in the jump height. Since the DSW loci (5.1), (5.2) result from a constant
Riemann invariant across the DSW, the DSW loci are equal to the Hugoniot loci (4.13)
up to third order in the jump height.

5.1 Linear Wave Edge

The integral curve of the Whitham equations in the a = 0 (linear wave edge) plane of
parameters reduces to the relationships k = k(ρ), u = u(ρ) and the ODE

dk

dρ
= ωρ

u(ρ)− c(ρ)− ωk
, (5.3)

where the average velocity is constrained by the density through a generalization of
(5.1)

u(ρ) = u1 −
ρ∫

ρ1

c(ρ′)
ρ′ dρ′. (5.4)
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The negative branch of the linear dispersion relation in (2.3), ω = u(ρ)k − ω0(k, ρ),
is associated with left-going waves, hence a 1-DSW.

Using (5.4) and (2.3), (5.3) simplifies to

dk

dρ
= ck/ρ + ω0ρ

c − ω0k

. (5.5)

Equation (5.5) assumes a = 0, an exact reduction of the Whitham equations only at the
linear wave edge. Global information associated with the simple wave solution of the
full Whitham equations is obtained from the GP matching condition at the soliton edge
by noting that the modulation variables satisfy (k, ρ, u, a) = (0, ρ j , u j , a j ) for some
j ∈ {1, 2} depending on whether the soliton edge is leading or trailing, independent
of the soliton amplitude a j . Thus, (5.5) can be integrated in the a = 0 plane with the
initial condition k(ρ j ) = 0, u(ρ j ) = u j to k(ρ3− j ) associated with the linear wave
edge, giving the wavenumber of the linear wave edge oscillations. This wavepacket’s
speed is then determined from the group velocity ωk .

Based on the Riemann data (2.5), the integration domain for (5.5) is ρ ∈ [ρ1, ρ2].
The initial condition occurs at either the leading edge where ρ = ρ1 or the trailing edge
where ρ = ρ2. The determination of the location of the linear wave edge, leading or
trailing, is set by appropriate admissibility conditions discussed in Sect. 6. The solution
of (5.5) with initial condition at ρ j will be denoted k(ρ; ρ j ) so that one of

k(ρ j ; ρ j ) = 0, j = 1, 2 (5.6)

holds for (5.5). Evaluating the solution of (5.5) at the linear wave edge k(ρ j ; ρ3− j )

gives the wavenumber of the linear wavepacket at the leading (trailing) edge when
j = 1 ( j = 2). The associated 1-DSW linear wave edge speed is denoted v j (ρ1, ρ2)

and is found from the group velocity evaluated at k(ρ j ; ρ3− j )

v j (ρ1, ρ2) = ωk[k(ρ j ; ρ3− j ), ρ j ]
= u(ρ j )− ω0k [k(ρ j ; ρ3− j ), ρ j ], j = 1, 2. (5.7)

5.2 Soliton Edge

An exact description of the soliton edge where k → 0 involves the dispersionless
equations for the average density ρ and velocity u as well as an equation for the
soliton amplitude a. While, in principle, one can carry out the simple DSW analysis
on these equations, it is very convenient to introduce a new variable k̃ called the
conjugate wavenumber. It plays the role of an amplitude and depends on ρ, u, and a
thus is not a new variable. The resulting modulation equations at the soliton edge then
take a correspondingly symmetric form relative to the linear edge. The speed of the
soliton edge is determined in an analogous way to the linear edge by introducing a
conjugate frequency
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ω̃(k̃, ρ) = −iω(ik̃, ρ) = u(ρ)k̃ + iω0(ik̃, ρ)

= u(ρ)k̃ + ω̃0(k̃, ρ). (5.8)

The conjugate wavenumber plays a role analogous to an amplitude so that k̃ → 0
corresponds to the linear wave edge where a → 0. The simple wave ODE in the
k = 0 plane is

dk̃

dρ
= c(ρ)k̃/ρ + ω̃0ρ

c(ρ)− ω̃0k̃

, (5.9)

the same equation as (5.3) but with conjugate variables. It is remarkable that the
description of the soliton edge so closely parallels that of the linear wave edge. The
initial condition is given at the linear wave edge where k̃ = 0. As in (5.6), the solution
with zero initial condition at ρ = ρ j is denoted k̃(ρ; ρ j ) according to

k̃(ρ j ; ρ j ) = 0, j = 1, 2. (5.10)

Then the soliton speed s j , j = 1, 2 is the conjugate phase velocity evaluated at the
conjugate wavenumber associated with the soliton edge

s j (ρ1, ρ2) = ω̃[k̃(ρ j ; ρ3− j ), ρ j ]
k̃(ρ j ; ρ3− j )

= u(ρ j )− ω̃0[k̃(ρ j ; ρ3− j ), ρ j ]
k̃(ρ j ; ρ3− j )

. (5.11)

Remark 1 In a number of example dispersive fluids studied in this work and elsewhere,
the transformation to the scaled phase speed

α(ρ) = ω0[k(ρ), ρ]
c(ρ)k(ρ)

of the dependent variable in (5.5) and the analogous transformation

α̃(ρ) = ω̃0[k̃(ρ), ρ]
c(ρ)k̃(ρ)

for (5.9) are helpful, reducing the ODEs (5.5) and (5.9) to simpler and, often, separable
equations for α and α̃.

5.3 Dispersive Riemann Problem

The integral wave curves (4.16a), (4.16b) and the DSW loci (5.1), (5.2) can be used to
solve the dispersive Riemann problem (2.5) just as the wave curves and the Hugoniot
loci are used to solve the classical Riemann problem (Smoller 1994). In both cases,
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Fig. 2 Integral curves and DSW loci for the dispersive Euler equations with c(ρ) = √
ρ

the solution consists of two waves, one for each characteristic family, connected by a
constant intermediate state. Each wave is either a rarefaction or a shock.

In contrast to the classical case, the integral wave curves and the DSW loci are
the same for the dispersive Riemann problem. It is the direction in which they are
traversed that determines admissibility of a rarefaction or a DSW. This enables a
convenient, graphical description of solutions to the dispersive Riemann problem as
shown in Fig. 2. Solid curves (——) correspond to example 1-wave curves (5.1),
(4.16a), whereas dashed curves (- - - -) correspond to example 2-wave curves (5.2),
(4.16b). The arrows provide the direction of increasing dispersionless characteristic
speed for each wave family. Tracing an integral curve in the direction of increasing
characteristic speed corresponds to an admissible rarefaction wave. The decreasing
characteristic speed direction corresponds to an admissible DSW. The solution to
a dispersive Riemann problem is depicted graphically by tracing appropriate integral
curves to connect the left state (ρ1, u1)with the right state (ρ2, u2). There are multiple
paths connecting these two states, but only one involves two admissible waves. This
is shown by the thick curve in Fig. 2. Since the 1-wave curve is traced in the negative
direction to the intermediate, constant state (ρm, um), this describes a 1-DSW. The
2-wave curve is then traced in the positive direction to the right state, describing a
2-rarefaction. The 1-DSW is admissible because ρm > ρ1. Since the characteristic
speed λ2 is monotonically increasing, the 2-rarefaction is admissible (ρm < ρ2).
The direction of the curve connecting the left and right states was taken from left to
right. The opposite direction describes an inadmissible 1-rarefaction connected to an
inadmissible 2-DSW.

The example shown in Fig. 2 corresponds to the dispersive shock tube problem
consisting of an arbitrary jump in density for a quiescent fluid u1 = u2 = 0. Such
problems have been studied in a number of dispersive fluids, e.g., El et al. (1995),
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El et al. (2006), Khamis et al. (2008), Esler and Pearce (2011). The determination of
(ρm, um) proceeds by requiring that the left state (ρ1, 0) lie on the 1-DSW locus (5.1)

um = −
ρm∫

ρ1

c(ρ)

ρ
dρ. (5.12)

The second wave connects (ρm, um) to the right state (ρ2, 0) via the 2-rarefaction
wave curve (4.16b)

um = −
ρ2∫

ρm

c(ρ)

ρ
dρ. (5.13)

Equating (5.12) and (5.13) leads to

ρm∫

ρ1

c(ρ)

ρ
dρ −

ρ2∫

ρm

c(ρ)

ρ
dρ = 0,

which determines the intermediate density ρ1 < ρm < ρ2. The intermediate velocity
um < 0 follows.

This construction of the wave types and the intermediate state (ρm, um) is inde-
pendent of the sign of dispersion and the details of the dispersive term D in (2.1),
depending only upon the pressure law P(ρ). For example, polytropic dispersive fluids
with P(ρ) = κργ [e.g., gNLS with power-law nonlinearity (3.2) and gSerre (3.11)
yield the intermediate state (previously presented in Gurevich and Meshcherkin 1984)

ρm =
[

1

2

(
ρ
(γ−1)/2
1 + ρ

(γ−1)/2
2

)]2/(γ−1)

,

um = 2(κγ )1/2

3 − γ

[
ρ
(γ−1)/2
1 − ρ

(γ−1)/2
2

]
. (5.14)

This prediction will be compared with numerical computations of gNLS in Sect. 9.2.

