
Chapter 4
Spatiotemporal Pattern Formation in Neural
Fields with Linear Adaptation

G. Bard Ermentrout, Stefanos E. Folias, and Zachary P. Kilpatrick

Abstract We study spatiotemporal patterns of activity that emerge in neural fields
in the presence of linear adaptation. Using an amplitude equation approach, we
show that bifurcations from the homogeneous rest state can lead to a wide variety of
stationary and propagating patterns on one- and two-dimensional periodic domains,
particularly in the case of lateral-inhibitory synaptic weights. Other typical solutions
are stationary and traveling localized activity bumps; however, we observe exotic
time-periodic localized patterns as well. Using linear stability analysis that perturbs
about stationary and traveling bump solutions, we study conditions for the activity
to lock to a stationary or traveling external input on both periodic and infinite
one-dimensional spatial domains. Hopf and saddle-node bifurcations can signify
the boundary beyond which stationary or traveling bumps fail to lock to external
inputs. Just beyond a Hopf bifurcation point, activity bumps often begin to oscillate,
becoming breather or slosher solutions.

4.1 Introduction

Neural fields that include local negative feedback have proven very useful in
qualitatively describing the propagation of experimentally observed neural activity
[26, 39]. Disinhibited in vitro cortical slices can support traveling pulses and spiral
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waves [27, 53], suggesting that some process other than inhibition must curtail
large-scale neural excitations. A common candidate for this negative feedback is
spike frequency adaptation, a cellular process that brings neurons back to their
resting voltage after periods of high activity [2, 48]. Often, adaptation is modeled
as an additional subtractive variable in the activity equation of a spatially extended
neural field [26, 38, 39]. Pinto, in his PhD dissertation with Ermentrout, explored
how linear adaptation leads to the formation of traveling pulses [38]. Both singular
perturbation theory and the Heaviside formalism of Amari (see Chap. 3 and [1])
were used to analyze an excitatory network on the infinite spatial domain [38, 39].
At the same time, Hansel and Sompolinsky showed adaptation leads to traveling
pulses (traveling bumps) in a neural field on the ring domain [26]. In the absence
of adaptation, excitatory neural fields generate stable traveling fronts [21, 25].
For weak adaptation, the model still supports fronts which undergo a symmetry
breaking bifurcation, leading to bidirectional front propagation at a critical value
of the adaptation rate [6]. In fact, adaptive neural fields generate a rich variety
of spatiotemporal dynamics like stimulus-induced breathers [7], spiral waves (see
Chap. 5 and [27]), drifting spots (see Chap. 7), multipulse solutions [52], and self-
sustained oscillations [46]. Coombes and Owen have implemented a related model,
employing nonlinear adaptation, that is shown to generate breathers, traveling
bumps, and more exotic solutions [11]. However, it has been shown that great
care must taken when performing stability analysis of such a model [29]. Thus,
we restrict the contents of this chapter to analyzing models with linear adaptation.

We review a variety of results concerning bifurcations that arise in spatially
extended neural fields when an auxiliary variable representing linear adaptation is
included [13, 23, 25, 31]. In particular, we study the dynamics of the system of non-
local integro-differential equations [10, 26, 35, 39]

!
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The variable u.x; t/ represents the total synaptic input arriving at location x 2 D in
the network at time t . We fix time units by setting ! D 1 without loss of generality.
The convolution term represents the effects of recurrent synaptic interactions, and
w.x ! y/ D w.y ! x/ is a reflection-symmetric, distance-dependent synaptic
weight function encoding the strength of connections between location y and x. The
nonlinearity F is a transfer function that converts the synaptic inputs to an output
firing rate. Local negative feedback v.x; t/ represents the effects of spike frequency
adaptation [2, 26, 39, 48], occurring at rate ˛ with strength ˇ. Finally, I.x; t/
represents an external spatiotemporal input. In Sect. 4.2, we begin by analyzing
bifurcations from the rest state on one- and two-dimensional periodic domains in
the absence of any input (I.x; t/ " 0) with the use of amplitude equations. We
show that a lateral-inhibitory synaptic weight organizes activity of the network into
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a wide variety of stationary and propagating spatiotemporal patterns. In Sect. 4.3,
we study the processing of external inputs on a ring domain (D D .!!;!/). Since
adaptation can lead to spontaneous propagation of activity, inputs must move at a
speed that is close to the natural wavespeed of the network to be well tracked by its
activity. Finally, in Sect. 4.4, we study bifurcations of stationary and traveling bumps
in a network on the infinite spatial domain (D D .!1;1/). Both natural and
stimulus-induced bump solutions are analyzed. Depending on whether the synaptic
weight function is purely excitatory or lateral-inhibitory, either spatial mode of a
stimulus-locked bump can destabilize in a Hopf bifurcation, leading to a breather
or a slosher. Conditions for the locking of traveling bumps to moving inputs are
discussed as well.

4.2 Bifurcations from the Homogeneous State

The simplest type of analysis that can be done with continuum neural field models
is to study bifurcations from the homogeneous state. As in [13], we focus on the
one-dimensional ring model, and then make some comments about the dynamics
of systems in two space dimensions with periodic boundary conditions. Here, our
domain is either the ring (D D .!!;!/) or the square (D D .!!;!/ " .!!;!/)
with periodic boundary conditions. With some abuse of notation, x is either a scalar
or a two-dimensional vector. The function w.x/ is periodic in its coordinates and
furthermore, we assume that it is symmetric in one-dimension and isotropic in two-
dimensions. Translation invariance and periodicity assures us that

R
D w.x!y/dy D

W0: A constant steady state has the form

u.x; t/ D Nu; where .1C ˇ/Nu D W0F.Nu/:

Since F is monotonically increasing with F.!1/ D 0 and F.C1/ D 1, we
are guaranteed at least one root. To simplify the analysis further, we assume that
F.u/ D k.f .u/ ! f .0//=f 0.0/ with f .u/ D 1=.1C exp.!r.u ! uth/// as in [13].
Note that F.0/ D 0 and F 0.0/ D k which serves as our bifurcation parameter. With
this assumption, Nu D Nv D 0 is the homogeneous rest state.

To study the stability, we linearize, letting u.x; t/ D Nu C q.x; t/ and v.x; t/ D
NuC p.x; y/ so that to linear order in q.x; t/; p.x; t/ we have

@q

@t
D !q.x; t/C k

Z

˝

w.x ! y/q.y; t/ dy ! ˇp.x; t/ (4.2)

@p

@t
D ˛.!p.x; t/C q.x; t//:

Because w.x/ is translational invariant and the domain is periodic, solutions to the
linearized equations have the form exp."t / exp.in # x/ where in one-dimension n is
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an integer and in two-dimensions, it is a pair of integers, .n1; n2/: Let m D jnj be
the magnitude of this vector (scalar) and let

W.m/ WD
Z

˝

w.y/e!in"y dy:

(The isotropy of w guarantees that the integral depends only on the magnitude of n.)
We then see that ! must satisfy

!

!
"1
"2

"
D
!
!1C kWm !ˇ

˛ !˛

"!
"1
"2

"
; (4.3)

where ."1;"2/T is a constant eigenvector.
There are several cases with which to contend, and we now describe them. The

easiest parameter to vary in this system is the sensitivity, k (This is the slope of F
at the equilibrium point). The trace of this matrix is T .m/ WD !.1C ˛/C kW.m/
and the determinant is D.m/ WD ˛Œ1 C ˇ ! kW.m/#: Note that W.0/ D W0 and
W.m/! 0 asm!1: The uniform state is linearly stable if and only if T .m/ < 0
and D.m/ > 0 for all m: If W.m/ < 0, then both stability conditions hold, so,
consider the sets kT

m D .1C ˛/=W.m/ and kD
m D .1C ˇ/=W.m/ which represent

critical values of k where the trace and determinant vanish respectively. We are
interested in the minimum of these sets over all values ofm whereW.m/ > 0: Let n
denote the critical wavenumber at which W.m/ is maximal. It is clear that if ˛ > ˇ
then the determinant vanishes at a lower value of k than the trace does and vice
versa. That is, there is a critical ratio R D ˇ=˛ such that if R > 1, then the trace is
critical (and there is a Hopf bifurcation) while if R < 1, the determinant is critical
(and there is a stationary bifurcation). The ratio R is the product of the strength
and the time constant of the adaptation. If the adaptation is weak and fast, there is
a steady state bifurcation, while if it is large and slow, there is a Hopf bifurcation.
Curtu and Ermentrout [13] studied the special case where R is close to 1. At R D 1,
there is a double zero eigenvalue at the critical wavenumber m and thus a Takens-
Bogdanov bifurcation. For the rest of this section, let m# denote the value of jnj
at which W.m/ is maximal. We also assume that W.m#/ > 0: For one dimension,
n D ˙m# and in two spatial dimensions, at criticality, n D .n1; n2/ where m# Dq
n21 C n22: For concreteness and illustration of the results, we use f .u/ D 1=.1C

exp.!r.u ! uth/// with two free parameters that set the shape of f and thus F: We
remark that (i) if uth D 0, then F 00.0/ D 0 and (ii) for a range of uth surrounding
0, F 000.0/ < 0: We also use w.x/ D Aap=2 exp.!ax2/ ! Bbp=2 exp.!bx2/ (where
p is the dimension of the domain) and note that W.m/ D $.A exp.!m2=a/ !
B exp.!m2=b//. With A D 5; a D 0:125; B D 4; b D 0:005, this kernel has a
fairly narrow Mexican hat profile.
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Fig. 4.1 Space-time plots of
the solutions to (4.1). (a)
Stationary stripes for
k D 0:24, ˇ D 0, ˛ D 0:1,
uth D 0:05, and r D 0:25;
(b) Traveling waves with
parameters as in (a), but
ˇ D 0:25; k D 0:26; uth D 0:05;
(c) Standing waves with
parameters as in A;B , but
uth D 0:3

