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Abstract – We introduce a model to study the effect of degree-frequency correlations on
synchronization in networks of coupled oscillators. Analyzing this model, we find several
remarkable characteristics. We find a stationary synchronized state that is i) universal, i.e., the
degree of synchrony, as measured by a global order parameter, is independent of network topology,
and ii) fully phase-locked, i.e., all oscillators become simultaneously phase-locked despite having
different natural frequencies. This state separates qualitatively different behaviors for two other
classes of correlations where, respectively, slow and fast oscillators can remain unsynchronized.
We close by presenting an analysis of the dynamics under arbitrary degree-frequency correlations.

Copyright c© EPLA, 2013

Introduction. – The research of emergent collective
behavior in large ensembles of interacting dynami-
cal systems represents a large and important area of
complexity theory [1–4]. Studying synchronization of
coupled oscillators has proven to be particularly useful
in modeling complex systems and uncovering generic
mechanisms behind synchronization processes. Examples
include simultaneous flashing of fireflies [5], cardiac
pacemaker cells [6], circadian rhythms of mammals [7],
collective oscillations of pedestrian bridges [8], and chemi-
cal oscillators [9]. In many cases, the interactions between
oscillators can be described by a complex network. To
gain insight into the mechanism behind synchronization,
Kuramoto proposed to model the state of each oscillator
n by a phase variable θn [10]. When placed on a network,
the dynamics of θn is governed by

θ̇n = ωn+K

N∑
m=1

Anm sin(θm− θn), (1)

where ωn represents the natural frequency of oscillator
n, K is the global coupling strength, and [Anm] is the
adjacency matrix that encodes the network topology of
the underlying system (n,m= 1, 2, . . . , N).
Although network topology plays a vital role in deter-

mining synchronization [11–21], the question of how it
influences synchrony is not completely understood. In

recent years researchers have started to explore the effect
of correlations between oscillator frequency ωn and degree
kn =

∑N
m=1Anm and observed that in some cases, such

correlations can give rise to enhanced synchronizabil-
ity [11] and the emergence of explosive synchronization
events [12]. What, then, is the effect of degree-frequency
correlations on synchronization in general?
We address this question by analytically and numer-

ically studying synchronization in undirected networks
(i.e., those for which Anm =Amn) with general degree-
frequency correlations. These correlations may be char-
acterized by the joint probability distribution of degrees
and frequencies P (k, ω), which we assume to be symmet-
ric about ω= 0, i.e., P (k,−ω) = P (k, ω). In the classi-
cal (uncorrelated) network Kuramoto model [13–15], the
frequencies and degrees are chosen independently, so that
the distribution P (k, ω) can be written as a product of the
frequency and degree distributions, P (k, ω) = P (k)g(ω).
In this letter we propose a framework to study synchro-
nization in the general case and present detailed results
for the case in which the joint distribution is given by
P (k, ω) = P (k)[δ(ω−αkβ)+ δ(ω+αkβ)]/2, i.e.,

ωn =±αkβn, (2)

where α, β characterize the correlation and the positive
and negative signs are chosen with equal probability to
maintain zero mean frequency as N →∞. This particular
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form of P (k, ω) is chosen as an illustrative example and is
closely related to a model studied numerically in ref. [12]
(see their footnote 24).
This simple model can be used for analyzing the influ-

ence of degree-frequency correlations on the synchroniza-
tion of coupled oscillators and exhibits rich dynamics. We
note that α can be scaled out of eqs. (1) and (2) by letting
t �→ t/α and K �→ αK. We will therefore use α= 1 in all
figures presented in this letter. Thus, the free parameters
are the coupling strength K, the adjacency matrix [Anm],
and the correlation exponent β. We will consider positive
correlations and refer to β = 1, β < 1, and β > 1 as linear,
sub-linear, and super-linear correlations, respectively.
To measure the degree of synchrony, we introduce the

following order parameters. The local order parameter rn
for oscillator n, which quantifies the degree of synchrony
among the neighbors of node n, is defined by rne

iψn =∑
mAnme

iθm , where ψn is the local mean phase. The
global order parameter is defined by R=N−1

∑
n
rn
kn
and

measures the degree of synchrony over the entire network.