6 DSW Admissibility Criteria

As shown in Sect. 4.3, when (5.1) holds and ρ1 > ρ2, a continuous 1-rarefaction wave
solution to the dispersionless equations exists. Gradient catastrophe does not occur,
so the rarefaction wave correctly captures the leading-order behavior of the dispersive
regularization. However, when ρ1 < ρ2, the rarefaction wave solution is no longer
admissible and integrating the dispersionless equations via the method of character-
istics results in a multivalued solution. A dispersive regularization leading to a DSW
is necessitated. Specific criteria are now provided to identify admissible 1-DSWs.
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The general admissibility criteria for DSWs depend on the ordering of the soliton
and linear wave edges. In what is termed here a “1+-DSW,” the conditions are El
(2005)

u2 − c2 < s2 < u2 + c2, (6.1a)

1+−DSW : v1 < u1 − c1, (6.1b)

s2 > v1, (6.1c)

where the soliton is at the trailing edge of the DSW. Similarly, a “1−-DSW” satisfies
the conditions

u2 − c2 < v2 < u2 + c2, (6.2a)

1−−DSW : s1 < u1 − c1, (6.2b)

v2 > s1, (6.2c)

with the soliton at the leading edge. The designation 1+-DSW (1−-DSW) corresponds
to a positive (negative) dispersion fluid, as shown below. Recall that the soliton (linear)
edge speed s j (v j ) corresponds to the left edge of the DSW if j = 1 or the right edge
if j = 2. Thus, the subscript determines the polarity of the DSW. These conditions
are analogous to the Lax entropy conditions for dissipatively regularized hyperbolic
systems Lax (1973). A key difference from classical fluids is that there is only one
“sign” of dissipation due to time irreversibility; for time-reversible, dispersive fluids,
both signs are possible. The admissibility criteria ensure that only three characteristics
impinge upon the three-parameter DSW, transferring initial/boundary data into the
DSW and allowing for the simple wave condition (5.1) to hold. Sufficient conditions
for these criteria as applied to the dispersive Euler equations are now shown.

First, consider the criteria for a 1+-DSW in a positive dispersion fluid. Inserting
the linear wave and soliton edge speeds (5.7), (5.11) into inequalities (6.1a), (6.1b)
simplifies the first two admissibility criteria to

−c2 <
ω̃0(k̃2, ρ2)

k̃2
< c2, (6.3a)

ω0k (k1, ρ1) > c1, (6.3b)

where k̃2 = k̃(ρ2; ρ1) and k1 = k(ρ1; ρ2). In Sect. 7.3, the admissibility of weak
1+-DSWs when 0 < ρ2 − ρ1 � 1 is demonstrated. The further assumptions

1+−DSW : ω̃k̃k̃ < 0, ck + ρω0ρ > 0, ck̃ + ρω̃0ρ > 0 (6.4)

enable the extrapolation of Eulerian 1+-DSW admissibility to moderate and large
jumps ρ2 > ρ1 (below). Assumptions (6.4) hold for gNLS, gSerre, and ion-acoustic
plasma in certain parameter regimes (moderate jumps).
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The extrapolation of admissibility to larger jumps can be demonstrated as follows.
For 1-DSWs, the negative branch of the dispersion relation (2.3) has been chosen for
k > 0. Using the small k asymptotics (2.4) in (5.5) with initial condition k(ρ2; ρ2) = 0,
one can show that k(ρ; ρ2) is a decreasing function of ρ for |ρ − ρ2| � ρ2. Since
ω0k (0, ρ) = c(ρ), the convexity of ω0 implies ω0k (k, ρ) > c(ρ) for k > 0. This
fact combined with (6.4) in (5.5) implies that k1 = k(ρ1; ρ2) > 0 for ρ2 > ρ1 and
that inequality (6.3b) holds. Similar arguments demonstrate that k̃2 = k̃(ρ2; ρ1) > 0
for ρ2 > ρ1 and that the inequalities in (6.3a) hold. Thus, if (6.4) hold for an interval
k ∈ [0, k∗), then (6.3a) and (6.3b) are verified for ρ2 ∈ (ρ1, ρ∗)where k(ρ1; ρ∗) = k∗.
It is now clear why ρ2 > ρ1 in (5.1) and the designation 1+-DSW is used when the
sign of dispersion is positive.

By similar arguments, inequalities (6.2a) and (6.2b) hold for negative dispersion
fluids when ρ1 < ρ2 and

1−−DSW : ω̃k̃k̃ > 0, ck + ρω0ρ > 0, ck̃ + ρω̃0ρ > 0. (6.5)

The only change with respect to (6.4) is the convexity of the conjugate dispersion
relation.

The final inequalities (6.1c) and (6.2c) require verification. An explicit analysis for
weak DSWs is given in Sect. 7. An intuitive argument can be given for the general
case. When ωkk > 0, the case of positive dispersion, the group velocity of waves
with shorter wavelengths is larger, while the opposite is true for negative dispersion.
The soliton edge corresponds to the longest wavelength (infinite) hence should be
the trailing (leading) edge in positive (negative) dispersion systems. For the 1-DSW,
a trailing soliton edge means s > v as is the case in (6.1c). A leading soliton edge
corresponds to the ordering in (6.2c).

In summary, sufficient conditions for a simple wave led 1-DSW are ρ1 < ρ2 and
either (6.1c), (6.4) for a positive dispersion 1+-DSW or (6.2c), (6.5) for a negative
dispersion 1−-DSW. Because of this, it is convenient to dispense with the subscripts
defining the DSW speeds v j and s j in (5.7), (5.11) and use the notation

v− ≡ v2, v+ ≡ v1, s− ≡ s1, s+ ≡ s2, (6.6)

which identifies the dispersion sign. The conditions (6.4) or (6.5) can be verified a pri-
ori, while the speed orderings (6.1c) or (6.2c) must be verified by computing the speeds
directly. For the case of 2±-DSWs, the requirement is ρ1 > ρ2 and the appropriate
ordering of the soliton and linear wave edges. The Lax entropy conditions for the
dissipative regularization of the Euler equations give similar criteria, namely posi-
tive (negative) jumps for 1-shocks (2-shocks) (Smoller 1994) as is expected because
dispersive and dissipative regularizations are the same up to breaking.

6.1 Nonstationary and Stationary Soliton Edge

Due to Galilean invariance, there is flexibility in the choice of reference frame for the
study of DSWs. In the general construction of 1-DSWs presented here, the laboratory
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frame was used with the requirement that the background flow variables lie on the
1-DSW locus (5.1). With this coordinate system, three of the four background flow
properties (ρ1, ρ2, u1, u2) can be fixed while the fourth is determined via the 1-DSW
locus. The soliton and linear wave edge speeds follow according to (5.11) and (5.7)
such that either one of the admissibility criteria for a 1+- or 1−-DSW hold.

Another convenient coordinate system is one moving with the soliton edge, as
shown in Fig. 1. In this case, one can consider the upstream quantities ρ1 > 0, u1 > 0
given and the stationary condition

s±(ρ1, ρ2) = 0, (6.7)

to hold. The downstream density ρ2 is computed from (6.7), while the downstream
velocity u2 follows from the 1-DSW locus (5.1). The linear wave edge speed is found,
as usual, from (5.7).

The admissibility criteria (6.1a)–(6.2c) for a 1-DSW with stationary soliton edge
become

1+−DSW : M2 − 1 < 0 < M2 + 1,
v1

c1
< M1 − 1, v1 < 0,

1−−DSW : M2 − 1 <
v2

c2
< M2 + 1, 1 < M1, v2 > 0.

For 1+-DSWs, the downstream flow must be subsonic (M2 < 1), while for
1−-DSWs, the upstream flow must be supersonic (M1 > 1). It is expected that both
properties hold for both 1±-DSWs, but this is not required by the admissibility criteria.
Supersonic upstream flow and subsonic downstream flow is consistent with classical
shock waves and will be demonstrated for weak DSWs in Sect. 7.

The DSW locus (5.1), the linear wave edge speed in (5.7), and the soliton edge
speed in (5.11) along with the stationary condition (6.7) constitute the jump conditions
for a 1-DSW with a stationary soliton edge in dispersive Eulerian fluids. Given the
upstream Mach number M1 and density ρ1, the stationary condition (6.7) and the
soliton edge speeds (5.11) determine the downstream density ρ2 while the DSW locus
(5.1) determines the downstream Mach number M2.

Figure 1 depicts generic descriptions of 1±-DSWs with stationary soliton edge. In
the 1−-DSW case of Fig. 1a, the soliton edge is the leading edge and the linear wave
edge is the trailing edge. The opposite orientation is true for the 1+-DSW shown in
Fig. 1b. This behavior was also depicted in Gurevich et al. (1990) based on an analysis
of weak DSWs in plasma.