4.2.1 One Spatial Dimension

4.2.1.1 Zero Eigenvalue

In the case of R < 1, the bifurcation is at a zero eigenvalue and we expect a spatial
pattern that has the form u.x; t/ D z exp.im!x/ C c.c (here c.c means complex
conjugates) and

zt D z.a.k ! kc/ ! bjzj2/

where a and b are complicated, but readily computed, functions of w, F 00.0/2, and
F 000.0/: Both a; b are real, a > 0, and for our choice of w and F , we have b > 0:
The non-zero solution to this equation is z D Ae"i! where A2 D a.k ! kc/=b
and! is an arbitrary constant corresponding to a phase-shift of the periodic pattern.
The solution exists as long as k " kc (since a; b are positive) and, furthermore,
the solution is stable. Thus as we increase k, we expect to see a spatially periodic
pattern emerge that has the form

u.x/ D
p
a.k ! kc/=b cos.m!x C!/CO.k ! kc/:

Figure 4.1a shows a simulation of Eq. (4.1) where we have discretized the one-
dimensional ring into 100 units. In this caseW.m/ takes its maximum atm! D 4, so
as expected, we see a stationary pattern consisting of four peaks. In the case where
m! D 1, (which occurs for sufficiently broad inhibition) these spatially periodic
patterns are interpreted as localized activity for tuning in a directionally based neural
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system [26, 54]. This single stationary “bump” can be perturbed and pinned with
external stimuli as we see in subsequent sections of this chapter.

4.2.1.2 Imaginary Eigenvalues

When R > 1 (strong or slow adaptation), then the trace vanishes at a lower critical
k than the determinant. Let m! > 0 be the critical wavenumber and i! be the
imaginary eigenvalue. Then u.x; t/ has the form

u.x; t/ D z.t/ei.!t"m
!x/ C w.t/ei.!tCm

!x/ C c.c

where

z0 D zŒ.a1 C ia2/.k ! kc/ ! .b1 C ib2/jzj2 ! .c1 C ic2/jwj2! (4.4)

w0 D wŒ.a1 C ia2/.k ! kc/ ! .b1 C ib2/jwj2 ! .c1 C ic2/jzj2!:

These coefficients can be computed for (4.1) (and, indeed, for a variant of the
equations, [13] computes them explicitly) and they depend only on F 00.0/2, F 000.0/,
W.2m/, W.m/, ˛, and ˇ: In particular, with our choice of f .u/ and for uth not
large, b1; c1 > 0: There are three distinct types of nontrivial solutions: .z;w/ 2
f.Z; 0/; .0;Z/; .Y; Y /g, where:

Z D Aei˝t ; Y D Bei" t ;
˝ D .a2 ! a1b2=b1/.k ! kc/; " D .a2 ! a1.b2 C c2/=.b1 C c1//.k ! kc/;
A2 D .a1=b1/.k ! kc/; B2 D .a1=.b1 C c1//.k ! kc/:

Solutions of the form .Z; 0/; .0;Z/ correspond to traveling wavetrains with oppo-
site velocities and those of the form .Y; Y / correspond to standing time-periodic
waves. To see this, we note that the solutions have the form

u.x; t/ D <fzei.!tCm!x/ C wei.!t"m
!x/g;

so that for the solution, .Z; 0/, we get

u.x; t/ D A cos..! C˝/t Cm!x/;

while for the .Y; Y / case

u.x; t/ D B cos..! C"/t/ cos.m!x/:

The traveling (standing) waves are stable if and only if c1 > b1 (resp. c1 < b1) and,
importantly, if F 00.0/ is zero or close to zero (that is, uth " 0), then c1 > b1 no
matter what you choose for the other parameters. Thus, for uth small, we expect to
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Fig. 4.2 Three different
cases of critical wavenumbers
in the square lattice. The
critical wavenumbers are
(from out to in),
f.˙1; 0/; .0;˙1/g,
f.˙2; 1/; .˙2;!1/,.˙1; 2/; .˙1;!2/g
and
f.˙3; 4/; .˙3;!4/,.˙4; 3/; .˙4;!3/,
.˙5; 0/; .0;˙5/g

see only stable traveling waves. Figure 4.1b, c shows simulations of (4.1) for two
different choices of uth; near zero, the result is traveling waves, while for uth D 0:3,
standing waves emerge. Choosing the interaction kernel, w.x/, so that m" D 1,
leads to a single traveling pulse or bump of activity which, itself, can be entrained
and perturbed by external stimuli (see the next sections).

4.2.2 Two Spatial Dimensions

While most of the focus in this chapter is on one space dimension, the theory
of pattern formation is much richer in two-dimensions and Eq. (4.1) provides an
excellent example of the variety of patterns. The isotropy of the weight matrix
implies that the eigensolutions to the linear convolution equation (4.2) have the
form exp.in ! x/: In two dimensions, n is a two-vector of integers. We then obtain
exactly the same formula for the determinant and the trace as in one-dimension,
however, m D jnj in this case so that there are at least two distinct eigenvectors and
their complex conjugates and there are often many more. Figure 4.2 illustrates three
cases where m" D 1;

p
5; 5 corresponding to 4, 8, and 12 different pairs .n1; n2/:

We treat and numerically illustrate several possibilities by discretizing (4.1) on a
50"50 array. Our choice of w.x/ gives a maximum atm" D 2which is the simplest
case.

4.2.2.1 Zero Eigenvalue

The simplest possible case in two dimensions has only four distinct wave
vectors (inner circle in Fig. 4.2). For example, if m" D 2, then n 2
f.2; 0/; .0; 2/; .#2; 0/; .0;#2/g. (Note that in cases where there are only four vec-
tors, the critical waves have either of the two forms: .k; 0/; .0; k/; .#k; 0/; .0;#k/
or .k; k/; .k;#k/; .#k;#k/; .#k; k/.) If we write x D .x1; x2/, then, u.x; t/ has
the form u.x1; x2; t/ D z1 exp.i2x1/C z2 exp.i2x2/C c.c and
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z0
1 D z1.a.k ! kc/ ! bjz1j2 ! cjz2j2/; (4.5)

z0
2 D z2.a.k ! kc/ ! bjz2j2 ! cjz1j2/;

where as in the one-dimensional case, b; c depend on F 00.0/2; F 000.0/: All coeffi-
cients are real and can be computed. They are all positive for our choices of F.u/:
We let zj D Aj ei!j and we then find that

A0
1 D A1.a.k ! kc/ ! bA21 ! cA22/;

A0
2 D A2.a.k ! kc/ ! bA22 ! cA21/:

It is an elementary calculation to show that there are three types of solutions,
.z1; z2/ D f.r1; 0/; .0; r1/; .r2; r2/gwhere r21 D a.k!kc/=b, r22 D a.k!kc/=.bCc/:
For this example, the first two solutions correspond to vertical and horizontal stripes
respectively and the third solution represents a spotted or checkerboard pattern.
Stripes (spots) are stable if and only if b < c (resp. b > c) [16]. As in the
traveling/standing wave case above, if F 00.0/ is zero (uth D 0), then, c > b and
there are only stable stripes [16]. The resulting stationary patterns look identical to
those in Fig. 4.3a, b without the implied motion. (To get stationary patterns, choose,
e.g., ˇ D 0, r D 3, and uth D 0 for stripes or uth D 0:3 for spots.)

This case (of two real amplitude equations) is the simplest case. The criti-
cal wave vector can be more complicated, for example, if m! D

p
5, then,

n 2 f.1; 2/; .1;!2/; .2; 1/; .2;!1/; .!1;!2/; .!1; 2/; .!2;!1/; .!2; 1/g for which
there are eight eigenvectors and the solution has the form

u.x; t/ D
4X

jD1
zj .t/einj "x C c.c;

where nj D .1; 2/; : : : and zj satisfy the four independent amplitude equations

z0
1 D z1.a.k ! kc/ ! bjz1j2 ! cjz2j2 ! d jz3j2 ! ejz4j2/;

z0
2 D z2.a.k ! kc/ ! bjz2j2 ! cjz1j2 ! d jz4j2 ! ejz3j2/;

z0
3 D z3.a.k ! kc/ ! bjz3j2 ! cjz4j2 ! d jz1j2 ! ejz2j2/;

z0
4 D z4.a.k ! kc/ ! bjz4j2 ! cjz3j2 ! d jz2j2 ! ejz2j2/:

As in Eqs. (4.5), since a; : : : ; e are all real coefficients, this model can be reduced
to the analysis of a four dimensional real system. Dionne et al. [15] derive and
analyze this case (among many others). In the context of neural fields, Tass [49] and
Ermentrout [17] provide stability conditions for the equilibria, all of which consist
of zj taking on values of some A ¤ 0 or 0. For example, the pure patterns z1 D A,
z2; z3; z4 D 0 are stable if and only if a < fb; c; dg, there are also pairwise mixed
solutions (checkerboards) of the form z1 D z2 D A0, z3 D z4 D 0, etc., and fully
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nonzero solutions, z1 D z2 D z3 D z4 D A00 which are stable if a > fdCc!b; dC
b!c; bCc!dg:We remark that the triplet solutions zj D zk D zl D A000 are never
stable and that if F 00.0/ D 0, then only stripes (one zj , nonzero).