Description of solutions. – We now briefly describe
the dynamics of the steady-state behavior of the system
defined by eqs. (1) and (2). We begin by describing the
degree of synchrony as the coupling strength K is varied.
In fig. 1 we plot data from simulations on an Erdős-Rényi
(ER) network [22] of size N = 1000 with link probability
p= 0.1, using a correlation exponent β = 1. Figure 1(a)
shows that as the coupling strength K increases, the time-
averaged order parameter R also increases towards the
value of 1, as expected. Notably, this R-K curve exhibits
two transitions, one at the critical coupling strength
K =K1 ≈ 0.2, and the other one at the critical coupling
strengthK =K2 ≈ 2 (indicated with vertical dotted lines).
This is in sharp contrast to the usual R-K curves where a
single transition is observed [13].
As shown in fig. 1(a), these two critical coupling

strengths separate three regimes which we denote as
incoherent (I), standing wave (SW), and stationary
synchronized (SS) states. For K <K1, R≈ 0 and the
system is incoherent, consisting of oscillators that drift
independently. For K1 <K <K2, the network exhibits
SW solutions characterized by the emergence of two
synchronized clusters traveling with opposite angular
velocities. Such SW solutions result in the oscillating
behavior of R(t), shown in fig. 1(b). The distribution of
phases ρ(θ) corresponding to the maximal and minimal
R(t) values (e.g., as indicated by the green circle and
red cross in fig. 1(b), respectively, and shown as dashed
lines in fig. 1(a)) are depicted in fig. 1(c). Note that R(t)
achieves its maximum when the distributions of phases
for the two clusters overlap (dashed green) and achieves
its minimum when they lie on opposite sides of the unit
circle (dot-dashed red). Finally, for K >K2 the SS state
emerges, yielding a time-invariant R(t)≈ 1 (fig. 1(d)).
The SS state exhibits remarkable characteristics.

In particular, as we will see, with a linear correlation

 

 

 

 

Fig. 1: (Colour on-line) Transition from incoherence to coher-
ence for an ER network with parametersN = 1000, p= 0.1, and
β = 1. (a) Time-averaged (solid blue) and minimum/maximum
(dashed green) R vs. K. (b) Time series R(t) for an SW solu-
tion using K = 1.9. (c) Distribution of phases ρ(θ) at maxi-
mum (dashed green) and minimum (dot-dashed red) R(t)
values (times denoted by the green circle and red cross in (b)).
(d) Time series R(t) for an SS solution using K = 2.1.

the critical coupling strength for the onset of global
synchronization is K2 = 2α, a universal value that is inde-
pendent of detailed network topology. The steady-state
degree of global synchrony R as a function of K also turns
out to be universal in the case of a linear correlation.
In sharp contrast, when there is no degree-frequency
correlation or when such a correlation is nonlinear,
network structure plays a vital role in determining
both the critical coupling strength and degree of global
synchrony R [13–15]. Furthermore, in the absence of
a degree-frequency correlation, only a fraction of the
oscillators become phase-locked. The oscillators that are
not phase-locked drift indefinitely and typically have
either low degrees or high frequencies [13]. However, for
a linear degree-frequency correlation (β = 1), whenever
the system exhibits global synchrony, all oscillators
are locked, which we refer to as full phase-locking. For
nonlinear correlations, we find (through both analytical
and numerical approaches) that when the correlation
is super-linear (sub-linear), drifting oscillators typically
exist and are those with high (low) degrees. A linear
correlation thus represents a perfect balance between
each oscillator’s topological (degree) and dynamical
(frequency) properties. We illustrate this in fig. 2, where
we show locked (blue) and drifting (yellow) oscillators
from real simulations of a network of size N = 16 for
sub-linear, linear, and super-linear correlations (left to
right). Note that for the sub-linear correlation only
oscillators with small degrees (kn = 2) drift, while for the
super-linear correlation only oscillators with large degrees
(kn � 8) drift. The case of a linear correlation corresponds
to full phase-locking.
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β = 1
linear

β > 1
super-linear

β < 1
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locked
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Fig. 2: (Colour on-line) Illustration of phase-locking for sub-
linear, linear, and super-linear correlations in a network of
size N = 16. Circle radii are proportional to degrees with
locked and drifting oscillators colored blue and yellow, respec-
tively. Simulation parameter values are β = 0.8, 1, 1.2 and K =
1.35, 2.1, 2.5, respectively.