6.2 Breakdown of Simple Wave Assumption

A fundamental assumption in this DSW construction is the existence of a simple wave
or integral curve of the full Whitham modulation equations connecting the trailing
and leading edge states. This assumption is in addition to the admissibility criteria dis-
cussed in this Section. The simple wave assumption for a 1-DSW requires a monotonic
decrease of the associated characteristic speed as the integral curve is traversed from
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left to right (Dafermos 2009). This monotonicity condition leads to the requirement
of genuine nonlinearity of the full modulation system. Identification of the loss of
monotonicity is now undertaken by examining the behavior of the modulation system
at the leading and trailing edges.

The full Whitham modulation system exhibits four characteristic speeds λ1 ≤
λ2 ≤ λ3 ≤ λ4 that depend on (k, ρ, u, a). In the case of positive dispersion, the
simple wave DSW integral curve is associated with the 2-characteristic (El 2005) and
connects the left, right states (k1, ρ1, u1, 0), (0, ρ2, u2, a2), respectively, where k1 is
the wavenumber of the wavepacket at the linear wave edge and a2 is the solitary wave
amplitude at the soliton edge. Generally, the integral curve can be parametrized by
ρ ∈ [ρ1, ρ2], (k(ρ), ρ, u(ρ), a(ρ)). The monotonicity condition for a simple wave
can therefore be expressed as

0 >
dλ2

dρ
= ∂λ2

∂k
k′ + ∂λ2

∂ρ
+ ∂λ2

∂u
u′ + ∂λ2

∂a
a′, (6.8)

where primes denote differentiation with respect to ρ along the integral curve. At the
linear wave edge, the λ2 and λ1 characteristics merge

ν1(k, ρ, u) = lim
a→0+ λ1(k, ρ, u, a) = lim

a→0+ λ2(k, ρ, u, a), (6.9)

where ν1 is the smallest characteristic speed of the modulation system when a = 0.
This merger of characteristics implies that right differentiability of λ2 when a = 0
requires

∂

∂a
λ2(k, ρ, u, 0) = ∂

∂a
λ1(k, ρ, u, 0) = 0, (6.10)

i.e., an O(a2) dependence of both λ2 and λ1 on a. Using (6.8), (6.9), and (6.10), the
breakdown of the monotonicity condition (6.8) can now be identified at the linear wave
edge as

lim
a→0+

dλ2

dρ

∣∣∣∣
k=k1,ρ=ρ1,u=u1

= ∂ν1

∂k
k′ + ∂ν1

∂ρ
+ ∂ν1

∂u
u′
∣∣∣∣
k=k1,ρ=ρ1,u=u1

= 0.

(6.11)

The zero-amplitude reduction of the modulation system comprises the two dispersion-
less equations and the conservation of waves (El 2005)

⎡
⎣
ρ

u
k

⎤
⎦

t

+
⎡
⎣

u ρ 0
c2/ρ u 0
ωρ ωu ωk

⎤
⎦
⎡
⎣
ρ

u
k

⎤
⎦

x

, (6.12)
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whereω(k, ρ, u) is the negative branch of the dispersion relation (2.3). The eigenvalues
ν1,2,3 and associated right eigenvectors r1,2,3 for this hyperbolic system are

(ν1, r1) = (u − ω0k , [0, 0, 1]T), (6.13a)

(ν2, r2) = (u − c, [ρ(ω0k − c),−c(ω0k − c), ck − ρω0ρ ]T), (6.13b)

(ν3, r3) = (u + c, [ρ(ω0k + c), c(ω0k + c), ck − ρω0ρ ]T). (6.13c)

Note the ordering ν1 < ν2 < ν3 due to the 1+-DSW admissibility criterion (6.3b).
Recalling that the 1-DSW integral curve satisfies (5.4) and (5.5) at the linear wave
edge, then (6.11) (breakdown) occurs when

ω0kk

(
ω0ρ + ck

ρ

)
+ (

c − ω0k

) (
ω0kρ + c

ρ

)∣∣∣∣
k=k1,ρ=ρ1

= 0. (6.14)

A direct computation shows that ∂v+/∂ρ1 = 0 if and only if (6.14) holds, offering a
simple test for linear degeneracy once the DSW speed has been computed. The coales-
cence of two characteristic speeds (nonstrict hyperbolicity) implies linear degeneracy
(Dafermos 2009). DSWs described by modulation systems lacking strict hyperbolic-
ity and genuine nonlinearity have been studied for integrable systems (Marchant and
Smyth 2006; Pierce and Tian 2006, 2007a,b; Kodama et al. 2008; Grava et al. 2009;
Kamchatnov et al. 2012). The results indicate a number of novel features including
compound waves (e.g., a DSW attached to a rarefaction), kinks, and enhanced curva-
ture of the DSW oscillation envelope. The latter has led previous authors Kodama et
al. (2008) to describe such nonsimple DSWs as having a “wineglass shape” in con-
trast with simple DSWs that exhibit a “martini glass shape” (see Fig. 1). The linear
degeneracy condition (6.14) was given in El et al. (2006) for the nonintegrable Serre
equations. Its derivation, however, was wrongly attributed to loss of genuine nonlin-
earity in the reduced modulation system (6.12) when a = 0. Linear degeneracy occurs
in this system when

∇νi · r i = 0, (6.15)

for some i ∈ {1, 2, 3}. 1+-DSW admissibility (6.3b) implies that the 2- and 3-
characteristic fields do not exhibit linear degeneracy. Evaluation of (6.15) for the
1-characteristic field, however, gives

ωkk(k1, ρ1) = 0, (6.16)

corresponding to zero dispersion, a different condition than (6.14). In the vicinity
of the trailing edge, the 1+-DSW self-similar simple wave corresponds to the first
characteristic family (6.13a) and satisfies the ODEs

ρ′ = 0, u′ = 0, k′ = −1/ω0kk ,
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where differentiation is with respect to the self-similar variable x/t . This demonstrates
that the Whitham modulation equations exhibit gradient catastrophe, |k′| → ∞, when
the dispersion is zero (6.16). A direct computation demonstrates that ∂v+/∂ρ2 = 0
if and only if (6.16) holds. Thus, breaking in the Whitham modulation equations
coincides with an extremum of the linear wave edge speed with respect to variation in
ρ2.

Breaking in the Whitham equations has been resolved in specific systems by appeal-
ing to modulated multiphase waves describing DSW interactions (El 1996; Grava and
Tian 2002; Biondini and Kodama 2006; Hoefer and Ablowitz 2007; Ablowitz et al.
2009). A recent study of DSWs in the scalar magma equation shows that the develop-
ment of zero dispersion for single-step initial data leads to internal multiphase dynam-
ics termed DSW implosion (Lowman and Hoefer 2013). The simple wave assumption
no longer holds. This behavior was intuited by Whitham before the development of
DSW theory (see Whitham 1974, Sect. 15.4) where breaking of the Whitham modu-
lation equations was hypothesized to “represent a source of oscillations.”

An analysis of the soliton wave edge where k → 0 can be similarly undertaken.
Recalling that the characteristic speed of the soliton edge is the phase velocity u−ω̃0/k̃
(5.11), the breakdown of the monotonicity condition for the positive dispersion case
is

lim
k→0+

dλ2

dρ

∣∣∣∣
k̃=k̃2,ρ=ρ2,u=u2

= − ∂

∂ k̃

(
ω̃0

k̃

)
k̃′ − ∂

∂ρ

(
ω̃0

k̃

)
+ u′

∣∣∣∣
k̃=k̃2,ρ=ρ2,u=u2

= 0.

Using the 1-DSW locus (5.1) and the characteristic ODE (5.9) leads to the simplifi-
cation

(
k̃c − ω̃0

)(
ω̃0ρ + ck̃

ρ

)∣∣∣∣∣
k̃=k̃2,ρ=ρ2

= 0.

The positivity of the first factor is equivalent to the admissibility criterion (6.3a), so it
is a zero of the second factor,

ω̃0ρ + ck̃

ρ

∣∣∣∣∣
k̃=k̃2,ρ=ρ2

= 0, (6.17)

that offers a new route to linear degeneracy. Recalling that the dispersion relation
involves two branches (2.3), care must be taken that the appropriate branch is used
in (6.17), which can change when passing through ω̃0 = 0. A direct computation
verifies that ∂s+/∂ρ2 = 0 if and only if (6.17) holds. Therefore, an easy test for linear
degeneracy is to find an extremum of s+(ρ1, ρ2)with respect to variations in ρ2. Note
that the linear degeneracy condition (6.17) also coincides with a breaking of one of
the additional sufficient admissibility conditions in (6.4).

Just as zero dispersion at the linear wave edge can lead to singularity formation in
the Whitham equations, the soliton edge can similarly exhibit catastrophe when the
phase velocity reaches an extremum

123



J Nonlinear Sci

(
ω̃0

k̃

)

k̃

∣∣∣∣
k̃=k̃2,ρ=ρ2

= 0. (6.18)

This corresponds to zero conjugate dispersion. When (6.18) is satisfied, wave interac-
tions at the leading edge are expected to occur for larger initial jumps. In contrast to
the linear degeneracy criterion, a direct computation verifies that ∂s+/∂ρ1 = 0 if and
only if (6.18) holds.

