Differential Dynamical Systems — Errata (2nd & 3rd Printings)

J.D. Meiss

January 22, 2016

Errors are listed by page and line number. The symbol \Longrightarrow means "replace with". A negative line number means count from the bottom of the page. Each equation line is counted as one line.

Note that the first printing has $10\ 9\ 8\ 7\ 6\ 5\ 4\ 3\ 2\ 1$ on the copyright page. The second printing was out in March 2009, and has $10\ 9\ 8\ 7\ 6\ 5\ 4\ 3\ 2$ on the copyright page. The third printing was out in 2011, and did not have any changes from the 2nd.

Ch.	Page	Line	Change	Thanks
1	8	2	as $t \to \infty \Longrightarrow$ as t increases	
	16	3	in the interior of $E \Longrightarrow$ in the interior of M	II
	16	3	in the interior of $E \Longrightarrow$ in the interior of M	II
	16	14	$M \setminus R \Longrightarrow \operatorname{int}(M) \setminus R$	JGR
	21	10(1.32)	$\left \frac{4\pi^2}{LH}AC \Longrightarrow \frac{\pi^2}{LH}AC, \frac{\pi^2}{LH}AB \Longrightarrow \frac{\pi^2}{2LH}AB, \frac{4\pi^3}{H^2}C \Longrightarrow \frac{4\pi^2}{H^2}C \right $	ТВ
	24	1,12	$ \begin{array}{c} \text{Menton} \Longrightarrow \text{Menten} \\ \end{array} $	JGR
2	41	3	any operator ⇒ any linear operator	JGR
	50	7	λ_k is an eigenvector $\Longrightarrow \lambda_k$ is an eigenvalue	PM
	58	-1	Consequently, \Longrightarrow for any $x_0 \in E^s$, the stable subspace of A. Consequently,	HLS
	63	-12	solutions $(2.48) \Longrightarrow$ solutions (2.49)	AR
	66	-6	$M^2 = e^{TR} \Longrightarrow M^2 = e^{2TR}$	MS
	67	16	a vector subspace \Longrightarrow a complete vector subspace	JGR
	67	-5	$t \in R \Longrightarrow t \in \mathbb{R}$	
	68	8	Replace (d) with: Finally argue that if $e^{tA}e^{tB} = e^{t(A+B)}$ then differentiation with respect to time implies that $F(t) = G(t)$. By differentiating again, finally show that $[A, B] = 0$.	
3	76	-4	For a function \Longrightarrow If a function	TB
	76	-3	the derivative at \Longrightarrow is differentiable then the derivative at	ТВ
	78	-2	$normed space \implies metric space$	ТВ
	80	4	$f_j \in Y \in X \Longrightarrow f_j \in Y \subset X$	
	83	-14	to arbitrary compact sets. \Longrightarrow to arbitrary compact sets using the following lemma.	
	83	-13	Corollary $3.8 \Longrightarrow \text{Lemma } 3.8$	
	92	16	on $J = [t_o - a, t_o + a] \Longrightarrow$ on $J = [t_o - c, t_o + c]$	
	92	-14	for $t \in J$ and $a = b/M \Longrightarrow$ for $t \in [t_o - a, t_o + a]$ and $a = \min(c, b/M)$	ТВ
	92	-6	before "This result" add the sentence: "Using Picard iteration or Theorem 3.18, the interval of existence can be extended to the entire interval J ."	ТВ
	94	-3	$b \Longrightarrow g$	ТВ
	96	-5	Before "Consequently" add the sentence: "However since $u \in B_b(x_o)$ then, by the argument sketched in Exercise 2, f is uniformly C^1 on this compact set and we can assume that $\delta(\varepsilon)$ only."	ТВ
	97	4	$=\delta(\varepsilon,b)\Longrightarrow=\delta(\varepsilon)$	
	99	7	$B_b(x_o) \Longrightarrow B_{b_o}(x_o)$ (Two places!)	AGH
	99	7	$\lim_{t \to a_o} \Longrightarrow \lim_{t \to t_o + a_o}$	MS
	102	-4	$[t_o - a, t_o + a] \Longrightarrow [t_o - c, t_o + c]$	
	102	-1	for $t \in J \Longrightarrow$ for $t \in [t_o - a, t_o + a]$	