In two spatial dimensions, m! D 1 can correspond to a single bump of activity
which has been used to model hippocampal place cells [28]. For narrower inhibition,
the more complex patterns describe the onset of geometric visual hallucinations
[5, 18, 49, 50]. Simple geometric hallucinations take the form of spirals, pinwheels,
bullseyes, mosaics, and honeycombs [33]. When transformed from the retinocentric
coordinates of the eyeball to the coordinates of the visual cortex, these patterns take
the form of simple geometric planforms such as rolls, hexagons, squares, etc. [45].
Thus, spontaneous bifurcations to patterned activity form a natural model for the
simple visual patterns seen when the visual system is perturbed by hallucinogens,
flicker [43] or other excitation. (See [3] for a comprehensive review.)

4.2.2.2 Imaginary Eigenvalues

The case of imaginary eigenvalues on a square lattice is quite complicated and only
partially analyzed. Tass [50] has studied this case extensively when there are no even
terms in the nonlinear equations (corresponding to ut D 0 in our model). Silber and
Knobloch [47] provide a comprehensive and extremely readable analysis of case
where there are four critical wavenumbers.

Let us first consider the four dimensional case and take as a specific example:
n 2 f.2; 0/; .0; 2/; .!2; 0/; .0;!2/g: In this case, the firing rate has the form:

u.x; t/ D z1ei2x1Ci!t C z2ei2x2Ci!t C z3e"i2x1Ci!t C z4e"i2x2Ci!t C c.c:

The complex amplitudes zj satisfy normal form equations ([47], equation 5.3):

z0
1 D z1Œa.k ! kc/ ! bjz1j2 ! cN1 ! dN2! ! eNz3z2z4 (4.6)

z0
2 D z2Œa.k ! kc/ ! bjz2j2 ! cN2 ! dN1! ! eNz4z1z3

z0
3 D z3Œa.k ! kc/ ! bjz3j2 ! cN1 ! dN2! ! eNz1z2z4

z0
4 D z4Œa.k ! kc/ ! bjz4j2 ! cN2 ! dN1! ! eNz2z1z3

where N1 D jz1j2 C jz3j2 and N2 D jz2j2 C jz4j2: Here, a; : : : ; e are all complex
numbers; a depends only on the linearized equation, while b; : : : ; e depend on
F 00.0/2; F 000.0/ and w.x/: For the case of no quadratic nonlinearities (ut D 0),
b D c D d D e: There are many qualitatively different solutions to this system
which correspond to interesting patterns. Silber and Knobloch [47] describe each of
them as well as their conditions for stability. Travelling roll patterns (TR) consist
of either horizontal or vertical traveling waves that are constant along one direction.
They correspond to solutions to Eq. (4.6) where exactly one zj ¤ 0: Standing rolls
correspond to z1 D z3 ¤ 0, z2 D z4 D 0: (Note, the contrary case with z1 D z3 D 0
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a b

c

d

Fig. 4.3 Two-dimensional time-periodic patterns with period T in (4.1) for ˇ D 0:25; ˛ D 0:1:
(a) k D 0:1; r D 3; uth D 0; (b) k D 0:09; r D 5; uth D 0:3; (c) k D 0:085; r D 3; uth D 0; (d)
k D 0:09; r D 3; uth D 0

and z2 D z4 ¤ 0 are also standing rolls.) Traveling squares or spots correspond to
z1 D z2 ¤ 0 and z3 D z3 D 0: Standing squares (a blinking checkerboard pattern)
correspond to z1 D z2 D z3 D z4 ¤ 0: A very interesting pattern that we see is the
alternating roll pattern where horizontal blinking stripes switch to vertical blinking
stripes. These correspond to solutions of the form z1 D !iz2 D z3 D !iz4 ¤ 0.
Figure 4.3 illustrates the results of simulations of Eq. (4.1) on the square doubly
periodic domain in the case where m! D 2: Thus, all the patterns show two spatial
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cycles along the principle directions. In the simulations illustrated in the figure,
we change uth; r which affect the values of F 00.0/; F 000.0/ and thus the values of
the coefficients of the normal form, (4.6). The relative sizes of these coefficients
determine both the amplitude and the stability of the patterns. Figure 4.3a shows
the TR solutions for uth D 0 (which makes F 00.0/ vanish), while panel b shows
a traveling spot pattern. Neither of these patterns can be simultaneously stable.
However, there can be other patterns that stably coexist. Figure 4.3c illustrates
the “alternating roll” pattern in which there is a switch from vertical to horizontal
standing roles. Figure 4.3d shows a pattern that combines a standing roll (alternating
vertical stripes) with a checkerboard pattern in between.

Dawes [14] has partially analyzed the more complicated case in which there
are 8 critical wave vectors, for example m! D

p
5 in Fig. 4.2. All of the patterns

we described above are also found as solutions to his amplitude equations. In some
specific cases, he finds evidence of chaotic behavior. Thus, even near the bifurcation,
we can expect the possibility of complex spatiotemporal dynamics in models like
present equations. Tass [50] also considers this case, but only when the quadratic
terms (e.g., F 00.0/) are zero. Obviously, there is a great reduction in the complexity
of the patterns and the resulting possibilities are restricted. The m! D 5 case has, to
our knowledge, not yet been analyzed.

4.2.3 Summary of Pattern Formation

On a periodic one-dimensional domain, Eq. (4.1) can undergo a variety of bifurca-
tions from the homogeneous state and these can be reduced via the construction
of normal forms to one or two ordinary differential equations for the complex
amplitudes. These bifurcations are generic in the sense that you can expect them
to happen as you vary a single parameter. If you have the freedom to vary several
parameters, then it is possible to arrange them so that multiple instabilities occur at
the same time. For example [19] looked at the Wilson-Cowan neural field equations
whenW.m/ D W.mC1/with corresponding imaginary eigenvalues (a double Hopf
bifurcation). More recently, [13] studied (4.1) near R D 1:When R D 1, recall that
both the trace and the determinant vanish at the critical wave number and critical
sensitivity k: Thus, there is a Bogdanov-Takens bifurcation. The normal form is
more complicated in this case; however for (4.1), the only solutions that were found
were the stationary periodic patterns, standing waves, and traveling waves.

In two spatial dimensions, the dynamics is considerably richer due the symmetry
of the square allowing for many critical wave vectors to become unstable simulta-
neously. The richness increases with the size of the critical wavenumber m!. As a
ballpark estimate, the critical wavenumber is proportional to the ratio of the domain
size and the spatial scale of the connectivity function w.x/: Thus, for, say, global
inhibition, the critical wavenumber is close to 1 and the possible patterns are very
simple. We remark that by estimating the spatial frequency of visual hallucinations,
it is possible to estimate the characteristic length scale in visual cortex [5].
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4.3 Response to Inputs in the Ring Network

We now consider the effects of linear adaptation in the ring model [13, 26] in the
presence of external inputs. We show that adaptation usually degrades the ability of
the network to track input locations. We consider the domainD D .!!;!/ and take
w to be the cosine function [26]

w.x ! y/ D cos.x ! y/; (4.7)

so w.x ! y/ ? 0 when jx ! yj 7 !=2. Networks with lateral-inhibitory synaptic
weights like (4.7) are known to sustain stable stationary bumps [1, 4, 8, 26]. Many
of our calculations are demonstrated in the case that the firing rate function f is the
Heaviside step function (see Chaps. 3, 5, 7 and [1, 4, 8, 39]).

F.u/ " H.u ! "/ D
!
1 W x > ";
0 W x < ": (4.8)

We consider both stationary and propagating inputs with the simple functional form

I.x; t/ D I0 cos.x ! c0t/; (4.9)

so they are unimodal in x. We study the variety of bifurcations that can arise in the
system (4.1) due to the inclusion of adaptation and inputs.

For vanishing adaptation (ˇ ! 0), we find stable stationary bumps. For
sufficiently strong adaptation, the input-free (I0 D 0) network (4.1) supports
traveling bumps (pulses). The network locks to moving inputs as long as their
speed is sufficiently close to that of naturally arising traveling bumps. Otherwise,
activity periodically slips off of the stimulus or sloshes about the vicinity of the
stimulus location. Previously, Hansel and Sompolinsky [26] studied many of these
results, and recently [31] reinterpreted many of these findings in the context of
hallucinogen-related visual pathologies.