The criterion for breakdown of 1−-DSWs is the same as (6.14), (6.16) with 1 → 2
and (6.17), (6.18) with 2 → 1. In summary, two mechanisms at each DSW edge
for the breakdown of the simple wave assumption have been identified: the loss of
monotonicity (linear degeneracy) (6.14), (6.17) or gradient catastrophe in the Whitham
modulation equations due to zero dispersion (6.16), (6.18). These behaviors can be
succinctly identified via extrema in the DSW speeds as

1+−DSW :
linear degeneracy

∂v+
∂ρ1

= 0 or
∂s+
∂ρ2

= 0,

gradient catastrophe
∂v+
∂ρ2

= 0 or
∂s+
∂ρ1

= 0,
(6.19a)

1−−DSW :
linear degeneracy

∂v−
∂ρ2

= 0 or
∂s−
∂ρ1

= 0,

gradient catastrophe
∂v−
∂ρ1

= 0 or
∂s−
∂ρ2

= 0.
(6.19b)

The negation of these breakdown criteria are further necessary admissibility criteria,
additional to (6.1a)–(6.1c), for the validity of the simple wave DSW construction.

7 Weak DSWs

The jump conditions for an admissible 1-DSW presented in Sect. 5 apply generally
to dispersive Eulerian fluids satisfying hypotheses A1–A5. They can be determined
explicitly in the case of weak DSWs. An asymptotic analysis of the jump conditions
is presented below assuming a weak 1-DSW corresponding to a small jump in density

ρ2 = ρ1 +, || � 1.

Two approaches are taken. First, asymptotics of the Whitham–El simple wave DSW
closure theory are applied, and second, direct KdV asymptotics of the dispersive Euler
equations are used.

7.1 Linear Wave Edge

Expanding the linear wave edge speed (5.7) yields
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v j (ρ1, ρ1 +) ∼ lim
ρ2→ρ1

v j (ρ1, ρ2)+ ∂

∂ρ2
v j (ρ1, ρ2). (7.1)

Using the long-wave asymptotics of the dispersion relation (2.4) and the initial
condition for the integral curve (5.6), the first term is

lim
ρ2→ρ1

v j (ρ1, ρ2) = u1 − lim
k→0

ω0k = u1 − c1.

The derivative term in (7.1) for the case j = 1 is evaluated using (5.5)–(5.7)

lim
ρ2→ρ1

∂

∂ρ2
v1(ρ1, ρ2) = lim

ρ2→ρ1
−ω0kk

∂k

∂ρ2
= lim
ρ2→ρ1

ω0kk

dk

dρ1

= lim
k→0

ω0kk

c1k/ρ1 + ω0ρ

c1 − ω0k

= −2

(
c1

ρ1
+ c′

1

)
. (7.2)

The second equality in (7.2) involves differentiation with respect to the initial “time”
ρ2, which, due to uniqueness of solutions to the initial value problem, satisfies

∂k

∂ρ2
(ρ1; ρ2) = − dk

dρ1
(ρ1; ρ2). (7.3)

The last equality in (7.2) follows from the weak dispersion asymptotics (2.4). A similar
computation for the j = 2 case gives

lim
ρ2→ρ1

∂

∂ρ2
v2(ρ1, ρ2) = lim

ρ2→ρ1
u ′(ρ2)− ω0kρ − ω0kk

dk

dρ

= − c1

ρ1
−
(

lim
k→0

ω0kρ + ω0kk

c1k/ρ1 + ω0ρ

c1 − ω0k

)

= c1

ρ1
+ c′

1.

Combining this result with the other speed calculation gives

v j (ρ1, ρ1 +) ∼ u1 − c1 + (−1) j (3 − j)

(
c1

ρ1
+ c′

1

)
, || � 1. (7.4)

The corresponding wavenumber at the linear wave edge can also be determined
perturbatively. Note that a Taylor expansion of k1 = k(ρ1; ρ1 + ) for small  is
not valid because k(ρ; ρ1) is not analytic in a neighborhood of ρ1, exhibiting a square
root branch point. However, k2

1 is analytic, so that upon Taylor expansion, the use of
(7.3) and (2.4) yields

k j ∼ 2

3|μ|
(

c1

ρ1
+ c′

1

)√||, j = 1, 2, || � 1,
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the wavenumber of the linear wavepacket at a weak 1±-DSW’s linear wave edge. Note
that the wavenumber is independent of the sign of dispersion.

7.2 Soliton Edge

The soliton edge speed is expanded for a small density jump as

s j (ρ1, ρ1 +) = lim
ρ2→ρ1

s j (ρ1, ρ2)+ ∂

∂ρ2
s j (ρ1, ρ2)+ · · · .

Using the expansion (2.4), the definition (5.8), the expression (5.11), and the initial
condition (5.10) gives

lim
ρ2→ρ1

s j (ρ1, ρ2) = u1 − lim
k̃→0

ω̃0(k̃, ρ1)

k̃
= u1 − c1.

To compute the limit ∂
∂ρ2

s j (ρ1, ρ1) necessitates different considerations for each
j . When j = 1, (5.11) gives

lim
ρ2→ρ1

∂

∂ρ2
s1(ρ1, ρ2) = lim

ρ2→ρ1
− ω̃0k̃

k̃ − ω̃0

k̃2

∂ k̃

∂ρ2

= lim
ρ2→ρ1

ω̃0k̃
k̃ − ω̃0

k̃2

dk̃

dρ1

= lim
k̃→0

(ω̃0k̃
k̃ − ω̃0)(c1k̃/ρ1 + ω̃0ρ )

k̃2(c1 − ω̃0k̃
)

= −2

3

(
c1

ρ1
+ c′

1

)
.

When j = 2, the limit is similarly computed as

lim
ρ2→ρ1

∂

∂ρ2
s2(ρ1, ρ2) = lim

ρ2→ρ1
u′(ρ1)− ω̃0ρ

k̃
− ω̃0k̃

k̃ − ω̃0

k̃2

dk̃

dρ

= lim
k̃→0

− c1

ρ1
− ω̃0ρ

k̃
− (ω̃0k̃

k̃ − ω̃0)(c1k̃/ρ1 + ω̃0ρ )

k̃2(c1 − ω̃0k̃
)

= −1

3

(
c1

ρ1
+ c′

1

)
.

Combining these results gives the asymptotic soliton edge speed

s j (ρ1, ρ1 +) ∼ u1 − c1 − 3 − j

3

(
c1

ρ1
+ c′

1

)
, || � 1. (7.5)
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7.3 Admissibility: Positive and Negative Dispersion

By insertion of the DSW speeds (7.4) and (7.5) into the general admissibility criteria,
it is found that the 1+-DSW criteria (6.1a)–(6.1c) are satisfied if and only if > 0 and
sgnωkk > 0. Similarly, the 1−-DSW criteria (6.2a)–(6.2c) hold if and only if  > 0
and sgnωkk < 0. Hence, the notation 1±-DSW associated with the dispersion sign is
justified for weak DSWs.

In the notation of (6.6), the weak 1±-DSW speeds are

s(1)± (ρ1, ρ1 +) ∼ u1 − c1 − 3 ∓ 1

6

(
c1

ρ1
+ c′

1

)
, (7.6a)

v
(1)
± (ρ1, ρ1 +) ∼ u1 − c1 − 1 ± 3

2

(
c1

ρ1
+ c′

1

)
, 0 <  � 1, (7.6b)

where the superscript denotes the association with a 1-DSW. Notably, the DSW speeds
(7.6a) and (7.6b) differ from the dissipatively regularized shock speed (4.14) only in
the numerical coefficient of the (c1/ρ1 + c′

1) term. A similar analysis shows that the
2-DSW locus (5.2) requires a negative jump in density and yields the speeds

s(2)± (ρ2 +,ρ2) ∼ u2 + c2 + 3 ∓ 1

6

(
c2

ρ2
+ c′

2

)
,

v
(2)
± (ρ2 +,ρ2) ∼ u2 + c2 + 1 ± 3

2

(
c2

ρ2
+ c′

2

)
, 0 <  � 1.

7.4 Stationary Soliton Edge

Choosing the reference frame moving with the 1±-DSW soliton edge so that s(1)± = 0
results in the relations

± ∼ 2ρ1c1

(1 ∓ 1/3)(c1 + ρ1c′
1)
(M1 − 1),

M2,± ∼ 1 − 2±1(M1 − 1), 0 < M1 − 1 � 1,

which differ from their classical counterparts (4.15) only by a numerical coefficient.
Upstream supersonic flow through a weak, admissible DSW results in downstream
subsonic flow as in the classical case.