Ch.	Page	Line	Change	Thanks
	103	12	In the exponent, $2K$ should be K .	RC
	103	-10	$ \ A\ < M \Longrightarrow \ A\ \le M.$	
	103	-6	on $[0,b) \Longrightarrow$ on $[0,b]$.	
	103	-5	use Theorem 3.18 to \Longrightarrow extend Theorem 3.18 to the nonau-	HLS
			tonomous case to	
4	107	-10	the orbit (4.2). \Longrightarrow the orbit Γ_x .	MS
	110	4	defines a complete flow \Longrightarrow exists for all $t \in \mathbb{R}$	MS
	110	10	Theorem $3.17 \Longrightarrow$ Theorem 3.18	JA
	110	13	Delete the sentence "The solution defines a flow by Lemma 4.2"	SR
	110	-10	The vector field F defines a flow on $\mathbb{R}^n \Longrightarrow$ The solutions exist for all $t \in \mathbb{R}$	MS
	111	10	Delete ", and therefore define a flow"	MS
	111	-11	Theorem $3.17 \Longrightarrow$ Theorem 3.18	JA
	113	-1	when E^c is empty \Longrightarrow when E^c is trivial	RC2
	121	6	$f_i(x^* + \delta x_j) \Longrightarrow f_i(x^* + \delta x_j \hat{e}_j) \text{ AND } g_i(\delta x_j) \Longrightarrow g_i(\delta x_j \hat{e}_j)$	
	122	11	$ y_o \le \delta \Longrightarrow y_o \le \delta$	
	130	-10	$ a < 1 \Longrightarrow a \le 1$	
	130	Ftnt 24	"continuous, bijective map that" \Longrightarrow "continuous, bijective map between compact sets that"	SS
	131	4	"itself, and thus" \Longrightarrow "itself with a C^1 inverse, and thus"	SS
	132	-10	"map τ " \Longrightarrow "surjective map τ "	HLS
	132	-5	$t \in (y^{-1}, \infty) \Longrightarrow t \in (-y^{-1}, \infty)$	
	136	-6	$=(h_2(x_1,x_2)+tx_2) \Longrightarrow =(h_1(x_1,x_2)+tx_2)$	SS2
	139	-6	$e^{-tA} \cdot H_1 \cdot \varphi_t(x) \Longrightarrow e^{-tA} \circ H_1 \circ \varphi_t(x)$	
	145	12-14	Replace with " $z \in \bar{\Gamma}^+_{\varphi_T(x)}$. There are now two possibilities: z	RM
			may be a point in $\Gamma_{\varphi_T(x)}^+$ for each $T \geq 0$ or not. In the first case	
			there must be infinitely many times $t_n \to \infty$ such that $z = \varphi_{t_n}(x)$	
			implying that z is a limit point and thus in $\omega(x)$. In the latter	
			case there is some time $T \geq 0$ for which $z \notin \Gamma_{\varphi_T(x)}^+$. Since by	
			assumption z is in the closure of $\Gamma_{\varphi_T(x)}^+$, then by"	
	145	-16	$\in \omega(s) \Longrightarrow \in \omega(x)$	MS
	148	18	$\omega(x) \in B \Longrightarrow \omega(x) \subset B$	MS
	148	-16	$Lemma 4.14 \Longrightarrow Lemma 4.15$	MS
	148	-6	"is a subset M of N " \Longrightarrow is a neighborhood $M \subset N$	MS
	150	8	an attractor \Longrightarrow an attracting set	JGR

Chap.	Page	Line	Change	Thanks to
	158	15-22	Replace these lines with \Longrightarrow basis vectors perpendicular to $f(x_o)$, then WW^T is the projection onto S where $W = (w_1, w_2, \dots, w_{n-1})$. The matrix DP in the w_i basis has the representation $W^TDQ(x_o)W$. Since $W^Tf(x_o) = 0$, we obtain	HPR
			$DP(x_o) = W^T M W .$	
			Now add the unit vector $\hat{f} = f(x_o)/ f(x_o) $ to W to form the orthogonal matrix $U = (W, \hat{f})$. The spectrum of M is identical to that of the similar matrix	
			$\tilde{M} = U^T M U = \begin{pmatrix} DP(x_o) & 0\\ \hat{f}^T M W & 1 \end{pmatrix} .$	
			Because the last column has only one nonzero element, $\det(\lambda I - \tilde{M}) = (\lambda - 1) \det(\lambda I - DP(x_o))$.	
	163	10	$\mathbb{R}^+ \times \mathbb{S} \Longrightarrow [0, \infty) \times \mathbb{S}$	
5	173	-11	$Df(x_o) = A \Longrightarrow Df(x^*) = A$	TB
	177	-5	Replace this line with \Longrightarrow any t and any $\varepsilon > 0$ there is a $T \ge t$ such that $v(t) \le u(T) + \varepsilon$. Thus, using (5.22), gives	SS & MS
	177	-4,-2,-1	for each equation \Longrightarrow add an ε to the right hand side of each of the three inequalities.	
	178	1	$u(T+s) \le v(T) = v(t) \Longrightarrow u(T+s) \le v(t)$	
	178	5	$z(t) \le M + \frac{L}{\beta} \int_0^t z(s) ds \Longrightarrow z(t) \le M + \varepsilon e^{\alpha t} + \frac{L}{\beta} \int_0^t z(s) ds$	
	178	6	replace this line with \Longrightarrow This is of the form of the Grönwall's lemma in Ex. 3.9, so that $z(t) \leq (M + \varepsilon e^{\alpha t})e^{tL/\beta}$. Since this is true for any $\varepsilon > 0$, rewriting it in	
	186	3	where E^c is empty. \Longrightarrow where E^c is trivial.	MS
	186	5	where E^c is not empty. \Longrightarrow where $E^c \neq \{0\}$.	MS
	186	14	C^k invariant manifolds $\Longrightarrow C^k$ locally invariant manifolds	TB
	190	-7	$\dot{z} = z \Longrightarrow \dot{z} = \lambda z$	MS
6	222	9	$\Sigma \in \varphi_{t_n} \Longrightarrow \Sigma \ni \varphi_{t_n}$	JGR
	220	13-14	such that $f(x) \neq 0$ for all $x \in \Sigma \Longrightarrow$ such that whenever $x \in \Sigma$, $f(x)$ is transverse to Σ	ТВ
	222	-8	The sixteenth \Longrightarrow Part of the sixteenth	
	222	-6-7	Replace the phrase beginning "to show" with \Longrightarrow "to find an upper bound for the number of limit cycles for a polynomial vector field on \mathbb{R}^2 ."	JMG
	222	-2	$(Shi, 1988) \Longrightarrow (Shi, 1980)$	HPR
	223	1	$\lambda = 10^{-200} \Longrightarrow \lambda = -10^{-200}$	HPR
	223	3	unstable foci \Longrightarrow foci	HPR