Standing-wave solution. – The existence of the SW
state can be understood by noting that the frequency
distribution of the oscillators is bimodal, a property
that has been previously shown to produce SW states
for systems lacking degree-frequency correlations [23].
For example, when α, β = 1 in eq. (2), the frequency
distribution g(ω) is simply the mirror-reflected version of
the degree distribution, g(ω) = [P (−ω)+P (ω)]/2. Thus,
a unimodal P (k) (in the case of an Erdős-Rényi network,
peaked at k= p(N − 1)) naturally gives rise to a bimodal
g(ω), which is expected to lead to a SW solution when the
separation between the two peaks of g(ω) is large enough
compared to the width of the distribution [23].
To begin the analysis of the SW solution, we will

analyze separately the degree of synchrony in the clusters
of oscillators with positive and negative frequencies.
To this end, we introduce positive/negative local and

global order parameters r±n eiψ
±
n =
∑
ωm≷0Anme

iθm and

R± =N−1
∑
n r
±
n /k

±
n , where k±n is the sum of link

strengths connecting oscillator n to oscillators with
positive/negative frequencies, k±n =

∑
ωm≷0Anm. Using

the modified local order parameters, eq. (1) can be
rewritten as

θ̇n = ωn+K[r
+
n sin(ψ

+
n − θn)+ r−n sin(ψ−n − θn)]. (3)

We now assume that synchronized oscillators are divided,
according to the sign of their frequency ωn, into two
clusters that rotate in opposite directions with angular
velocity ±Ω, so that ψ±n =±Ωt. Assuming ωn > 0 and
moving to a rotating frame of coordinates, we define
φn = θn−Ωt, and obtain

φ̇n = (ωn−Ω)−Kr+n sin(φn)−Kr−n sin(φn+2Ωt). (4)

For Ω not too small, the last term in this equation oscil-
lates rapidly around zero compared to the first two terms
and can therefore be approximately averaged out. (Later
we will discuss when the value of Ω we find in our analy-
sis is consistent with this assumption.) We will now look

for a solution in which the values of the local order para-
meters r+n are approximately time-independent. We note
that this occurs when oscillator degrees k+n ≈ kn/2 are
large enough that fluctuations may be neglected (see [13]
for a discussion). Accordingly, we neglect the last term
in eq. (4), take r+n to be independent of time, and
find that oscillator n locks with the positive cluster if
|ωn−Ω|�Kr+n , in which case we have that sin(φn) =
ωn−Ω
Kr+n

; otherwise, it drifts indefinitely. Due to the symme-

try of the frequency distribution, drifting oscillators (as a
whole) do not contribute to the degree of local or global
synchrony [13], allowing us to rewrite the local order para-
meter as

r+n =
∑
ωn>0,

|ωn−Ω|≤Kr+m

Anme
iφn . (5)

Now, since exactly k+n terms contribute to the order
parameter r+n , we propose that r

+
n is proportional to

k+n . This approximation has been validated numerically
for this and other network-coupled oscillator systems,
but is expected to break down for small r+n in very
heterogeneous networks, e.g., networks with a scale-free
(SF) degree distribution P (k)∝ k−γ with γ � 2.5 [13,14].
Therefore, we expect the following theory to be valid only
for relatively homogeneous networks. Given the definition
of R+, we set r+n =R

+k+n . Recalling that ωn = αk
β
n for

ωn > 0, we separate eq. (5) into its real and imaginary
parts to obtain self-consistent expressions for R+ and Ω,

R+ =
〈k〉−1
N

∑
2|αkβm−Ω|≤KR+km

km

√
1− 4(αk

β
m−Ω)2

(KR+km)2
, (6)

Ω= α

∑
2|αkβm−Ω|≤KR+km k

β
m∑

2|αkβm−Ω|≤KR+km
, (7)

where 〈k〉=∑n kn/N and we have also used k
+
n ≈ km/2.