7.5 KdV DSWs

An alternative method to derive weak DSW properties is to consider the weakly non-
linear behavior of the dispersive Euler equations directly. Inserting the multiple scales
expansion
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ρ = ρ1 +ρ(1)(ξ, T )+2ρ(2)(ξ, T )+ · · · ,
u = u1 −u(1)(ξ, T )+2u(2)(ξ, T )+ · · · ,
ξ = 1/2[x − (u1 − c1)t], T = 3/2t, 0 <  � 1,

into (2.1), equating like powers of  to O(5/2), and recalling the assumed small
wavenumber behavior of the dispersion relation (2.4) yields the KdV equation

u(1)T −
(

1 + ρ1c′
1

c1

)
u(1)u(1)ξ + μu(1)ξξξ = 0, ρ(1) = ρ1

c1
u(1). (7.7)

The initial data (2.5) along the 1-DSW locus (5.1) leads to the identification

u(1)(ξ, 0) =
{

0 ξ < 0
c1/ρ1 ξ > 0.

(7.8)

The large-T behavior of u(1) satisfying (7.7) for the initial data (7.8) results in a DSW
whose structure and edge speeds depend on sgnμ. For negative dispersion,μ < 0, the
DSW is oriented such that the leading, leftmost edge is characterized by a positive,
bright soliton. The positive dispersion case is equivalent to the negative dispersion
case by the transformations x → −x , t → −t , and u(1) → −u(1). Therefore, the
leading, leftmost edge is the linear wave edge and the trailing edge is characterized
by a negative, dark soliton. Scaling the KdV DSW speeds back to the (x, t) variables
results precisely in the admissible, approximate weak 1±-DSW speeds (7.6a) and
(7.6b). The KdV DSW provides additional information, the approximate amplitude
of the soliton edge

1+−DSW : ρ(s+t, t) ∼ ρ1

(
1 − ρ1

c2
1



)
,

1−−DSW : ρ(s−t, t) ∼ ρ1

(
1 + 2

ρ1

c2
1



)
.

7.6 Discussion

The analysis of this section has yielded the behavior of weak Eulerian DSWs in the
context of assumptions A1–A5 and the admissibility criteria (6.1a)–(6.2c). For classi-
cal, weak 1-shocks (2-shocks), the dispersionless Riemann invariant r2 (r1) is constant
across the shock to third order in the jump height  (Whitham 1974). Recalling that
the DSW loci (5.1), (5.2) correspond to constancy of a Riemann invariant (simple
wave condition), the classical Hugoniot loci and the DSW loci for weak shocks are the
same to O(3). However, the shock speeds differ at O(). The universal properties of
weak shocks regularized by positive/negative dispersion and dissipation are depicted
in Fig. 3. The jump height , upstream density ρ1, and pressure law P(ρ) impart
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Fig. 3 Universal properties of weak 1±-DSWs with a weak 1-viscous shock wave (VSW). DSWs are
represented by their envelopes and edge speeds. Speeds are in units of (c1/ρ1 + c′

1) and u1 = c1 for
simplicity

only a uniform scaling of the shock speeds by (c1/ρ1 + c′
1) and a relative scaling of

the 1±-DSW soliton amplitudes by ρ1/c2
1. All shock speeds differ, showcasing the

distinguishing properties of each regularization type. 1−-DSWs exhibit backpropaga-
tion, whereas 1+-DSWs and 1-VSWs (viscous shocks) do not. The prominent soliton
edge of a 1−-DSW (1+-DSW) propagates faster (slower) than a classical shock. By
continuity and the discussion of admissibility, it is expected that moderate amplitude
DSWs for Eulerian fluids with a fixed sign of the dispersion exhibit a structure similar
to that pictured in Fig. 1. This is indeed the case for the example fluids considered in
this work; see Sect. 9.

8 Dispersive Breaking Time

In the small dispersion regime, the hydrodynamic dispersionless system (4.4) asymp-
totically describes the evolution of smooth initial data until breaking occurs. One can
therefore use the breaking time estimates from Sect. 4.1 to estimate the time at which
dispersive terms become important. This result was applied to the NLS equation with
c(ρ) = ρ1/2 in Forest and McLaughlin (1998) to estimate the onset of oscillations in
fiber-optic pulse propagation. Here, the breaking time estimates are applied to poly-
tropic gases with sound speeds c(ρ) = p1/2ρ p/2, 0 < p < 2 (e.g., gNLS with
power-law nonlinearity and gSerre). Generalizations using Lax’s theory developed in
Sect. 4.1 are straightforward.
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Fig. 4 Breaking time bounds (solid lines) and numerically computed breaking times (filled circles) for
gNLS with power-law nonlinearity f (ρ) = ρ p and slowly varying Gaussian initial data (8.1)

The flow considered is a slowly varying Gaussian on a quiescent background

u(x, 0) = 0, ρ(x, 0) = 1 + exp[−(εx)2], 0 < ε � 1. (8.1)

Slowly varying initial data ensure the applicability of the dispersionless system (4.4)
up to breaking when t = O(1/ε). This choice of initial data has been used in photonic
DSW experiments (Barsi et al. 2012).

Figure 4 shows the results for the gNLS equation (3.1) with power-law nonlinearity
f (ρ) = ρ p. The solid curves (—–) correspond to the upper and lower bounds on the
dispersionless breaking time estimates (4.11), and bullets (●) correspond to numer-
ically computed breaking times for several choices of p and ε. The breaking time
from simulations is defined to be the time at which the density first develops one full
oscillation in the breaking region. For |ε| � 1, the bounds (4.11) accurately estimate
the breaking time across a range of nonlinearities p. Note that, for these dispersive
Euler models and class of initial data, ε � 0.01 is required to obtain agreement with
the dispersionless estimates.

9 Large Amplitude gNLS DSWs

The general Whitham–El simple wave DSW theory is now implemented for the gNLS
equation.

To simplify the presentation, and without loss of generality, the independent and
dependent variables in (2.2) will be scaled so that the initial jump in density (2.5) is
positive, from unit density
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ρ1 = 1, ρ2 =  > 1,

so that 1-DSWs will be considered. Then, according to the 1-DSW locus (5.1) of
admissible states, the jump in velocity satisfies

u2 = u1 −
∫ 

1

(
f ′(ρ)
ρ

)1/2

dρ.

9.1 General Properties

The gNLS equation exhibits positive dispersion so that DSWs are of the 1+ variety.
Substituting the expressions (3.8) and (5.4) into the ODEs (5.3) and (5.9) results in
the initial value problems

dk

dρ
= −k

1

ρ

[
1 + k2

4ρ f ′(ρ)

]1/2

+ 1

2ρ
+ f ′′(ρ)

2 f ′(ρ)

1 + k2

2ρ f ′(ρ)
−
[

1 + k2

4ρ f ′(ρ)

]1/2 , k() = 0 (9.1)

for the determination of the linear wave edge speed, and

dk̃

dρ
= −k̃

1

ρ

[
1 − k̃2

4ρ f ′(ρ)

]1/2

+ 1

2ρ
+ f ′′(ρ)

2 f ′(ρ)

1 − k̃2

2ρ f ′(ρ)
−
[

1 − k̃2

4ρ f ′(ρ)

]1/2 , k̃(1) = 0 (9.2)

for the soliton edge speed. In (9.2), it is possible for the quantity within the square
roots to pass through zero. When this occurs, an appropriate branch of the dispersion
relation should be used so that the conjugate wavenumber remains real valued.

Recalling Remark 1 in Sect. 5.2, the transformation

α(ρ) = ω0(k, ρ)

c(ρ)k
=
[

1 + k2

4ρ f ′(ρ)

]1/2

simplifies (9.1) to the ODE

dα

dρ
= −1

2
(1 + α)

[
1

ρ
+ (2α − 1) f ′′(ρ)
(2α + 1) f ′(ρ)

]
, (9.3)

with initial condition

α() = 1. (9.4)
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The analogous transformation for the conjugate variables

α̃(ρ) = ω̃0(k̃, ρ)

c(ρ)k̃
=
[

1 − k̃2

4c(ρ)2

]1/2

(9.5)

transforms (9.2) to the same equation (9.3) with α → α̃ and the initial condition

α̃(1) = 1. (9.6)

Upon solving the initial value problems for α and α̃, the linear wave and soliton
edge speeds are found from (5.7) and (5.11), respectively, which take the form

v+ = u1 + 1 − 2α(1)2

α(1)

√
f ′(1), (9.7a)

s+ = u1 − α̃()
√
 f ′()−

∫ 

1

[
f ′(ρ)
ρ

]1/2

dρ, (9.7b)

in the α, α̃ variables. The weak DSW results (7.4) and (7.5) give the approximations

v+ ∼ u1 −√
f ′(1)

{
1 +

[
3 + f ′′(1)

f ′(1)

]
(− 1)

}
, (9.8a)

s+ ∼ u1 −√
f ′(1)

{
1 + 1

6

[
3 + f ′′(1)

f ′(1)

]
(− 1)

}
, 0 < − 1 � 1.(9.8b)

Equating the soliton speed in (9.7b) to the soliton/amplitude speed relation in (3.10)
gives an implicit relation for the dark soliton minimum ρmin in terms of the background
density 

α̃()2 f ′() = 2ρmin

− ρmin

∣∣∣∣ f ()− 1

− ρmin

∫ 

ρmin

f (ρ)dρ

∣∣∣∣ . (9.9)

A direct computation shows that neither linear degeneracy (6.14) nor a sign of dis-
persion change (6.16) occurs at the linear wave edge. However, at the soliton edge,
there are several distinguished values of α̃() with physical ramifications. The mod-
ulation theory breaks down due to singular derivative formation in (9.3) when

α̃( = s) = −1

2
.