4.3.1 Existence of Stationary Bumps

First, we study existence of stationary bump solutions in the presence of stationary
inputs .I.x; t/ " I.x//. Assuming stationary solutions .u.x; t/; v.x; t// D
.U.x/; V .x// to (4.1) generates the single equation

.1C ˇ/U.x/ D
Z !

!!
w.x ! y/F.U.y//dy C I.x/: (4.10)
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For a cosine weight kernel (4.7), we can exploit the trigonometric identity

cos.x ! y/ D cos y cos x C siny sin x; (4.11)

and consider the cosine input (4.9), which we take to be stationary (c0 D 0). This
suggests looking for even-symmetric solutions

U.x/ D
!
AC I0

1C ˇ

"
cos x; (4.12)

so that the amplitude of (4.12) is specified by the implicit equation

A D 1

1C ˇ

Z !

!!
cos y F..AC .1C ˇ/!1I0/ cos y/dy: (4.13)

For a Heaviside firing rate function (4.8), we can simplify the implicit equa-
tion (4.13), using the fact that (4.12) is unimodal and symmetric so that U.x/ > "
for x 2 .!a; a/ for solutions A > 0. First of all, this means that the profile of U.x/
crosses through threshold " at two distinct points [1, 4, 8]

U.˙a/ D ŒAC .1C ˇ/!1I0# cos a D " ) a D cos!1
#

.1C ˇ/"
.1C ˇ/AC I0

$
:

(4.14)

The threshold condition (4.14) converts the integral equation (4.13) to

A D 1

1C ˇ

Z a

!a
cos ydy D 2

1C ˇ

s

1 ! .1C ˇ/2"2
..1C ˇ/AC I0/2

; (4.15)

which can be converted to a quartic equation and solved analytically [30].
In the limit of no input I0 ! 0, the amplitude of the bump is given by the pair of

real roots of (4.15)

A˙ D
p
1C .1C ˇ/" ˙

p
1 ! .1C ˇ/"

1C ˇ ; (4.16)

so there are two bump solutions. As is usually found in lateral inhibitory neural
fields, the wide bump (C) is stable and the narrow bump (!) is unstable in the
limit of vanishing adaptation (ˇ ! 0) [1, 4, 12, 40]. At a critical ˇ, the wide bump
undergoes a drift instability leading to a traveling bump.

4.3.2 Linear Stability of Stationary Bumps

We now compute stability of the bump (4.12) by studying the evolution of small,
smooth, separable perturbations. By plugging u D U.x/C .x/e$t and v D V.x/C
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!.x/e"t (where j .x/j ! 1 and j!.x/j ! 1) into (4.1), Taylor expanding, and
truncating to first order we find the linear system

."C 1/ .x/ D "ˇ!.x/C
Z #

!#
w.x " y/F 0.U.y// .y/dy; (4.17)

."C ˛/!.x/ D ˛ .x/: (4.18)

For the cosine weight function (4.7), we apply the identity (4.11) and substi-
tute (4.18) into (4.17) to yield the single equation

Q."/ .x/ D ."C ˛/.A cos x CB sin x/ (4.19)

where Q."/ D ."C ˛/."C 1/C ˛ˇ and

A D
Z #

!#
cos xF 0.U.x// .x/dx; B D

Z #

!#
sin xF 0.U.x// .x/dx: (4.20)

We can then plug (4.19) into the system of equations (4.20) and simplify to yield

Q."/A D ."C ˛/
!Z #

!#
F 0.U.x//dx " .1C ˇ/2A

.1C ˇ/AC I0

"
A ; (4.21)

Q."/B D ."C ˛/.1C ˇ/2A
.1C ˇ/AC I0

B; (4.22)

where we have used the fact that integrating (4.13) by parts yields

A D AC .1C ˇ/!1I0
1C ˇ

Z #

!#
sin2 x F 0..AC .1C ˇ/!1I0/ cos x/dx;

as well as the fact that the off-diagonal terms vanish, since their integrands are odd.
This means that the eigenvalues determining the linear stability of the bump (4.12)
are of two classes: (a) those of even perturbations so  .x/ D cos x and (b) those of
odd perturbations where  .x/ D sin x. We primarily study eigenvalues associated
with odd perturbations, given by the quadratic equation

"2 C Œ1C ˛ " .1C ˇ/˝$"C ˛.1C ˇ/.1 "˝/ D 0; ˝ D .1C ˇ/A
.1C ˇ/AC I0

:

(4.23)

We can use (4.23) to study two bifurcations of stationary bumps in the system (4.1).
First, we show a drift instability arises in the input-free (I0 D 0) network, leading
to a pitchfork bifurcation whose resultant attracting solutions are traveling bumps
[10, 13, 26, 35, 39]. Second, we show that in the input-driven system (I0 > 0), an



4 Spatiotemporal Pattern Formation in Neural Fields 133

Fig. 4.4 (a) Partition of (I0,˛!1) parameter space into different dynamical behaviors of the bump
solution (4.12) for Heaviside firing rate (4.8). Numerical simulation of the (b) drift instability of
the bump (4.12) in the case of no input (I0 D 0); (c) sloshing oscillatory instability in the case of
input I0 D 0:1; and (d) translation variant propagation in the case of weak input I0 D 0:05. Other
parameters are ! D 0:5, ˛ D 0:1, and ˇ D 0:2

oscillatory instability arises where the edges of the “slosh” periodically. This is a
Hopf bifurcation, which also persists for moving inputs (c0 > 0).

In the limit of no input (I0 ! 0), ˝ ! 1, so (4.23) reduces to

"2 C Œ˛ ! ˇ#" D 0: (4.24)

There is always a zero eigenvalue, due to the translation symmetry of the input-
free network [1, 40]. Fixing adaptation strength ˇ, we can decrease the rate ˛ from
infinity to find the other eigenvalue crosses zero when ˛ D ˇ. We mark this point in
our partition of parameter space into different dynamical behaviors in Fig. 4.4a. This
non-oscillatory instability results in a traveling bump, indicated by the associated
shift eigenfunction (sin x). Traveling pulses can propagate in either direction, so the
full system (4.1) undergoes a pitchfork bifurcation. We demonstrate the instability
resulting in a traveling bump in Fig. 4.4b.

We could also ensure that instabilities associated with even perturbations (cos x)
of the bump (4.12) do not occur prior to this loss of instability of the odd
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perturbation. For brevity, we omit this calculation. Numerical simulations (as shown
in Fig. 4.4b) verify odd perturbations are the first to destabilize. Therefore, we would
always expect that as ˛ is decreased from infinity, the first instability that arises is
associated with odd perturbations of the bump, leading to a drift instability and thus
a traveling bump solution (see Fig. 4.4).

For nonzero input (I0 > 0), the primary bifurcation of the stable (wide) stationary
bump solution is shown to be oscillatory. To identify the location of this Hopf
bifurcation, we plug the ansatz ! D i! into (4.23) to find

!!2 C i Œ.1C ˛/ ! .1C ˇ/˝"!C ˛.1C ˇ/.1 !˝/ D 0: (4.25)

Equating real and imaginary parts of (4.25), we find a Hopf bifurcation occurs when

˛H D .1C ˇ/˝ ! 1; (4.26)

with onset frequency

!H D
p
˛.1C ˇ/.1 !˝/: (4.27)

Since ˝ 2 .0; 1/ when I0 > 0, we know that !H > 0 for all parameter values
we consider. Therefore, there is never an instability with purely real eigenvalues
associated with odd perturbations, in the case of nonzero input. We show the curve
of Hopf bifurcations in (I0,˛!1) parameter space in Fig. 4.4a as well as a simulation
of the resulting oscillatory solution in Fig. 4.4c. Studies of input-driven excitatory
networks reveal it is the even mode that destabilizes into oscillations, yielding
reflection symmetric breathers [22, 23]. Here, due to the lateral inhibitory kernel,
the odd eigenmode destabilizes, leading to sloshing breathers [22, 42]. As in the
case of the drift instability, we should ensure that instabilities associated with even
perturbations do not arise prior to the Hopf bifurcation. We have ensured this for the
calculations of Fig. 4.4 but do not show this explicitly here.

Finally, we note a secondary bifurcation which leads to dynamics that evolves as
a propagating pattern with varying width (see Fig. 4.4d). Essentially, the “sloshing”
bump breaks free from the attraction of the pinning stimulus and begins to
propagate. As it passes over the location of the stimulus, it expands. Such secondary
bifurcations have been observed in adaptive neural fields on infinite spatial domains
too [23]. While we cannot develop a linear theory for this bifurcation, we can
determine the location of this bifurcation numerically.