For large N , eqs. (6) and (7) can be approximated by

R+ = 〈k〉−1
∫
2|αkβ−Ω|≤KR+k

P (k)k

√
1− 4(αk

β −Ω)2
(KR+k)2

dk,

(8)

Ω= α

∫
2|αkβ−Ω|≤KR+k P (k)k

βdk∫
2|αkβ−Ω|≤KR+k P (k)dk

. (9)

A similar argument would show that R− satisfies eq. (8).
Equations (8) and (9) give the degree of synchrony in each
cluster and must be solved self-consistently. In general
eqs. (8) and (9) need to be solved numerically.
In the case of β = 1, it is possible to find analytically

the critical value K1 corresponding to the onset of the
SW solution. To do this, we substitute z = 2(αk−Ω)/
KR+k in eq. (8) and let R+→ 0+, obtaining a criti-
cal coupling strength of K1 = 4α

3〈k〉/πΩ21P (Ω1/α), where
Ω1 is the group angular velocity at onset. If P (k) is
unimodal and has a peak at an intermediate k value,
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Fig. 3: (Colour on-line) Degree of synchrony within positive
clusters R+ vs. coupling strength K for an ER network with
p= 0.1 (blue circles) and an SF network with γ = 5.0 and k0 =
50 (red crosses), both of size N = 1000. Theoretical predictions
for R+ given by eqs. (8) and (9) are plotted in dashed black.
Critical coupling strengths K1 are marked with vertical dotted
lines.

e.g., for an ER network, then expanding eq. (9) about
R+ = 0 yields the condition P ′(Ω1/α) = 0. For an ER
network with mean degree 〈k〉= (N − 1)p, this yields Ω1 =
α〈k〉, K1 = 4α/π〈k〉P (〈k〉). For a monotonically decreas-
ing distribution P (k) with minimum degree k0, e.g., a
SF network with minimum degree k0, it can be shown
that Ω1 = αk0, which yields a critical coupling strength of
K1 = 4α〈k〉/πk20P (k0). We note that, at onset, the period
of oscillation of the last term in eq. (4) is π/Ω1. On the
other hand, the timescale of evolution associated with
the first two terms is 2π/(ωn−Ω1). Therefore, to neglect
the last term in eq. (4) we require 2Ω1� ωn−Ω1. For a
distribution peaked at k= k̂ we require, using Ω1 = αk̂ and
ωn = αkn, that 2k̂� kn− k̂. Therefore, we strictly require
2k̂�maxn(kn− k̂). A somewhat less restrictive require-
ment, which guarantees the condition is valid for most of
the oscillators, is 2k̂� rms(kn− k̂). In any case, our theory
for the onset of the standing-wave solution is restricted to
networks with a homogeneous degree distribution (e.g.,
not SF networks).
We numerically verify these results by simulating

eqs. (1) and (2) with β = 1 over a range of K for an
ER network with p= 0.1 and an SF network with γ = 5
and k0 = 50 (all SF networks we use in this letter were
generated using the configuration model [24]). Both
networks are of size N = 1000. Resulting R+ for the
ER and SF networks are plotted in blue circles and red
crosses, respectively, in fig. 3. Corresponding R− values
were indistinguishable from R+. Theoretical predictions
obtained by solving eqs. (8) and (9) are plotted as dashed
black curves. Critical values K1 for each network are indi-
cated by vertical dotted lines. Results from simulations on
the ER network are predicted well by our theory. While
our theory is not expected to apply to SF networks, we
find reasonable agreement for the SF network with γ = 5.
The agreement does break down for smaller values of γ
(not shown).

Stationary synchronized solution. – We now
present an analysis of the SS solution. Using the definition

of the local order parameters we rewrite eq. (1) as

θ̇n = ωn+Krn sin(ψn− θn). (10)

We now look for solutions where i) the synchronized clus-
ter has zero mean frequency and ii) local order parame-
ters rn are approximately time-invariant. Oscillator n then
becomes phase-locked if |ωn|�Krn, in which case sin(θn−
ψn) = ωn/Krn; otherwise it drifts indefinitely. Due to the
symmetry of the frequency distribution, drifting oscilla-
tors (as a whole) do not contribute to the degree of local
or global synchrony [13], allowing us to rewrite the local
order parameter as

rn =
∑

|ωm|≤Krm
Anme

i(θm−ψn). (11)

We now look for solutions that satisfy the following
conditions. First, assuming a single synchronized cluster,
we set ψn =ψm for all n,m [13]. We note that this
assumption tends to break down when network structure
is strongly modular [17]. Second, as in the analysis of the
SW solution, since exactly kn terms contribute to the order
parameter rn, we propose that rn is proportional to the
degree kn, i.e., rn =Rkn. We note that this holds extreme-
ly well even for very heterogeneous networks because for
SS solutions rn/kn ≈ 1. Under these two assumptions,
eq. (11) becomes