From the denominator in (5.9), singularity formation occurs precisely when ω̃0k̃
=

c(). A direct computation shows that ω̃0 is a concave function of k̃, which implies
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ω̃0/k̃ > ω̃0k̃
= c() so that singularity formation coincides with the violation of the

admissibility criterion (6.3a).
From the initial condition (9.6) and the ODE (9.3), α̃() decreases from 1 for

increasing sufficiently close to 1. The value of α̃ at which its derivative is zero, from
(9.3), is

α̃min() =  f ′′()− f ′()
2[ f ′′()+ f ′()] .

So long as

α̃() > max

[
α̃min(),−1

2

]
,

the right-hand side of (9.3) is strictly negative and finite. Since α satisfies the same
ODE as α̃, if α̃min < 1,α(1) is an increasing function for all and α̃() is a decreasing
function of  until α̃() = max(α̃min(),−1/2).

As is increased from 1, cavitation (a point of zero density or vacuum point) first
occurs when ρmin = 0, corresponding to a black soliton at the trailing edge, moving
with the background flow speed u(). Since necessarily > ρmin, (9.9) implies that
a vacuum point first occurs when

α̃( = v) = 0. (9.10)

For larger jumps  > v, the vacuum point is expected to develop in the interior of
the DSW (El et al. 1995, 2007). According to the transformation (9.5), when α̃ crosses
zero, the branch of the conjugate dispersion changes sign.

Using Galilean invariance, it is convenient to consider the reference frame moving
with the soliton edge so that s+ = 0. In such a frame, given the upstream supersonic
flow velocity u1 > 1, the density jump  is determined from (9.7b) and the down-
stream flow velocity satisfies u2 = α̃()

√
 f ′(). Then, for  < v, α̃() > 0

so that u2 > 0. But, when  > v, cavitation occurs and α̃() changes sign caus-
ing u2 < 0. Counterintuitively, the dispersive fluid flows into the DSW from both
sides upon the generation of a vacuum point. This behavior has been observed in NLS
(Gurevich and Krylov 1987) and photorefractive gNLS (El et al. 2007).

At the soliton edge, linear degeneracy (6.17) occurs when

ω̃0ρ + ck̃

ρ
= ck̃

[
f ′()+ f ′′()

2 f ′()α̃
+ 1



]
= 0. (9.11)

The only way for this to occur is for ω̃0 to change to another branch of the conjugate
dispersion relation, i.e., for α̃ to pass through 0. Then, from (9.11), the value of α̃ at
which linear degeneracy occurs is

α̃l() = −1

2

[
1 +  f ′′()

f ′()

]
. (9.12)

123



J Nonlinear Sci

According to the assumptions on f (3.7), α̃l < 0 as required. Since the linear degen-
eracy condition (9.11) amounts to ds+/d = 0 [recall (6.19a)], the distinguished
value α̃l coincides with an extremum of the soliton edge speed as the jump height 
is varied.

A direct computation verifies that the zero dispersion criterion (6.18) does not occur.
The admissibility criteria (6.1a) and (6.1b) correspond to α̃() < 1 and α(1) < 1,
which are true generically. In summary, so long as α̃min < −1/2, α̃() is a decreasing
function that can attain the distinguished values α̃ = 0 when = v corresponding to
a vacuum point or cavitation, α̃ = α̃l when = l coinciding with linear degeneracy
and the breakdown of the simple wave criterion, and α̃ = −1/2 when = s leading
to singularity formation. For  < l, the only admissibility criterion left to verify is
the leading and trailing edge ordering (6.1c).

The DSW regularization is completed upon solving the ODE (9.3). This equation
is separable for nonlinearity satisfying f ′(ρ)±ρ f ′′(ρ) = 0. Recalling the admissible
nonlinearity (3.7), the cases of interest are f (ρ) = κρ p, p > 0, corresponding to
polytropic superfluids. This class of nonlinearity is now considered.

9.2 Power-Law Nonlinearity

With the choice (3.2) of power-law nonlinearity, the speed of sound is c(ρ) =
p1/2ρ p/2. Equation (9.3) becomes the separable equation

−2(1 + 2α)

(1 + α)(2 − p + 2pα)
dα = dρ

ρ
. (9.13)

Using the initial condition (9.4), (9.13) is integrated to

1 + α(1)

2

[
2 − p + 2pα(1)

2 + p

]2(p−1)/p

= (3p−2)/2, p 
= 2

3
, (9.14a)

2 ln

[
1 + α(1)

2

]
+ 1

1 + α(1)
− 1

2
= 2

3
ln, p = 2

3
, (9.14b)

and for (9.6), (9.13) is integrated to

1 + α̃()

2

[
2 − p + 2pα̃()

2 + p

]2(p−1)/p

= (2−3p)/2, p 
= 2

3
, (9.15a)

2 ln

[
1 + α̃()

2

]
+ 1

1 + α̃()
− 1

2
= −2

3
ln, p = 2

3
, (9.15b)
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the integrals existing so long as

α(1), α̃() >
p − 2

2p
= α̃min.

The linear wave and soliton edge speeds are then determined via (9.7a) and (9.7b)

v+ − u1

c1
= 1 − 2α(1)2

α(1)
, (9.16a)

s+ − u1

c1
= −p/2

[
2

p
+ α̃()

]
+ 2

p
. (9.16b)

Equations (9.14a) and (9.15a) can be solved explicitly for α in several cases

p = 1

2
:
{

α(1) = 25
16

1/4 − 3
2 + 5

16

(
251/2 − 161/4

)1/2
,

α̃() = 25
16

−1/4 − 3
2 + 5

16

(
25−1/2 − 16−1/4

)1/2
,

(9.17a)

p = 1 :
{
α(1) = 21/2 − 1,
α̃() = 2−1/2 − 1,

(9.17b)

p = 2 :
⎧⎨
⎩
α(1) = 1

2

(√
1 + 82 − 1

)
,

α̃() = 1
2

(√
1 + 8−2 − 1

)
,

(9.17c)

providing explicit expressions for the 1-DSW linear wave and soliton edge speeds

p = 1

2
:

⎧⎪⎨
⎪⎩
v+−u1

c1
= 16− 1

8

[
251/4−24+5

√
251/2−161/4

]2

251/4−24+5
√

251/2−161/4 ,

s+−u1
c1

= − 5
2

1/4 + 39
16 − 5

16

√
25 − 161/4,

(9.18a)

p = 1 :
{
v+−u1

c1
= − 8−81/2+1

21/2−1
,

s+−u1
c1

= −1/2,
(9.18b)

p = 2 :
⎧⎨
⎩
v+−u1

c1
= −2 42−√

1+82√
1+82−1

,

s+−u1
c1

= − 1
2

(
− 2 + √

8 +2
)
.

(9.18c)

The cubic NLS case (9.18b) agrees with the original result in Gurevich and Krylov
(1987).
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The distinguished values of the jump height predict different DSW behavior as p
varies. The large- behavior of (9.15a) and the fact that α̃() is a decreasing function
of  prove that

α̃() ↘ p − 2

2p
> −1

2
,  → ∞, p > 1, (9.19)

precluding the possibility of singularity formation when p > 1. Furthermore, when
p ≥ 2, (9.19) prohibits cavitation in the DSW because α̃() > 0.

The cavitation condition (9.10) can be used along with (9.15a) to determinev(p),
the value of  at which a vacuum point is predicted to appear

v(p) = 22/(3p−2)
(

2 − p

2 + p

)4(1−p)/[p(3p−2)]
, 0 < p < 2, p 
= 2

3
,

(9.20a)

lim
p→2/3

v(p) = 8

exp(3/4)
≈ 3.78. (9.20b)

For p approaching 2, the vacuum jump v increases without bound. The limiting
behavior for p → 0 is v(p) → e2/2 ≈ 3.69.

The DSW soliton speed exhibits a minimum (maximum in absolute value) for
0 < p < 1 corresponding to the onset of linear degeneracy in the modulation system.
The value of the jump height l at the linear degeneracy point is found by inserting
(9.12) into (9.15a) and solving for 

l(p) =
[

1

4
(2 − p)(1 − p)2−2/p

]2/(2−3p)

, 0 < p < 1, p 
= 2

3
,

(9.21a)

l(2/3) = 27

exp(3/2)
≈ 6.02. (9.21b)

The p → 0 behavior is lim p→0l(p) = e2/2, coincidentally the same limiting value
v(0). The maximum value of the trailing edge speed |s+| is therefore

max
1<<s

|s+| = u1 + c1

∣∣∣∣
4 − p2

2p
l(p)

p/2 − 2

p

∣∣∣∣ , 0 < p < 1.