4.3.3 Existence of Traveling Bumps

Our linear stability analysis of stationary bumps predicts the existence of traveling
bumps for substantially slow and strong adaptation. We can also show that when
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a moving input is introduced, the system tends to lock to it if it has speed
commensurate with that of the natural wave. Converting to a wave coordinate frame
! D x ! c0t where we choose the stimulus speed c0, we can study traveling
wave solutions .u.x; t/; v.x; t// D .U.!/; V .!// of (4.1) with the second order
differential equation [23]

!c20U 00.!/C c0.1C ˛/U 0.!/ ! ˛.1C ˇ/U.!/ D G.!/ (4.28)

where

G.!/ D
!
c

d
d!
! ˛

"#Z "

!"
w.! ! y/F.U.y//dy C I.! C#I /

$
; (4.29)

and#I specifies the spatial shift between the moving input and the pulse that tracks
it. In the case of a cosine weight kernel (4.7) and input (4.9), we can apply the
identity (4.11)–(4.29) so we may write Eq. (4.28) as

!c20U 00.!/C c0.1C ˛/U 0.!/ ! ˛.1C ˇ/U.!/ D C cos ! CS sin !: (4.30)

where

C D
Z "

!"
cos x

%
c0F

0.U.x//U 0.x/ ! ˛F.U.x//
&

dx ! I0.˛ cos#I C c0 sin#I /;

(4.31)

S D
Z "

!"
sin x

%
c0F

0.U.x/U 0.x/ ! ˛F.U.x///
&

dx C I0.˛ sin#I ! c0 cos#I /:

(4.32)

By treating C and S as constants, it is straightforward to solve the second order
differential equation (4.30) to find

U.!/ D .c20 ! ˛ ! ˛ˇ/ŒC cos ! CS sin !$C c0.1C ˛/ŒC sin ! !S cos !$
.c20 ! ˛.1C ˇ//2 C c20.1C ˛/2

:

(4.33)

In the case of a Heaviside firing rate function (4.8), we can evaluate the integral
terms of C and S directly. First, we break the translation symmetry of the system
by fixing the threshold crossing points, U."/ D U." ! #/ D % . This specifies
the input shift parameter #I as well. We also require that the superthreshold region
U.!/ > % when x 2 ." !#;"/ and U.!/ < % otherwise. This yields

C D ˛ sin#C c0.1 ! cos#/ ! I0.˛ cos#I C c0 sin#I /; (4.34)

S D c0 sin# ! ˛.1 ! cos#/C I0.˛ sin#I ! c0 cos#I /: (4.35)
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Plugging this into (4.33) and imposing threshold conditions, we have the system

X1Œsin! ! I0 cos!I " !X2Œ1 ! cos! ! I0 sin!I "

.c20 ! ˛.1C ˇ//2 C c20.1C ˛/2
D #; (4.36)

X1Œsin! ! I0 cos.! !!I /"CX2Œ1 ! cos! ! I0 sin.! !!I /"

.c20 ! ˛.1C ˇ//2 C c20.1C ˛/2
D #; (4.37)

where X1 D c20 C ˛2.1C ˇ/ and X2 D c30 C c0˛2 ! c0˛ˇ, which we could solve
the numerically (see [31]).

In the limit of no input (I0 ! 0), we can treat c D c0 as an unknown parameter.
By taking the difference of (4.37) and (4.36) in this limit, we see that we can
compute the speed of natural waves by studying solutions of

c3 C c˛2 ! c˛ˇ D 0; (4.38)

a cubic equation providing up to three possible speeds for a traveling bump solution.
The trivial c D 0 solution is the limiting case of stationary bump solutions that
we have already studied and is unstable when ˛ < ˇ. In line with our bump
stability predictions, for ˛ " ˇ, we have the two additional solutions c˙ D
˙
p
˛ˇ ! ˛2, which provides a right-moving (C) and left-moving (!) traveling

bump solution. The pulse widths are then given applying the expression (4.38)
into (4.36) and (4.37) and taking their mean to find sin! D .1 C ˛/# . Thus, we
can expect to find four traveling bump solutions, two with each speed, that have
widths !s D $ ! sin!1Œ#.1 C ˛/" and !u D sin!1Œ#.1 C ˛/". We can find, using
linear stability analysis, that the two traveling bumps associated with the width !s

are stable [35, 39].

4.3.4 Linear Stability of Traveling Bumps

To analyze the linear stability of stimulus-locked traveling bumps (4.33), we study
the evolution of small, smooth, separable perturbations to (U.%/; V .%/). To find this,
we plug the expansions u.x; t/ D U.%/ C  .%/e&t and v.x; t/ D V.%/ C '.%/e&t
(where j .%/j # 1 and j'.%/j # 1) and truncate to first order to find the linear
equation [10, 25, 56]

!c0 0.%/C .&C 1/ .%/ D !ˇ'.%/C
Z $

!$
w.% ! y/F 0.U.y// .y/dy; (4.39)

!c0'0.%/C .&C ˛/'.%/ D ˛ .%/: (4.40)

For the cosine weight function (4.7), we can apply the identity (4.11), so that upon
converting the system to a second order differential equation, we

!c20 00 C c.2&C 1C ˛/ 0 ! Œ.&C 1/.&C ˛/C ˛ˇ" D A cos % CB sin %;
(4.41)
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where

A D !.!C ˛/
Z "

!"
cos #F 0.U.#// .#/d# C c0

Z "

!"
sin #F 0.U.#// .#/d#;

(4.42)

B D !c0
Z "

!"
cos #F 0.U.#// .#/d# ! .!C ˛/

Z "

!"
sin #F 0.U.#// .#/d#:

(4.43)

Employing periodic boundary conditions  .!"/ D  ."/ and  0.!"/ D  0."/
and treating A and B as constants, it is then straightforward to solve (4.41) to find

 .#/ D P2A !P1B

Dp
cos # C P1A CP2B

Dp
sin #: (4.44)

where P1 D c0.2! C 1 C ˛/, P2 D c20 ! Œ.! C 1/.! C ˛/ C ˛ˇ$, and Dp D
P2

1 CP2
2 . We can then use self-consistency to determine the constants A and B,

which implicitly depend upon  itself. In the case that the firing rate function is a
Heaviside (4.8), we can reduce this to a pointwise dependence, so that

A D c0 sin% ." !%/
jU 0." !%/j C .!C ˛/

!
 ."/

jU 0."/j C
cos% ." !%/
jU 0." !%/j

"
; (4.45)

B D c0
!
 ."/

jU 0."/j C
cos% ." !%/
jU 0." !%/j

"
! .!C ˛/ sin% ." !%/

jU 0." !%/j ; (4.46)

and we can write the solution

 .#/ DC1 cos # CS1 sin #
Dp

 ."/

jU 0."/j C
C2 cos # CS2 sin #

Dp

 ." !%/
jU 0." !%/j ;

where

C1 DP2.!C ˛/ !P1c0; S1 DP1.!C ˛/CP2c0;

C2 DP1..!C ˛/ sin% ! c0 cos%/CP2.c0 sin%C .!C ˛/ cos%/;

S2 DP1..!C ˛/ cos%C c0 sin%/CP2.c0 cos% ! .!C ˛/ sin%/:

Applying self consistency, we have a 2 " 2 eigenvalue problem & D Ap& , where

& D
#

 ."/

 ." !%/

$
; Ap D

#
A"" A"%

A%" A%%

$
; (4.47)

with

A"" D !
C1

DpjU 0."/j ; A"% D !
C2

DpjU 0." !%/j ;
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Fig. 4.5 Sloshing instability of stimulus-locked traveling bumps (4.33) in adaptive neural field
(4.1) with Heaviside firing rate (4.8). (a) Dependence of stimulus locked pulse width! on stimulus
speed c0, calculated using the implicit equations (4.36) and (4.37). (a) Zeros of the Evans function
E ."/ D det.Ap ! I /, with (4.47), occur at the crossings of the zero contours of ReE ."/ (black)
and ImE ."/ (grey). Presented here for stimulus speed c0 D 0:042, just beyond the Hopf bifurcation
at cH " 0:046. Breathing instability occurs in numerical simulations for (b) c0 D 0:036 and (c)
c0 D 0:042. (d) When stimulus speed c0 D 0:047 is sufficiently fast, stable traveling bumps lock.
Other parameters are # D 0:5, ˛ D 0:05, ˇ D 0:2, and I0 D 0:1

A!$ D
S1 sin! ! C1 cos!

DpjU 0.$/j ; A!! D
S2 sin! ! C2 cos!

DpjU 0.$ !!/j :

Then, applying the approach of previous stability analyses of traveling waves in
neural fields [10, 25, 56], we examine nontrivial solutions of % D Ap% so that
E ."/ D 0, where E ."/ D det.Ap ! I / is called the Evans function of the traveling
bump solution (4.33). Since no other parts of the spectrum contribute to instabilities
in this case, the traveling bump is linearly stable as long as Re " < 0 for all "
such that E ."/ D 0. We can find the zeros of the Evans function by following the
approach of [10, 25] and writing " D & C i! and plotting the zero contours of Re
E ."/ and Im E ."/ in the .&; !/-plane. The Evans function is zero where the lines
intersect.