Chap.	Page	Line	Change	Thanks to
7	245	-8	$\theta_1(t_n) = \alpha_n \Longrightarrow \theta_1(t_n) = \alpha_1$	ТВ
	251	1	$\Phi(t;xv) \Longrightarrow \Phi(t;x)v$	
	253	-1	$\mu(x,v) \Longrightarrow \mu(x,v(0))$	$_{ m JGR}$
	256	3	In equation (7.21) flip the sign of both x 's in the matrix	
	259	2	When $\mu_1 < \mu_2 \Longrightarrow $ When $\mu_1 \le \mu_2$	
	260	-7	of a set $S \Longrightarrow$ of a bounded set S	JGR
	263	-2	$\mu_1 + \mu_2 \le \operatorname{tr}(Df) \Longrightarrow \mu_1 + \mu_2 \ge \operatorname{tr}(Df)$	
	263	-1	Thus there \Longrightarrow Thus if the spectrum is regular there	
	265	12	then $\mu = \operatorname{Re}(\lambda) \Longrightarrow \operatorname{then} \mu = \frac{1}{T} \operatorname{Re}(\lambda)$	
	265	-6	that $\chi(F) \leq \chi(f) \Longrightarrow \text{that } \chi(F) \leq \max(0, \chi(f))$	AML, ASD
8	269	-11	that as $\mu \to \infty \Longrightarrow$ that as $\mu \to -\infty$	SS2
	271	-6	$(x_o, \mu_0) \Longrightarrow (x_o, \mu_o)$	
	274	1-2	Replace sentence with "The range of dynamics of the induced vector	MS
			field f can be as rich as those of g , but may also be simpler."	
	274	19	$= Dhf(x; p(\nu)) \Longrightarrow = Dh(x; p(\nu))f(x; p(\nu))$	MS
	274	20	of $(0,0)$. \Longrightarrow of $(0,0)$, recall (4.34) .	MS
	275	Fig 8.5	$f(x;\nu) \Longrightarrow f(x;\mu)$	
	280	Fig 8.7	$\alpha(\mu) \Longrightarrow m(\mu)$	MS
	280	-1	Using the definition (8.16) of m , \Longrightarrow Using $m(\mu) = f(\xi(\mu); \mu)$,	MS
	289	-1	$1 + \beta + r^2 \Longrightarrow 1 + \beta r^2$	
	290	-6	$g_1(x;\eta(\mu),\mu) \Longrightarrow g_1(x;\eta(x;\mu),\mu)$	
	294	Fig 8.9	of (8.49) for \Longrightarrow of (8.46) for	AA
	294	-7	$b=1 \Longrightarrow b=-1$	AA
	303	-9	$f: C^3(\implies f \in C^3($	
	303	-7	$D_x^2 f(0;0) \Longrightarrow D_x^2 f(0;0) = 0$	
9	361	8	$(2n-1)n \Longrightarrow (2n+1)n$	
	362	4	$(2n-1)n \Longrightarrow (2n+1)n$	
	371	-8	$ m \cdot \omega > c \Longrightarrow m \cdot \omega \ge c$	
	371	-7	The set $\mathcal{D}_{c,\tau}$ is a \Longrightarrow The set $\mathcal{D}_{c,\tau} \cap \mathbb{S}^{n-1}$ is a	
	371	-1	$> \frac{d}{ q ^{ au+1}} \Longrightarrow \geq \frac{d}{2 q ^{ au+1}}$	
	372	1	with $d = c/\omega_2 \Longrightarrow$ with $d = 2c/\omega_2$	
	372	4	$[0, d/2]$ and $[1- \Longrightarrow [0, d/2)]$ and $[1-$	
App	394	3	<pre>meshgrid(-pi,pi/10,pi) => meshgrid(-pi:pi/10:pi)</pre>	JA
Ref	405	Shi	Replace with \Longrightarrow Shi, S. L. (1980). "A Concrete Example of the Ex-	
			istence of Four Limit Cycles for Plane Quadratic Systems." Sci. Sinica	
			23(2): 153-158.	