For  > l(p), the simple wave construction is no longer valid.
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For 0 < p < 1, α̃() exhibits singularity formation in its derivative when α̃() →
−1/2 for  → s(p), where

s(p) = 24/[p(3p−2)]
(

1 − p

2 + p

)4(1−p)/[p(3p−2)]
, 0 < p < 1, p 
= 2/3,

(9.22a)

s(2/3) = 64 exp(−9/4) ≈ 6.75, (9.22b)

so that DSWs with  > s(p) are not admissible.
Based on the foregoing analysis and upon verification of the DSW edge ordering

(6.1c), the modulation theory presented here does not violate any of the admissibility
criteria for all 1 <  when p ≥ 1 and for 1 <  < l(p) when 0 < p < 1.

9.2.1 Numerical Results

The simple wave DSW construction makes several predictions that can be tested
through long-time numerical simulations of the shock tube problem of Sect. 5.3. For the
details of the numerical method, see the appendix. Recall that the shock tube problem
results in the generation of two waves, a DSW followed by a rarefaction wave. Figure 5a
depicts the numerically computed density at t = 350 resulting from the initial jump
(ρ1, ρ2) = (1, 14) at x = 2000 for power-law gNLS with p = 2/3. The structure
of a 1+-DSW connected to a 2-rarefaction via an intermediate, constant state is clear.
Almost imperceptible modulations of the zoomed-in solution in the inset demonstrate
the two-scale nature of dispersive hydrodynamics. Figure 5b provides a comparison
of the intermediate density ρm predicted by (5.14) (—–), numerical computation (�,
�, ●), and the intermediate density predicted for a classical, polytropic gas, equations
(4.17) (- - - -). The integrable NLS case p = 1 agrees precisely with the numerical
computations, but for the nonintegrable cases, eventual deviation is observed for large
initial jumps. Interestingly, the classical shock prediction begins to agree with the
p = 2 numerics for sufficiently large jumps. Similar behavior was noted for gNLS with
photorefractive nonlinearity (El et al. 2007) and for the Serre equations (El et al. 2006).

A comparison of the numerically extracted 1+-DSW speeds and simple DSW theory
is shown in Fig. 6a, b. The speeds, resulting from simulations with different p values,
are normalized by the sound speed c1. The value of the DSW jump corresponding to
the numerical simulation results (�, �, ●) is the one extracted from the computation;
i.e.,  is the numerical value of the density between the DSW and the rarefaction.
The value used for the theoretical predictions (—–, - - - -) is ρm from the shock tube
problem (5.14). The computations for the integrable case p = 1 agree excellently,
even for large jumps. The solid curves (—–) show rapid deviation from the weak DSW
straight line (- - - -) predictions, signaling the importance of nonlinearity. In the weak
to moderate jump regime � 3, the nonintegrable cases exhibit good agreement with
the predicted soliton edge speed, but deviation occurs for large jumps. Interestingly,
the nonintegrable cases admit excellent agreement with the predicted linear wave edge
speed across their entire regions of validity.
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(a) (b)

Fig. 5 a Density resulting from the numerical solution of the shock tube problem for power-law gNLS,
p = 2/3. The inset depicts the slowly varying nature of the DSW. b Predicted (solid lines) and computed
(filled squares, filled triangles, filled circles) intermediate states ρm resulting from the shock tube problem.
The prediction for a classical shock tube is also given (dashed lines)

(a) (b)

Fig. 6 Power-law gNLS 1-DSW speeds for varying density jump and nonlinearity exponent p. Solid lines
are from (9.16b), (9.16a), filled squares, filled triangles, and filled circles result from numerical simulation,
and dashed lines show the weak DSW results (9.8a), (9.8b)

Recall that, for p = 2/3, linear degeneracy sets in for jump heights above that which
corresponds to the minimum of the soliton edge speed curve (9.21b),l ≈ 6. However,
the computed 1+-DSW shows no distinct change in structure for jumps below and
above this threshold. This feature is depicted in Fig. 7. On the right, in regions in
(p,) space where a vacuum point is predicted to develop, the DSW modulation
theory breaks down due to linear degeneracy, and singular behavior is shown. It is
clear from this figure that v < l < s so that the simple wave condition has been
broken due to linear degeneracy before singularity formation when = s. Figure 7
(left) shows 1+-DSWs from numerical simulations for p = 2/3 and varying . A
transition to cavitation is observed for sufficiently large jumps as predicted. However,
in the linearly degenerate regime > l, the simulation shows no noticeable change
in the computed DSW structure.
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Fig. 7 Right singular  > s(p), linearly degenerate s(p) >  > l(p), and cavitation l(p) >
 > v(p) regions in (, p) phase space for a gNLS simple 1+-DSW with power-law p nonlinearity.
Left numerically computed 1+-DSWs for p = 2/3

The soliton minimum ρmin, determined by solving (9.9) with a numerical root
finder, is shown in Fig. 8 for different choices of the nonlinearity p and jump heights
(curves). The simple DSW construction predicts no cavitation for p > 2 and a sharply
increasing soliton minimum as the jump height is increased beyondv(2/3). Neither
of these behaviors are observed numerically. Sufficiently large jumps in the p = 2
case lead to cavitation. The numerically computed density minima of the trailing edge
soliton (�, �, ●), curiously, lie on the integrable NLS curve. It is not clear as to why
this is the case.

9.3 Nonpolynomial Nonlinearity

Another particular form of nonlinearity is now considered, that of nonpolynomial non-
linearity (3.3). When inserted into (9.3), this nonlinearity results in the nonseparable
ODE parametrized by γ

dα

dρ
= − (1 + α)[2 + 3γ ρ + 2α(2 + γ ρ)]

4ρ(1 + γ ρ)(1 + 2α)
. (9.23)

It is necessary to numerically solve (9.23) with the initial conditions (9.4), or (9.6)
with α → α̃, in order to recover DSW properties. Since
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Fig. 8 Power-law gNLS DSW trailing soliton minimum ρmin as a function of the DSW jump and nonlin-
earity exponent p. Theory (curves) and numerics (filled squares, filled triangles, filled circles) significantly
differ for  > v and p 
= 1

α̃min() = −3

2
+ 2

2 + γ
< −1

2
, γ > 0,

and α̃() is a decreasing function for α̃ > α̃min, singularity formation (α̃ → −1/2)
is guaranteed for γ > 0 and  sufficiently large. Linear degeneracy, however, occurs
before this when

α̃(l) = − 2 + γl

4 + 4γl
> −1

2
.

Note that, for γ � 1, the characteristic equation (9.23) asymptotes to the power-law
nonlinearity equation (9.13) with p = 1/2 so that the behavior in the large-γ limit
can be recovered directly from (9.17a) and (9.18a).

Similar to the power-law nonlinearity, the three distinguished values for the shock
jump v < l < s divide (γ,) parameter space into various regions, as shown
in Fig. 9. The large-γ behavior of the distinguished values are, from (9.20a), (9.21a),
and (9.22a) with p = 1/2,

v(γ ) ∼ 3.7, l(γ ) ∼ 5.1, s(γ ) ∼ 6.0, γ � 1.

Cavitation and linear degeneracy are predicted to occur for γ > 0 with sufficiently
large. Additionally, the small-γ asymptotics can be determined as a regular pertur-
bation to the NLS solution (9.17b). The result is complex so it is not reported here,
deferring rather to the numerical solution of the ODE (9.23).
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Fig. 9 Singular  > s(γ ), linearly degenerate s(γ ) >  > l(γ ), and cavitation l(γ ) >  >

v(γ ) regions for a simple wave led 1+-DSW with nonpolynomial nonlinearity

Fig. 10 Predicted (solid lines) and computed (filled squares, filled triangles, filled circles) intermediate
states ρm resulting from the nonpolynomial gNLS shock tube problem

9.3.1 Numerical Results

The shock tube problem for γ ∈ {0, 1/4, 1} was solved numerically. The resulting
DSW shock structure exhibits a qualitatively similar pattern to the one shown in Fig. 5a.
The computed intermediate density ρm, as compared with that resulting from the 1-
DSW locus (5.14), is shown in Fig. 10. As before, when deviating from the integrable
case with γ > 0, the 1-DSW locus provides a good prediction to the intermediate
density for weak to moderate jumps but deviates in the large jump regime.

The computed DSW speeds are pictured in Fig. 11 for varying γ and. The weak
DSW results (- - - -) rapidly deviate from the predicted (—–) and computed (�, �, ●)
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(a) (b)

Fig. 11 Nonpolynomial gNLS 1-DSW speeds for varying density jump  and parameter γ . Solid curves
are from (9.16b), (9.16a), filled squares, filled triangles, and filled circles result from numerical simulation,
and dashed lines show the weak DSW results (9.8a), (9.8b)

Fig. 12 Soliton minimum ρmin as a function of the DSW jump and nonpolynomial nonlinearity coefficient
γ

results for  � 1.5. The nonintegrable DSW speeds with finite γ deviate from the
DSW regularization in the large jump regime  � 3, more so for the soliton edge
speeds. The onset of linear degeneracy and singular behavior is clear from the solid
soliton speed curves, exhibiting minima at  = l(γ ) and an infinite derivative at
 = s(γ ).