We present examples of this analysis in Fig. 4.5. As shown, we can use the
implicit equations (4.36) and (4.37) to compute the width of a stimulus-locked
pulse as it depends upon the speed of the input in the case of a Heaviside firing rate
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function (4.8). In parameter regime we show, there are two pulses for each parameter
value, either both are unstable or one is stable. As the speed of stimuli is decreased,
a stable traveling bump undergoes a Hopf bifurcation. For sufficiently fast stimuli, a
stable traveling bump can lock to the stimulus, as shown in Fig. 4.5d. However, for
sufficiently, slow stimuli, the speed of natural traveling bumps of the stimulus free
network is too fast to track the stimuli. Therefore, an oscillatory instability results.
We plot the zeros of the Evans functions associated with this instability in Fig. 4.5a.
The sloshing pulses that result are pictured in Fig. 4.5b, c. Note that, as was shown
in [31], it is possible for pulses to destabilize due to stimuli being too fast. In this
context, such an instability occurs through a saddle-node bifurcation, rather than a
Hopf.

4.4 Activity Bumps on the Infinite Line

We consider neural field (4.1) with a Heaviside firing rate function F.u/ D H.u!!/
with firing threshold ! where u.x; t/ and v.x; t/ are defined along the infinite
line with u.x; t/; v.x; t/ ! 0 as x ! ˙1. The even-symmetric synaptic weight
function w is assumed to be either excitatory .w.x/ > 0/ or of Mexican hat form
(locally positive, laterally negative) satisfying

R1
!1 w.y/dy < 1. We consider

stationary activity bumps in Sect. 4.4.1 and traveling activity bumps in Sect. 4.4.2
and examine the cases of (i) bumps generated intrinsically by the network with
no input .I.x; t/ D 0/ and (ii) bumps induced by a localized, excitatory input
inhomogeneity .I.x; t/ > 0/ which can be either stationary .I.x// or traveling
.I.x! ct// with constant speed c. The input is assumed to have an even-symmetric,
Gaussian-like profile satisfying I.x/! 0 as x ! ˙1.

4.4.1 Natural and Stimulus-Induced Stationary Activity Bumps

Existence of Stationary Bumps. An equilibrium solution of (4.1) is expressed as
.u.x; t/; v.x; t//T D .Uı.x/; Vı.x//T and satisfies Vı.x/ D Uı.x/ and

.1C ˇ/Uı.x/ D
Z 1

!1
w.x ! y/H.Uı.y/ ! !/ dy C I.x/: (4.48)

We follow the approach of Amari [1] to use the Heaviside firing rate and make the
ansatz of an even-symmetric stationary bump Uı.x/ that is centered about x D 0,
is superthreshold Uı.x/ > ! for x 2 .!a; a/, satisfies Uı.˙ a/ D ! , and is
subthreshold otherwise with Uı.x/ ! 0 as x ! ˙1 (see Fig. 4.6). That the
stationary bump is centered about x D 0 is by choice both (i) in the case of no
input (I.x/ D 0) due to translation symmetry of the bump and (ii) in the presence
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a b c

Fig. 4.6 (a) Stationary bump profile Uı.x/ with halfwidth a. Bifurcation curves satisfying (4.50)
and illustrating the dependence of a on the bifurcation parameter Iı are shown in (b) for ˇ < ˛
and in (c) for ˛ < ˇ. Black (gray) denote stability (instability) of the stationary bump. SN denotes
a saddle-node bifurcation andH˚ andH! denote Hopf bifurcations with respect to the sum mode
˝C and difference mode ˝", respectively. Parameters are Nwe D 1; !e D 1; Nwi D 0:4; !i D 2,
" D 0:3, ˛ D 0:025, ˇ D 1, ! D 1:2 (Figure adapted from Folias [22])

of a stationary input (I.x/ ¤ 0) where the stationary bump and the input share the
same center, which is set to be x D 0. The profile Uı.x/ of the stationary bump can
then be expressed as

.1C ˇ/Uı.x/ D
Z a

!a
w.x ! y/ dy C I.x/ D

h
W.x C a/ !W.x ! a/C I.x/

i

(4.49)

where W.x/ D
R x
0

w.y/ dy. The bump halfwidth a is then determined by
requiring (4.49) to satisfy the threshold conditions Uı.˙ a/ D " which, by even
symmetry, result in

W.2a/C I.a/ D .1C ˇ/": (4.50)

This determines the existence of the stationary bump if all assumptions are satisfied.
Condition (4.50) was solved numerically in Fig. 4.6 where w and I were taken to be

w.x/ D Nwep
#!e
e!.x=!e/2 ! Nwip

#!i
e!.x=!i /2 ; I.x/ D Iı e!.x=!/2 : (4.51)

Existence Results for Stationary Bumps for General w and Gaussian-like I .

CASE I: No Input .I.x/ D 0/. For an excitatory weight function .w.x/ > 0/,
stationary bumps exist and satisfy (4.50) when parameters permit
.0 < " < limx!1W.x//; however, they are always linearly unstable
[22,23,39]. The case of a Mexican hat weight function w is an extension
of the Amari neural field [1] with the existence equation containing
an extra factor due to adaptation .W.2a/ D ".1 C ˇ//; however, the
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dynamics of the adaptation variable v additionally governs the stability
of the stationary bump [22]. In particular, if ˛ < ˇ, stationary bumps
are always unstable. Stable bumps in the scalar model of Amari can
extend to this model only for ˛ > ˇ, and a stable bump for ˛ > ˇ
destabilizes as ˛ decreases through ˛ D ˇ leading to a drift instability
[22] that gives rise to traveling bumps.

CASE II: Localized Excitatory Input .I.x/ > 0/. A variety of bifurcation
scenarios can occur [22, 23], and, importantly, stationary bumps can
emerge in a saddle-node bifurcation for strong inputs in parameter
regimes where stationary bumps do not exist for weak or zero input as
shown in Fig. 4.6. When stationary bumps exist for ˛ > ˇ, the stability
of a bump is determined directly by the geometry of the bifurcation
curves [22, 23] (e.g., see Fig. 4.6). As ˛ decreases through ˛ D ˇ, a
Hopf bifurcation point emerges from a saddle-node bifurcation point
(associated with the sum mode ˝C) and destabilizes a segment of a
branch of stable bumps for ˛ < ˇ. Generally, Hopf bifurcations occur
with respect to either of two spatial modes ˝˙ (discussed later), and
their relative positions (denoted by H˚ and H!, respectively, on the
bifurcation curves in Fig. 4.6) can switch depending on parameters [22].

Stability of Stationary Bumps. By setting u.x; t/ D Uı.x; t/ C Q'.x; t/ and
v.x; t/ D Vı.x; t/C Q .x; t/, we study the evolution of small perturbations . Q'; Q /T

in a Taylor expansion of (4.1) about the stationary bump .Uı; Vı/T: To first order in
. Q'; Q /T, the perturbations are governed by the linearization

@t Q' D ! Q' ! ˇ Q C
Z 1

"1
w.x ! y/H 0!Uı.y/ ! !

"
Q'.y; t/ dy;

1
˛
@t Q D C Q' ! Q :

(4.52)

Separating variables, we set Q'.x; t/ D e"t '.x/ and Q .x; t/ D e"t .x/ in (4.52)
where .';  /T 2 C 1

u .R;C2/ denoting uniformly continuously differentiable vector-
valued functions u W R !! C2. This leads to the spectral problem for " and .';  /T

M

#
'

 

$
D "

#
'

 

$
; M

#
'

 

$
D

%
!1 !ˇ
˛ !˛

&#
'

 

$
C
#
N '

0

$
; (4.53)

where N '.x/ D
R1

!1 w.x ! y/H 0.Uı.y/ ! !/ '.y/ dy. The essential spectrum
lies in the left-half complex plane and plays no role in instability [22, 23]. To
calculate the point spectrum, define #."/ D "C1C ˛ˇ

"C˛ and reduce (4.53) to
 .x/ D

!
˛

"C˛
"
'.x/ and

#."/'.x/ D w
!
x ! a

"

jU 0ı.Ca/j
'.a/ C w

!
x C a

"

jU 0ı."a/j
'."a/: (4.54)
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Setting x D ˙ a in (4.54) yields a compatibility condition for the values of '.˙a/

!
!ı ! ".#/ I

"#'.Ca/
'.!a/

$
D 0; !ı D 1

jU 0ı.a/j

%
w.0/ w.2a/

w.2a/ w.0/

&
:

Consequently, nontrivial solutions of (4.53) exist when det .!ı ! ".#/I/ D 0,
thereby identifying eigenvalues #. The point spectrum comprises two pairs of
eigenvalues #C˙, #!˙ and eigenfunctions vC

˙; v
!
˙ defining two characteristic spatial

modes [22, 23]:
Sum mode: eigenvalues #

C
˙ and eigenfunctions vC

˙.x/ D ˝C.x/ .#
C
˙ C ˛; ˛

'T
;

#
C
˙.a/ D ! 12$C ˙ 1

2

q
$ 2

C ! 4%C ; ˝C.x/ D w.x ! a/C w.x C a/;

Difference Mode: eigenvalues #
!
˙ and eigenfunctions v!

˙.x/ D ˝!.x/.#
!
˙C˛; ˛

'T,

#
!
˙.a/ D ! 12$! ˙ 1

2

p
$ 2

! ! 4%! ; ˝!.x/ D w.x ! a/ ! w.x C a/;

where˝C.x/ is even-symmetric,˝!.x/ is odd-symmetric, and $˙;%˙ are given by

$˙.a/ D 1C ˛ ! ˝˙.a/
jU 0ı.a/j

; %˙.a/ D ˛

%
1C ˇ ! ˝˙.a/

jU 0ı.a/j

&
:

Stability Results for Stationary Bumps for General w and Gaussian-like I .