Rkn =
∑

|ωm|≤KRkm
Anm

√
1−
(

ωm

KRkm

)2
. (12)

For the linear correlation (β = 1) the dependence of both
the summation condition and the square-root term on km
(and ωm) vanishes. Looking for the synchronized state,
we sum eq. (12) over all nodes and find that, after some
simplification,

R=

√√√√1±√1− 4 α2K2
2

, (13)

where the + (−) sign represents a stable (unstable) solu-
tion (numerically determined). This branch of station-
ary synchronized solutions appears at K2 = 2α in the
form of a saddle-node bifurcation. Note that in eq. (12),
since the square-root term becomes constant, the remain-
ing
∑
mAnm term, which encodes the network topology,

reduces to the degree kn which is balanced by the left side
of eq. (12). Thus, the degree of global synchrony given
by eq. (13) and the critical coupling constant K2 = 2α
at which the SS solution appears are independent of the
detailed structure of the network, which we refer to as
universality. This surprising result is found to hold even
for networks with degree-degree correlations.
We numerically verify these results by simulating

eqs. (1) and (2) with β = 1 over a range of K for an
ER network with p= 0.1 and two SF networks with
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Fig. 4: (Colour on-line) Degree of global synchrony R vs.
coupling strength K. (a) Several networks with linear correla-
tions, β = 1. Networks used are ER with p= 0.1 (blue circles),
and SF with γ = 2.5 (red crosses) and 3.5 (green triangles),
both with k0 = 10, all of size N = 1000. Theoretical predic-
tion given by eq. (13) in dashed black. (b) Nonlinear corre-
lations β = 0.9 (blue circles) and β = 1.1 (red crosses) on an
SF network with γ = 3, k0 = 50. Theoretical predictions given
by eq. (15) in dashed black.

γ = 2.5 and 3.5 and k0 = 10. All networks are of size
N = 1000. Resulting R values for the ER network and
SF networks with γ = 2.5 and 3.5 are plotted in blue
circles, red crosses, and green triangles, respectively, in
fig. 4(a). The theoretical prediction given by eq. (13) is
plotted in dashed black. The critical coupling strength
K2 = 2α is indicated by the vertical dotted line. Results
from simulations are predicted very well by our theory,
confirming that the detailed network topology is not
necessary to describe K2 and R in the SS state for linear
correlations. We note that, as opposed to our theory
for the SW solution, here we do not need to assume a
homogeneous degree distribution.
For nonlinear correlations (β 	= 1), eqs. (2) and (12)

yield, after summing over n,

R=
〈k〉−1
N

∑
αkβm≤KRkm

km

√√√√1−
(

αkβm

KRkm

)2
, (14)

where 〈k〉=∑N
n=1 kn/N . For large N , we can approximate

eq. (14) with the integral

R= 〈k〉−1
∫
αkβ≤KRk

P (k)k

√
1−
(
αkβ

KRk

)2
dk. (15)

In general, eq. (15) needs to be solved numerically.
The critical coupling strength K2 where the station-

ary synchronized solution is born can be found by solv-
ing eq. (15) for the minimum K value where R> 0 is a
solution. Recall that for β = 1 we have K2 = 2α, which

2.5 3 3.5 4

1
2

10

K
2

 

 

 = 1.2

 = 1.1

 = 1

 = 0.9

 = 0.8

Fig. 5: (Colour on-line) Critical coupling strength K2 obtained
from eq. (15) as a function of γ for SF networks with k0 = 50
for several values of β.

is a universal value independent of the network topology.
Increasing (decreasing) β effectively spreads (contracts)
the set of natural frequencies, therefore impeding (promot-
ing) synchrony and increasing (decreasing) K2.
We numerically verify these results by simulating

eqs. (1) and (2) with β 	= 1 on a SF network with γ = 3
and minimum degree k0 = 50. Resulting R for β = 0.9
and 1.1 are plotted as blue circles and red crosses, respec-
tively, in fig. 4(b). Theoretical predictions for R and the
critical coupling strength K2, both obtained by solving
eq. (15), are plotted as dashed black and vertical dotted
black curves. Results from simulations are predicted
very well by our theory. For networks which violate our
assumptions by having smaller minimum degrees, e.g.,
k0 = 10, we found that K2 as observed from simulations
is slightly smaller (larger) for β < 1 (β > 1) than those
predicted by eq. (15) (simulations not shown).
To further explore the dependence of K2 on network