The soliton minimum ρmin is shown in Fig. 12. As with the power-law nonlinear-
ity, the computed soliton trailing edge minima lie approximately on the integrable
NLS curve, suggesting that this behavior is not coincidental to a particular type of
nonlinearity chosen.
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Fig. 13 Validity of DSW modulation theory for photorefractive nonlinearity. The dashed curve corresponds
to c′() = 0

9.4 Photorefractive Media

The case of DSWs in photorefractive media (3.4) was studied in detail in El et al.
(2007). There, the modulation theory was found to diverge for sufficiently large ampli-
tude jumps and an explanation in terms of the existence of cavitation was given. Based
on the theory developed in Sect. 6.2, this breakdown can be identified with linear degen-
eracy at the soliton edge, hence the simple wave condition no longer holds. A telltale
sign of breakdown is realized by the extremum of the shock speed with respect to jump
height in Fig. 7 of El et al. (2007). Figure 13 depicts the phase space (γ,) divided
into regions by the curves l(γ ), v(γ ), and s(γ ). In contrast to the previous dis-
cussions, photorefractive nonlinearity only preserves the orderingv < l < s for
γ � 0.287. However, the generic nonlinearity assumptions (3.7) corresponding to a
convex pressure law or, equivalently, an increasing sound speed are violated for jumps
exceeding  > 1/γ . The dashed curve  = 1/γ shown in Fig. 13 demonstrates that
the change in ordering of l and v occurs when c′() = 0.

10 Large Amplitude DSWs with Negative Dispersion

Dispersive shock waves for fully nonlinear shallow water waves and ion-acoustic
plasma have been studied elsewhere El (2005); El et al. (2006). It is worth commenting
on these results in light of the theory presented here. Both systems exhibit alternative
negative dispersion regularizations of the Euler equations in contrast to the positive
dispersion of gNLS.

In shallow water with zero surface tension σ = 0 (El et al. 2006), the linear
degeneracy condition (6.14) occurs at the trailing edge for relatively small jumps
 = l ≈ 1.43. For  > l, the simple wave theory breaks down and, indeed,
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the numerically computed soliton edge speed begins to deviate noticeably from its
theoretical value (see Figs. 3 and 4 in El et al. (2006)). It is curious that the numerically
computed linear edge speed remains fairly accurate. For σ = 0, zero dispersion does
not occur at either edge, nor does linear degeneracy at the soliton edge. For σ > 0,
both ωkk = 0 and (ω̃/k̃)k̃ = 0 when ρ = √

3σ , offering a potential route to gradient
catastrophe in the Whitham modulation equations for appropriate DSW jumps.

Ion-acoustic plasma DSWs also exhibit linear degeneracy at the linear wave edge
for appropriate jump heights. The linear edge speed plotted in Fig. 5 of El (2005)
for a 2−-DSW from ρ1 =  to ρ2 = 1 exhibits the requisite minimum as  is
varied [recall (6.19b)]. A numerical computation shows that the minimum occurs
when  = l ≈ 1.41. Zero dispersion at either edge and linear degeneracy at the
soliton edge do not occur by calculation of the criteria from Sect. 6.2.

The particular dispersive Eulerian fluids discussed here demonstrate the importance
of the breakdown criteria (6.19a), (6.19b) in both negative and positive dispersion
cases.

11 Conclusions

Shock waves in the dispersively regularized isentropic Euler P-system under modest
assumptions were constructed using the Whitham–El simple wave closure technique.
A complete, explicit characterization of admissible, weak DSWs was shown to depend
only on the pressure law and convexity or concavity of the dispersion relation. Lin-
ear degeneracy of the modulation equations and zero dispersion leading to gradient
catastrophe in the modulation equations were identified as causes of the breakdown
of the simple wave assumption. Simple tests in terms of extrema of the DSW leading
or trailing edge speeds for these behaviors were elucidated. Large amplitude DSWs
were constructed for the case of the gNLS equation modeling super and optical fluids.
Comparisons with careful numerical simulations of the shock tube problem reveal
excellent agreement with theory in the weak to moderate jump regime. Deviation
occurred in the large jump regime with linear degeneracy in the modulation equations
at the DSW soliton edge a proximate cause for certain pressure laws.

While there are a number of parallels between classical, viscous Eulerian fluids
and dispersive Eulerian fluids, this work has demonstrated that DSWs exhibit distinct
physical and mathematical behavior. Physically, the generation of oscillations leads
to an expanding oscillatory region with two speeds in contrast to localized, classical
shock fronts propagating as traveling waves. Positive dispersion fluids can exhibit
DSWs with cavitation, while negative dispersion fluids admit DSWs with backflow.
Mathematically, weak Eulerian DSWs and shocks exhibit universal behavior, depend-
ing only upon the sign of dispersion and the pressure law. In the large amplitude
regime, universality is maintained for classical viscous shock jump conditions, which
are the same for a large class of dissipative regularizations. However, due to their
nonlocal nature and the weak limit involved, large amplitude DSWs crucially depend
upon the particular form of the dispersion. Furthermore, admissibility of simple wave
led DSWs is much more subtle than the elegantly stated Lax entropy conditions for
classical shocks.
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Appendix: Numerical Methods

The numerical solution of the gNLS equation (3.1) for the shock tube problem, the
initial step in density

ψ(x, 0) =
{

1 x < x0√
ρ2 x > x0

, ρ2 > 1, (11.1)

is briefly described here. A pseudospectral, time-splitting method is implemented for
the accurate solution of long-time evolution for x ∈ (0, L). The initial data (11.1) are
smoothed by use of the hyperbolic tangent initial condition

ψ(x, 0) =
{

1

2
[1 + tanh(x0 − x)](1 − ρ2)+ ρ2

}1/2

,

where x0 = L/2. Time stepping proceeds by use of second-order Strang splitting
Strang (1968) where the linear PDE

i
∂ψL

∂t
= −1

2

∂2ψL

∂x2 , ψL(x, t) = ψ(x, t), (11.2)

is advanced half a time stept/2 exactly followed by a full time step of the nonlinear
ODE

i
∂ψNL

∂t
= f (|ψNL|2)ψNL, ψNL(x, t) = ψL(x, t +t/2). (11.3)

The linear PDE is then advanced half a time step with the initial dataψL(x, t+t/2) =
ψNL(x, t +t), giving the second-order accurate approximation of ψ(x, t +t) ≈
ψL(x,t). Equation (11.2) is projected onto a truncated cosine basis of N terms that
maintains Neumann (ψx = 0) boundary conditions, computed efficiently via the fast
Fourier transform (FFT), and integrated explicitly in time. The nonlinear ODE (11.3)
conserves |ψNL|2 so is also integrated explicitly in time. The parameter x = L/N
is the spatial grid spacing of the grid points x j = x( j − 1/2), j = 1, 2, . . . , N .
The accuracy of the solution is monitored by computing the relative deviation in the
conserved L2 norm E(t) = ∫

R
|ψ(x, t)|2dx , Erel = |E(tf) − E(0)|/E(0) where tf

is the final time. All computations presented here exhibit Erel < 10−8. Also, the
accurate spatial resolution of the oscillatory structures is supported by the fact that
the coefficient of the largest wavenumber in the cosine series is less than 5 · 10−10

(oftentimes much less). The numerical parameters L , N , t , and tf vary depending
upon the nonlinearity strength and jump height; For example, for power-law gNLS
with p = 2 and ρ2 ≥ 11, N = 216, L = 1, 200, t = 0.0002, and tf = 30, whereas
for p = 2/3 with ρ2 = 2, N = 3 · 214, L = 3, 000, t = 0.002, and tf = 500.
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The extraction of the DSW speeds v+, s+, and minimum density ρmin is per-
formed as follows: The precise location of the DSW soliton trailing edge is computed
by creating a local cubic spline interpolant through the computed grid points in the
neighborhood of the dark soliton minimum. A root finder is applied to the derivative
of this interpolant in order to extract the off-grid location of the soliton edge xs(t)
and ρmin ≡ |ψ(xs(tf), tf)|2. The slope of a linear least-squares fit through xs(t j ) for
j = 1, . . . , 100 equispaced t j ∈ [tf − 1, tf ] determines s+. For the leading, linear
wave edge, an envelope function is determined by least-squares fitting two lines, each
through about 30 local maxima and minima, respectively, of the DSW density in the
vicinity of the trailing edge. The extrema are computed the same as for the soliton
minimum. The point of intersection of these two lines is the location of the linear wave
edge xv(t). The same fitting procedure as was used to determine s+ from xs(t) is used
to extract v+ from xv(t).
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