CASE I: No Input .I.x/ D 0/ [22,23,25,41]. Since jU 0
ı.a/j D ˝!.a/=.1C ˇ/,

%!.a/ D 0 and we can redefine the eigenvalues #!˙ as #!C " 0 and
#!! D ˇ ! ˛. The persistent 0-eigenvalue #!C " 0 corresponds to
the translation invariance of the stationary bump and is associated with
an eigenfunction in the difference mode ˝!. The other eigenfunction
in the difference mode (associated with #!!) is stable for ˇ < ˛ and
unstable for ˛ < ˇ. Thus, for ˛ < ˇ, a stationary bump is always
linearly unstable. For ˇ < ˛, a stationary bump can be linearly stable
for a Mexican hat weight function (if w.2a/ < 0) but is always unstable
for an excitatory weight function (w.x/ > 0) [22]. For ˇ < ˛, it is not
possible for a stable stationary bump to undergo a Hopf bifurcation and,
as ˇ is increased through ˛, a stable stationary bump undergoes a drift
instability due to eigenvalue #!! increasing through 0 [22]. Interestingly,
a multibump solution in (4.1) on a two-dimensional domain is capable
of undergoing a bifurcation to a rotating traveling multibump solution
[37].

CASE II: Localized Excitatory Input .I.x/ > 0/ [7, 22, 23]. The input inhomo-
geneity (I.x/ ¤ 0) breaks translation symmetry and #!C ¤ 0 gener-
ically. A stationary bump is linearly stable when Re#C˙;Re#!˙ < 0
which reduce to the conditions
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˝C.a/

jU 0ı.a/j
< 1Cˇ if ˛ > ˇ;

˝˙.a/

jU 0ı.a/j
< 1C˛ if ˛ < ˇ:

For any stationary bump Uı.x/, (4.49) implies .1 C ˇ/jU 0
ı.a/j D

w.0/!w.2a/CjI 0.a/j. Consequently, the stability conditions translate,
in terms of the gradient jI 0.a/j, to

˛ > ˇ W
ˇ̌
I 0.a/

ˇ̌
> DSN .a/ " 2w.2a/;

˛ < ˇ W
ˇ̌
I 0.a/

ˇ̌
> DH.a/ "

( !ˇ!˛
1C˛

"
˝C.a/C 2w.2a/; w.2a/ # 0;!ˇ!˛

1C˛
"
˝!.a/; w.2a/ < 0.

jI 0.a/j D DSN .a/ denotes a saddle-note bifurcation point and jI 0.a/j D
DH.a/ denotes a Hopf bifurcation where a pair of complex eigenvalues
associated with one of the two spatial modes ˝˙ crosses into the
right-half plane. If w.2a/ > 0 at the Hopf bifurcation point, the sum
mode ˝C destabilizes and gives rise to a breather—a time-periodic,
localized bump-like solution that expands and contracts. If w.2a/ < 0
at the Hopf bifurcation point, the difference mode ˝! destabilizes and
gives rise to a slosher—a time-periodic localized solution that instead
sloshes side-to-side as shown in Fig. 4.7. Sloshers were also found to
occur in [26]. Nonlinear analysis of the Hopf bifurcation reveals that,
to first order, the breather and slosher are time-periodic modulations of
the stationary bump Uı.x/ based upon the even and odd geometry of
the sum and difference modes, respectively [22]. The bifurcation can
be super/subcritical, which can be determined from the normal form
or amplitude equation derived in [22]. Stimulus-induced breathers can
undergo further transitions, e.g., period doubling, and can also exhibit
mode-locking between breathing and emission of traveling bumps
(when supported by the network) [23, 25]. Alternatively, stationary and
breathing fronts occur in the case of step function input inhomogeneities
I.x/ [6, 7]. Hopf bifurcation of radially symmetric stationary bumps
extends to (4.1) on two-dimensional domains, leading to a variety
of localized time-periodic solutions including nonradially symmetric
oscillatory structures [23, 24].

4.4.2 Natural and Stimulus-Locked Traveling Activity Bumps

Existence of Traveling Bumps. We simultaneously consider the two cases of
natural traveling bumps .I.x; t/ D 0/ and stimulus-locked traveling bumps which
are locked to a stimulus I.x; t/ D I.x!ct/ traveling with constant speed c. Natural
traveling bumps in neural field (4.1) on the infinite line D D .!1;1/ were first
considered in [38, 39] and can occur in the absence of an input or in a region of the



144 G.B. Ermentrout et al.

Fig. 4.7 Destabilization of spatial modes ˝C.x/ and ˝!.x/, as the bifurcation parameter Iı
is varied through a Hopf bifurcation, can give rise to a stable breather or slosher, respectively,
depending on the relative position of the bifurcation points for each spatial mode (e.g., H˚ and
H", Fig. 4.6c). (a) a plot of u.x; t/ exhibiting a breather arising from destabilization of the sum
mode˝C.x/ for Iı D 1:9; Nwi D 0; ˇ D 2:75; ˛ D 0:1; ! D 0:375. (b) a plot of u.x; t/ exhibiting
a slosher arising from destabilization of the difference mode ˝!.x/ for Iı D 1:5; Nwi D 0:4; "i D
2; ˇ D 2:6; ˛ D 0:01; ! D 0:35. Common parameters: " D 1:2; Nwe D 1; "e D 1

neural medium where an input is effectively zero [23, 25]. An important distinction
between the two cases is that the natural traveling bump in the absence of the input is
translationally invariant and we have stability with respect to a family of translates,
whereas in the stimulus-locked case there is a fixed position of the bump relative to
the input.

Assume u.x; t/ D U.x ! ct/ and v.x; t/ D V.x ! ct/ in (4.1) and, in traveling
wave coordinates # D x ! ct, make the assumption that the activity U.#/ is
superthreshold U.#/ > ! for # 2 .#1; #2/, satisfies U.#1;2/ D ! , and is substhreshold
otherwise with U.#/ ! 0 as # ! ˙1. Consequently, the profile of the bump
satisfies

!c U# D !U ! ˇV C
Z 1

!1
w.# ! $/H.U.$/ ! !/ d$C I.#/;

! c
˛
V# D CU ! V:

(4.55)

Variation of parameters [25, 55] can be used to solve (4.55) to construct the profile
.Uc; Vc/

T of the traveling bump which can be expressed as [25]

Uc.#/ D .1 ! %!/MC.#/ ! .1 ! %C/M!.#/

Vc.#/ D !˛
!
MC.#/ ! M!.#/

"
:

where m.#/ D W.# ! #1/ !W.# ! #2/C I.#/,

M˙.#/ D
1

c.%C!%!/

Z 1

#

e
%

ċ .#!$/m.$/ d$; %˙ D 1
2

#
1C˛˙

p
.1!˛/2 !4˛ˇ

$
;

and 0 < Re%! " Re%C. Since m.#/ is dependent upon #1; #2, the threshold
conditions Uc.#i / D ! , where i D 1; 2 and #1 < #2, determine the position of
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the two threshold crossings of the bump relative to the position of the input I.!/.
This results in consistency conditions for the existence of a stimulus-locked traveling
bump:

" D .1 ! #!/MC.!1/ ! .1 ! #C/M!.!1/;

" D .1 ! #!/MC.!2/ ! .1 ! #C/M!.!2/:

These determine the existence of a traveling bump (provided the profile satisfies the
assumed threshold conditions) and also include the case of natural waves (Iı D 0)
with the difference being that the conditions instead determine the width a D !2!!1
of any translate of the bump and its wave speed c which is selected by the network.
Note that existence equations for the traveling bump in (4.55) can also be derived
using a second order ODE formulation [23, 39] or an integral formulation [9].