characteristics, we consider SF networks and numerically
solve eq. (15) to findK2 given a correlation exponent β and
degree exponent γ. Setting the minimum degree k0 = 50,
we plot K2 as a function of γ in fig. 5 for increasing values
of β ∈ [0.8, 1.2], from bottom to top. We see that for β < 1,
we have K2 < 2α, and for β > 1, we have K2 > 2α. As the
networks become more heterogeneous (i.e., γ decreases)
K2 curves upward (downward) for β > 1 (β < 1), while
K2 = 2α remains constant for β = 1.
Having analyzed the SS state, we finally revisit the novel

phase-locking behavior introduced in fig. 2. Recall our
observation that the linear (β = 1) correlation produces
full phase-locking, implying that there are no drifting
oscillators. In fact this was observed to be a critical case
separating the contrasting phase-locking behaviors of sub-
linear and super-linear correlations, for which there exist
drifting oscillators with low and high degrees, respectively.
This interesting phenomenon can be explained by the
locking criterion αkβ−1 �KR in eq. (14), assuming that
K >K2. For super-linear correlations (β > 1), oscillators

with degree k≤ (KR
α
)
1
β−1 become locked, while oscillators

with high degree and frequency drift, a scenario similar to
what has been observed in previous work [13]. For sub-
linear correlations (β < 1), the phase-locked population

consists of oscillators with degree k≥ ( α
KR
)
1
1−β , thus

20001-p5
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leaving oscillators with low degree and frequency drifting.
These two qualitatively different behaviors are separated
by the critical case of linear correlations (β = 1) for which
the dependence on k disappears and the oscillators either
all drift or all phase-lock. While we have not performed
rigorous experiments testing these critical locking degrees,
the results in fig. 2 are in agreement with our theory.

General correlations. – We finalize our analysis by
noting that, although in this letter we focused on a specific
form of the degree-frequency correlations (i.e., eq. (2)), in
the general case of a joint distribution P (k, ω) symmetric
about ω= 0, our analysis still holds and results generalize.
For the SS solution, we find that eq. (15) is replaced with

R= 〈k〉−1
∫ ∞
0

∫
|ω|≤KRk

P (k, ω)k

√
1− ω2

(KRk)2
dωdk.

(16)
For a general distribution P (k, ω), the SW solution will
not appear if the distribution of frequencies is not suffi-
ciently bimodal. Otherwise, we may replace eq. (8) with

R+ = 〈k〉−1
∫ ∞
0

∫
2|ω−Ω|≤KR+k

P (k, ω)k

×
√
1− 4(ω−Ω)

2

(KR+k)2
dωdk. (17)

Conclusion. – In many applications of network-
coupled dynamical systems, a central questions is how
the dynamics and network structure give rise to emergent
collective behavior [11–21]. For instance, in many systems
the contribution of the network structure is encapsulated
in one or more eigenvalues and eigenvectors of the network
adjacency [16] or Laplacian matrices [18–20]. Here we
find that if degree-frequency correlations are chosen
appropriately, then the network structure has virtually
no influence on the resulting synchronization properties.
Full phase-locking, i.e., the simultaneous entrainment of

all oscillators, in heterogeneous oscillator systems is also
a novel finding. Typically, an extremely large value of K
is needed to entrain all the oscillators in a large network
when the oscillators are heterogeneous [13,25]. However,
in the presence of a linear degree-frequency correlation,
all oscillators become phase-locked simultaneously as the
coupling constant passes the critical value for global
synchrony, K2. This unexpected phenomenon emerges
despite the presence of strong heterogeneity in both
the network structure and oscillator dynamics. Another
remarkable observation is that, for sub-linear correlations,
the locked oscillators are those with a frequency which is
most different from the mean.
In addition to analyzing the case of eq. (2), we have

presented a general formalism to analyze synchroniza-
tion of network-coupled oscillators with degree-frequency
correlations. This framework may potentially be used

to optimize the synchronization properties of networks,
which have been recently realized experimentally [26].
Two recent papers [27,28] independently studied addi-

tional aspects of degree-frequency correlations.
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