Existence Conditions for a Positive, Exponential w and Gaussian I . For explicit
calculations in this section, w and I are taken to be

w.x/ D Nwe
2$e
e!jxj=$e ; I.x ! ct/ D Iı e!..x!ct/=$/2 : (4.56)

CASE I: Natural Traveling Bump .I.!/ D 0/ with Speed c [9, 23, 25, 39, 41].
In the absence of an input, translation invariance of the bump allows
the simplification .!1; !2/ D .0; a/ where the wave speed c and bump
width a are naturally selected by the network according to the following
threshold conditions [25]

" D JC.!a/; " D K.!a/; (4.57)

where K.%/ D J!.%/ !HC.%/CH!.%/, and, for w given in (4.56),

J˙.%/ D
.˛˙ c/

!
1 ! e%

"

2.c˙#C/.c˙#!/
; H˙.%/ D

c2.1 ! #"/
!
1 ! e

#

ċ %
"

#˙.c2 ! #2
˙/.#C!#!/

:

(4.58)

Note that .c ˙ #C/.c ˙ #!/ D c2 ˙ c.1C ˛/C ˛.1C ˇ/: Existence
equations (4.57) were solved numerically in Fig. 4.8b indicating two
branches of traveling bumps for small ˛. The wide, faster bump is found
to be stable and the narrow, slower bump is unstable.
Detailed analyses of the existence of natural traveling bumps can be
found in [41, 52], including the case where the homogeneous state has
complex eigenvalues [52]. A singular perturbation construction for the
pulse was carried out for smooth firing rate functions F in [39]. For
moderate values of ˇ traveling fronts occur in (4.1) and were shown to
undergo a front bifurcation in the form of a cusp bifurcation with respect
to the wave speed of the front [6].
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s

u

s

a b c

Fig. 4.8 (a) Traveling bump profile. (b) Bifurcation curves for natural traveling bumps (Iı D 0)
in (4.1) in the (˛; a)-plane and (˛; c)-plane. The stable branch (black) of wide, fast bumps and the
unstable branch (gray) of narrow, slow bumps annihilate in a saddle-node bifurcation at a critical
value ˛c ! 0.341. (c) Regions of existence (white) of the stimulus-locked traveling bumps in the
(c, Iı)-plane for fixed ! D 1; ˛ D 0:03. The left and right regions form tongues that issue from
the unstable cu and stable cs natural traveling bumps, respectively. The curve of Hopf bifurcations
within the left tongue is shown in gray, above which the bump is stable (s) and below which it is
unstable (u). Stable traveling breathers bifurcate from the left branch (solid gray) Hopf curve, and
stationary bumps correspond to the intersection of the tongue and the line c = 0. When bumps and
breathers are unstable or do not exist, there is mode-locking between breathing and the emission of
natural traveling bumps. Parameters in (b) and (c): " = 0.3, ˇ = 2.5, Nwe D !e D 1; Nwi D 0 (Figure
adapted from Folias and Bressloff [25])

CASE II: Stimulus-Locked Traveling Bump .I.#/ ¤ 0/ with Speed c [25]. The
wave and stimulus speeds c are identical, and the threshold conditions
for .#1; #2/ are [25]

" D K.#1 ! #2/ C TC.#1/ ! T!.#1/;

" D JC.#1 ! #2/ C TC.#2/ ! T!.#2/;
(4.59)

where K; JC are given in (4.58) and T˙ arises from the input and is
given by

T˙.$/ D
p
% !Iı
2 c

!
1 ! &"
&C ! &!

"
exp

#&˙$

c
C
h&˙!

2c

i2 $
erfc

# $
!
C &˙!

2c

$
;

with erfc.z/ denoting the complementary error function. Equa-
tion (4.59) can be solved numerically to determine the regions of
existence of stimulus-locked traveling bumps as both the speed c
and amplitude Iı are varied (assuming Uc.#/ satisfies the threshold
assumptions). This allows us to connect the stationary bumps to natural
traveling bumps via stimulus-locked traveling bumps as shown in
Fig. 4.8. This analysis for stimulus-locked fronts was carried out in [6]
and an extension of stimulus-locked bumps for a general smooth firing
rate function F was studied in [20].
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Stability of Traveling Bumps. By setting u D Uc C Q' and v D Vc C Q , we study
the evolution of small perturbations . Q'; Q /T in the linearization of (4.1) about the
traveling bump .Uc; Vc/

T which, in traveling wave coordinates, are governed by

@t Q' D c@! Q' ! Q' ! ˇ Q C
Z 1

!1
w.! ! "/H 0.Uc."/ ! #/ Q'."; t /d";

@t Q D c@! Q C ˛ Q' ! ˛ Q :
(4.60)

Separating variables by setting Q'.!; t / D e$t '.!/ and Q .!; t / D e$t .!/ in (4.60),
where .';  /T 2 C 1

u .R;C2/, leads to the spectral problem for $ and .';  /T

.LCN/

!
'

 

"
D $

!
'

 

"
(4.61)

where

L D c
@

@!
!
#
1 ˇ

!˛ ˛

$
; N

!
'

 

"
D
 
1

0

!#
w.! ! !1/

jU 0
c .!1/j

'.!1/C w.! ! !2/
jU 0
c .!2/j

'.!2/

$
:

The essential spectrum lies within the set D D fz W Re z 2 Œ!Re%C;!Re%!&g,
where Re%˙ > 0, inducing no instability [25, 41, 55]. Stability is then determined
by elements of the point spectrum that lie in the region R D fz W Re z > !Re%!g
which can be calculated using an Evans function. In particular, we determine a
condition for .L C N ! $I/ to have a bounded inverse. The Evans function E.$/
subsequently arises from the condition that .L C N ! $I/ is not invertible and
.LC N ! $I/ D 0 has nontrivial solutions. We set u D .';  /T and use variation
of parameters [25,55] to construct a bounded inverse for .LCN!$I/ based on the
integral kernel

M.!; ";$/ D 1
cˇ.%C!%!/

h
ΦC.!/

ˇ̌
Φ!.!/

ih
ΨC."/

ˇ̌
Ψ!."/

iT

(4.62)

where ŒAŠB& denotes the matrix with column vectors A and B, respectively, and

Φ˙.!/ D
!

ˇ

%˙!1

"
e

%
$C%˙

c

&
! ; Ψ˙.!/ D ˙

!
1!%"
ˇ

"
e!
%
$C%˙

c

&
! :

For Re .$/ > !%!, we can express .LCN ! $I/u D !f, where f D .f1; f2/T, as

u.!/ !
Z 1

!

M.!; ";$/Nu."/ d" D
Z 1

!

M.!; ";$/f."/ d": (4.63)
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From (4.63),  is calculated in terms of '.!1/, '.!2/, F2, and ",' are determined by

'.!/ !#1."; !/'.!1/ !#2."; !/'.!2/ D F1.!/ (4.64)

where M 11 denotes the .1;1/ entry of M in (4.62) and i D 1; 2 in the expression below

#i ."; !/ D
Z 1

!

M 11.!; $;"/
w.$ ! !i /
jU 0

c .!i /j
d$;

 
F1.!/

F2.!/

!
D
Z 1

!

M.!; $;"/ f.$/ d$:

By the Hölder inequality, #i and F1;2 are bounded for all ! 2 R and f 2 C 0
u .R;C2/.

A compatibility condition that determines the values of '.!1/ and '.!2/ is produced
by substituting ! D !1 and ! D !2 into (4.64) to obtain the matrix equation

!
I !#."/

"!
'.!1/

'.!2/

"
D
!
F1.!1/

F1.!2/

"
; #."/ D

"
#1."; !1/ #2."; !1/

#1."; !2/ #2."; !2/

#

which has a unique solution if and only if det.I!#."// ¤ 0, resulting in a bounded
inverse .L C N ! "I/!1 defined on all of C 0

u .R;C2/. Conversely, we cannot invert
the operator for " such that det.I!#."// D 0; in which case .LCN!"/u D 0 has
nontrivial solutions corresponding to eigenvalues " and eigenfunctions .';  /T in
the point spectrum. Thus, for Re ."/ > !%!, we can express the Evans function as

E."/ D det
#
I !#."/

$
; Re ."/ > !%!; (4.65)

which has eigenvalues " given by its zero set.

Evans Function for an Exponential Weight w and Gaussian-like Input I . The
following gives an explicit construction of the Evans function for natural .Iı D 0/
and stimulus-locked .Iı > 0/ traveling bumps in (4.1) with a Heaviside firing rate
function, exponential weight distribution and Gaussian input given in (4.56). For
natural traveling bumps (Iı D 0), by translation invariance we set .!1; !2/ D .0; a/.

For Re ."/ > !%!, the Evans function E."/ is given by [25]

E."/ D
%
1 ! &C."/

jU 0
c .!1/j

&%
1 ! &C."/

jU 0
c .!2/j

&
! &C."/'."; !1 ! !2/

jU 0
c .!1/U

0
c .!2/

ˇ̌ ;

where

(˙."/ D
.1 ! %"/c

.%C!%!/.c2 ! ."C %˙/2/
; &˙."/ D

"C ˛ ˙ c
2."C %C ˙ c/."C %! ˙ c/

;

'."; )/ D &!."/e
2) C (C."/ e

h
"C%CCc

c

i
) ! (!."/ e

h
"C%!Cc

c

i
)
:
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Since the zero set of the Evans function E.!/ comprises solutions of a transcendental
equation, the eigenvalues ! can be determined numerically by finding the intersec-
tion points of the zero sets of the real and imaginary parts of the Evans function
which was used to determined the stability results in Fig. 4.8. Hopf bifurcations,
identified by complex conjugate eigenvalues crossing the imaginary axis, can give
rise to traveling breathers or mode-locking between breathing and the emission of
natural traveling bumps [25].

For various treatments of the stability of natural traveling bumps and Evans
functions in (4.1) see [4, 10, 25, 41, 44, 55], and a comparison between different
approaches is found in [44]. Zhang developed the Evans function and analyzed the
stability of traveling bumps in the singularly perturbed case 0 < ˛ ! 1 [55].
Finally, on one-dimensional domains, traveling multibump waves were studied in
[52], and traveling waves have been extended to the case of inhomogeneous synaptic
coupling in [32] and asymmetric coupling [51]. On two-dimensional domains,
circular waves/target patterns [23], spiral waves [34, 52], traveling and rotating
multibumps [37], and the collision of traveling bumps [36] have also been examined.
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